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Abstract: A simple and new procedure has been developed for the PI controller tuning of an unidentified 
process using closed-loop responses. The method requires only one step test in the closed-loop system to 
obtain the proportional gain and integral time. The step test is a setpoint change performed with a 
proportional only controller while disabling any integral and derivative action. From the setpoint response 
one observes the overshoot and the corresponding time to reach the peak. In addition one observes the 
proportional gain (kc0) and the steady-state offset. Based on a range of first-order with delay test 
processes, a simple analytical correlation has been developed for the controller gain (kc/kc0) as a function 
of the overshoot. The integral time setting is mainly a function of the time to reach the peak. The settings 
were derived to match the SIMC tuning rule (with τc=θ) which gives good robustness with a gain margin 
of about 3 and sensitivity peak (Ms-value) of about 1.6. The proposed tuning method, originally derived 
for first-order with delay processes, has been tested on a broad range of other stable and integrating 
processes. The results using the closed-loop data are comparable with the SIMC tuning rule using the 
open-loop model.  
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1. INTRODUCTION 
The proportional integral (PI) controller is widely used in the 
process industries due to its simplicity, robustness and wide 
ranges of applicability in regulatory layer. Several papers 
have reported that a large number of PI controllers are poorly 
tuned and one reason is that quite tedious plant tests are 
needed for getting process parameters to finally obtain the 
appropriated controller setting. The classical method of 
Ziegler-Nichols (1942) has the great advantages of requiring 
very little information about the process and testing under 
closed-loop conditions. However, it is well known that the 
Ziegler-Nichols (1942) settings are aggressive for lag 
dominant (integrating) process and slow for delay dominant 
process. The other and more significant disadvantage of the 
Z-N method is that the system is brought at the limit to 
instability and that a number of trials may be needed to obtain 
the ultimate gain. An alternative is to induce sustained 
oscillation by using an on-off controller, i.e. relay tuning 
(Åström and Hägglund, 1984), but this is a bit difficult to use 
in practice because one needs to switch to an on/off-
controller. 
 
The original IMC-PID tuning method of Rivera et al. (1986) 
and other related direct synthesis (Seborg et al., 2004) 
methods provide very good performance for setpoint changes 
but give poor responses for input (load) disturbances in lag 
time dominant processes. To improve the input disturbance 
rejection, Skogestad (2003) proposed the SIMC tuning rules 
where the integral time is reduced for lag-dominant 
(integrating) processes. The SIMC rule has one tuning 

parameter, the closed-loop time constant τc, and for “fast and 
robust” control is recommended to choose τc= θ, where θ is 
the effective time delay. The SIMC tuning rule requires that 
one first obtains a first-order plus delay model of the process, 
which involves approximations. Often, an open-loop 
experiment is used for getting the model parameters which 
may be time consuming and may upset the process and even 
lead to process runaway.  
 
Therefore, there is need of an alternative closed-loop 
approach for plant testing and controller tuning which 
reduces the number of trails, avoids the instability concern 
during tuning experiment and works for a wide range of 
processes. The proposed new method satisfies these 
concerns:  
1. The proposed method requires only a single experimental 
closed-loop test instead of a trial-and-error procedure under 
closed-loop condition. 
2. The process is not forced to the stability limit, unlike 
Ziegler-Nichols (1942) cycling method.  
3. The method is applicable for both integrating and stable 
process and gives satisfactory disturbance rejection 
performance.  
4. The method is simpler in use than existing approaches and 
allows the process to be under closed-loop control. 
 

2. SIMC PI TUNING RULES 
 
A first-order process with time delay is a common 
representation of dynamics for process control and is given 
as: 
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where k is the process gain, τ the dominant (lag) time 
constant and θ is the effective time delay. It is a fact that the 
majority of processes in the chemical industries can be 
satisfactorily controlled using a PI controller:  
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which has two adjustable parameters, the proportional gain kc 
and the integral time τI. The ratio c I Ik K   is known as the 

integral gain. 
The SIMC tuning rule (Skogestad, 2003) for the process (1) 
gives   
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 cmin , 4(τ +θ)I                                                         (4)                         

The SIMC tuning rule is analytically based and has found 
wide use in the industry. The closed-loop time constant (τc) is 
selected to give the desired trade-off between performance 
and robustness. This study is based on the “fast and robust” 
setting   

c                                                                                     (5) 

which gives a good robustness with a gain margin of about 3 
and sensitivity peak (Ms-value) of about 1.6. On 
dimensionless form, the SIMC tuning rules become 

'
c c 0.5k k k




                                                                        (6) 

min ,8I
 

   
 

                                                                    (7) 

Note that we have scaled time with respect to the delay θ 
which is approximately the same as the closed-loop time 
constant (with τc=θ). It is also of interest to consider the 
integral gain (KI) on dimensionless form,  
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The dimensionless gain '
ck  and '

IK  are plotted as a function 

of    in Figure 1.  

 
3. CLOSED-LOOP EXPERIMENT 

               
As mentioned, the objective is to use closed-loop data as 
basis for the controller tuning. For practical purpose, the 
simplest closed-loop experiment is a setpoint step response. 
Such a test is easy to make and one maintains full control of 
the process and the change in the output variable. We propose 
the following procedure; 
 
1. Switch the controller to P-only mode (for example, 
increases the integral time τI to its maximum value or set KI 
close to zero). In an industrial system, with bumpless 
transfer, the switch should not upset the process.  
2. Make a setpoint change with an overshoot between 0.10 
and 0.60 (about 0.30 is a good value) Most likely, unless the 
original controller was quite tightly tuned, one will need to 
adjust (increase) the controller gain to get a sufficiently large 
overshoot. From the closed-loop setpoint response, see 
Figure 2, record the following values 
 sy : Setpoint change 

 py : Peak output change 

 pt : Time from setpoint change to reach peak output  

 y : Steady-state output change after setpoint step   

          test 
 0ck : Controller gain used in experiment 

From this data compute the following parameters 

 Overshoot= py y

y
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Note that a P-controller is used and (1-b) is the resulting 
relative steady-state offset. The expression for the overall 
loop gain (kkc0) is derived from the expression for the closed-
loop transfer function, b = kkc0 /(1+kkc0).  
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Fig. 1. kc and τI for SIMC tuning rule.       
 

From Figure 1 we note that the integral term ( '
IK ) is most 

important for delay dominant processes (τ/θ<1), but for other 

processes the proportional term '
ck is most significant. For 

close-to integrating process (τ/θ>8), the SIMC rule is to 
increase the integral term to avoid poor performance (slow 
settling) to disturbance at the plant input (‘‘load 
disturbance’’). These insights are useful for the next step 
when we want to derive tuning rules based on the closed-loop 
setpoint response.  
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Fig. 2. Setpoint response with P-control. 



 
 

     

 

4. CORRELATION BETWEEN SETPOINT RESPONSE 
AND SIMC-SETTINGS 

 
One could use the closed-loop setpoint response data to first 
determine the open-loop model parameters (k, τ, θ) and then 
use the SIMC-rules (or others) to derive PI-settings. A more 
direct approach is to directly compute from the data the PI-
settings as proposed in this study. The goal is then to derive a 
correlation, preferably as simple as possible, between the 
setpoint response data (Figure 2) and the SIMC PI-settings in 
Eq. (3) and (4). For this purpose, we considered 15 first-order 
with delay models parameterized to cover a range of 
processes; from time delay dominant to lag-dominant 
(integrating).   
 
τ θ =0.1, 0.2, 0.4, 0.8, 1.0, 1.5, 2.0, 2.5,3.0, 5.0, 7.5, 

10.0, 20.0, 50.0, 100.0
 

 
For each of the 15 process we obtained the value of kc and τI 
using the SIMC-setting in Eq. (3) and (4) for τc=θ. 
Furthermore, for each of the 15 processes we generated 6 step 
setpoint responses (Figure 2) using P-controllers that give 
different fractional overshoots. 
 
Overshoot= 0.10, 0.20, 0.30, 0.40, 0.50 and 0.60 
 
In total we then have 90 setpoint responses. Note that small 
overshoots, less than 0.10, were not used. One reason is that 
it is difficult in practice to obtain from experimental data 
accurate values of the overshoot and peak time if the 
overshoot is too small.  
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Fig. 3. kkc vs. kkc0 for different overshoot. 
 
We first seek a relationship for the controller gain kc. 
Interestingly, for a fixed value of the overshoot, the ratio 
kc/kc0 is approximately constant,  
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Note that A is almost independent of the value of τ θ . This 

is illustrated in Figure 3 where we plot kkc (SIMC) as a 
function of kkc0 for the 90 setpoint responses. A is the slope 
of the line for each overshoot, and is plotted in Figure 4 as a 
function of the overshoot. The following equation (solid line 
in Figure 4) fits the data very well,  

21.152(overshoot)  - 1.607(overshoot) + 1.0A                 (11) 

where the correlation is based on data with fractional 
overshoot between 0.1 and 0.6.  Note that a good fit of kc is 
not so important for delay-dominant processes (τ/θ<1), in the 
lower left corner in Figure 3, where the integral contribution 
is the most important.  
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Fig. 4. Variation of A with overshoot 
 
Next, we want to find a correlation for the integral time. 
Since the SIMC tuning formula in Eq. (4) uses the minimum 
of two values, it seems reasonable to look for a similar 
relationship, that is, to find one that matches processes with a 
relatively large delay (τI =τ) and one that works well for 
integrating process (τI =8θ), and then take the minimum.  
 
First, consider processes with relatively large delay (τ/θ<8 or 
θ>0.125τ), where the SIMC-rule is to use τI = τ. From Figure 
1, it is clear that for a delay-dominant process (θ>τ) the 
integral term (KI) is most important. This means that it is 
particularly important to obtain a good value of I c IK k  in 

this region. In other words, it is not so important that kc and τI 
are correct individually, but rather that their ratio KI is close 
to the SIMC-value. Inserting τ = τI in the SIMC rule for kc in 
Eq. (6) and solving for τI gives 

c2I kk                                                                           (12) 

To get KI correct, we here must use the actual value for the 
controller gain kc. From (10) we have obtained the correlation 
kc/kc0=A, where A is given as a function of the overshoot in 
Eq. (11). However, we also need the value of the process gain 
k, and to this effect, write  

c c0 c c0kk kk k k                                                                (13) 

Here from Eq. (9),  c0 1kk b b   where b is obtained from the 

steady-state value of the setpoint response. In summary, we 
have following equation for τI for a delay dominant process 
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where θ is the effective time delay. Similarly, for a lag-
dominant (integrating) process (τ>8θ) the SIMC rule gives  
τI=8θ                                                                                 (14b)  
 
Equations (14a) and (14b) for the integral time have all 
known parameters except the effective time delay θ. One 
could obtain the effective time delay directly from the closed-
loop setpoint response, but this may be difficult. Fortunately, 
as shown in Table 1, there is a good correlation between θ 
and the peak time tp which is easier to observe.  
Case-a: For processes with a relatively large time delay 
(θ>τ/8), the ratio θ/tp varies between 0.27 and 0.5 (depending 
on the overshoot and value of τ/θ). We select to use the value 
θ=0.43tp, (note that a large value is more conservative as it 
increases the integral time). This gives  
Process with relatively large time delay:  

 Iτ =0.86 
1 p

b
A t

b
                                                               (15a)   

 
Table 1. Variation of θ/tp with τ/θ and overshoot. 

 

                                                
Case-b: For a lag-dominant process (τ>8θ) we find that θ/tp 
varies between 0.25 and 0.36 (depending on the overshoot 
and value of τ/θ). We select to use the average value θ= 
0.305tp and get 
Integrating process: Iτ =2.44 pt                                           (15b) 

In conclusion, the integral time τI is obtained from the 
minimum of the above two values and becomes 
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5. ANALYSIS AND SIMULATION 
 
Simulations have been conducted for different types of 
process and the proposed tuning procedure provides 
reasonable controller settings with respect to both 
performance and robustness. This section presents only 
twelve typical cases to show the effectiveness of the proposed 
tuning rule. The results of the step test for the controller 
tuning and corresponding PI setting with Ms value are listed 
in Table 2. The peak of maximum sensitivity (Ms) is a 
measure of robustness and is defined 

as s p cM max 1/[1 ( )]g g i  ; a small Ms value indicates that 

the stability margin of the control system is large.  
 

The resulting closed-loop PI-response for case E5, E7, E8, 
E10 and E11 are shown in Figure 5, 6, 7, 8 and 9. A unit step 
setpoint change is made at t=0 and a unit step change for a 
load disturbance at the process input is made at t=100, 20, 
and 15 for E7, E8 and E11, respectively. For E5 and E10, the 
performances are evaluated by giving a unit step change at 
t=0 and a step input of magnitude 2 and 0.5 in the load 
disturbance at t=25 and 200.  
The recommended PI settings vary somewhat with the 
overshoot as seen in Table 2. From Figure 5-9, it is clear that 
the responses are close to those with the SIMC settings. The 
resulting PI tunings depend on the overshoot used in the 
experiment and based on the fitting and the results in 
example processes (Table 2) we recommend that an 
overshoot around 0.3 is used in practise. 
 

6. CONCLUSION 
 
A simple and new approach for PI controller tuning has been 
developed. From a single closed-loop setpoint step test, using 
a P-controller with gain kc0, one obtains three characteristic 
numbers: The overshoot (typically around 0.3), the time to 
the first peak tp and the relative steady state change b. The 
proposed PI-settings for the “Shams’s setpoint method” 
method are: 

0c ck k A  
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where 21.152(overshoot)  - 1.607(overshoot) + 1.0A      

The above settings give a robust and reasonable fast response 
(corresponding to a closed-loop time constant τc = θ in the 
original SIMC method). If one wants to detune the controller 
to get a smoother response with more robustness and less 
input usage then one may introduce the detuning parameter 
F>1: 

0c ck k A /F;   
 

min 0.86 ,2.44
1I p p

b
A t t F

b


 
    

 

One may in some cases choose F<1 to speed up the response 
but the system will then be less robust. 
The new method works for a wide variety of the processes, 
except unstable and highly oscillating system. The novelty of 
the proposed method is that only one experiment in closed-
loop is sufficient for getting significant information for 
controller tuning. 
We believe that it could be the simplest and easiest approach 
for PI controller tuning to use in process industries.  
 
 
 
 
 
 
 
 
 
 

 θ/tp θ/tp θ/tp 

τ/θ Overshoot=0.1 Overshoot=0.3 Overshoot=0.6 

0.1 0.50 0.50 0.50 

1.0 0.36 0.41 0.44 

8.0 0.27 0.32 0.36 

100 0.25 0.30 0.34 



 
 

     

 

 
 

 
 

 
 

 
 

Case  Process model kc0 overshoot tp b kc  τI Ms 

1.10 0.121 3.10 0.524 0.905 2.412 1.46 
1.70 0.323 2.7 0.63 1.022 2.374 1.55 

2.45 0.596 2.502 0.710 1.106 2.379 1.62 

E1 

2 1

se

s




 

SIMC - - - 1.0 2.0 1.59 
0.60 0.118 3.911 0.984 0.496 9.544 1.66 
0 .80 0.301 3.293 0.988 0.496 8.034 1.68 
1.10 0.598 2.913 0.991 0.496 7.108 1.71 

E2 100

100 1

se

s




 

SIMC - - - 0.50 8.0 1.69 
0.85 0.131 5.31 0.46 0.688 3.141 1.41 
1.50 0.303 4.460 0.60 0.929 3.562 1.56 
2.50 0.567 3.886 0.714 1.148 3.836 1.73 

E3    
       3

0.3 1 .08 1

2 1 1 1 .4 1 .2 1 .05 1

s s

s s s s s

  

    
 

SIMC - - - 0 .85 2.50 1.66 
5.0 0.127 0.710 0.833 4.074 1.732 1.33 
15.0 0.322 0.393 0.937 9.031 0.958 1.74 
40.0 0.508 0.230 0.976 19.23 0.561 2.62 

E4 

   
1

1 .2 1s s 
 

SIMC - - - 5.5 0.80 1.56 
12.0 0.128 0.89 0.923 9.766 2.171 1.81 
15.0 0.308 0.836 0.938 9.220 2.040 1.75 
20.0 0.609 0.792 0.952 8.971 1.933 1.72 

E5   
   

0.36 1 3 1

10 1 8 1 1 1

ss s e

s s s

 

  
 

SIMC - - - 7.40 1.0 1.66 
0.50 0.116 4.55 0.333 0.415 1.622 1.43 
1.0 0.321 3.85 0.50 0.603 1.995 1.58 
1.70 0.623 3.453 0.63 0.758 2.251 1.74 

E6 

  1 1 1 1

se

s s



 
 

SIMC - - - 0.50 1.5 1.61 
0.70 0.119 16.62 0.412 0.577 8.25 1.41 
1.40 0.344 13.67 0.583 0.817 9.602 1.59 
2.20 0.608 12.28 0.687 0.987 10.423 1.74 

E7  
     

1

6 1 2 1 2 1

ss e

s s s

 
  

 

SIMC - - - 0.70 7.0 1.63 
0.55 0.101 1.63 0.355 0.467 0.655 1.42 
1.25 0.322 1.43 0.556 0.752 0.925 1.72 
2.30 0.58 1.23 0.697 1.048 1.109 2.21 

E8 

  2

9

1 2 9s s s  
 

SIMC - - - - - - 
0.40 0.110 7.636 1.0 0.335 18.631 1.48 
0.80 0.301 4.987 1.0 0.496 12.169 1.77 
2.2 0.576 3.199 1.0 0.913 7.805 2.73 

E9  
   

2

2

.17 1

1 .028 1

s

s s s



 
 

SIMC    0.296 13.5 1.48 
0.40 0.11 29.34 1.0 0.335 71.585 1.67 
0.55 0.315 24.09 1.0 0.334 58.772 1.69 
0.75 0.61 21.47 1.0 0.336 52.379 1.72 

E10 7.40.2 se

s


 

SIMC - - - 0.337 59.2 1.70 
0.10 0.10 2.0 0.091 0.085 0.146 1.70 
0.30 0.30 2.0 0.231 0.187 0.321 1.61 
0.60 0.60 2.0 0.375 0.270 0.464 1.64 

E11 

 20.05 1

se

s




 

SIMC - - - 0.037 0.075 1.59 
4.0 0.142 2.25 0.80 3.179 5.490 1.87 
4.75 0.302 2.20 0.826 2.943 5.367 1.76 
6.0 0.570 2.143 0.857 2.75 5.068 1.68 

E12  
   

2 1

10 1 0.5 1

ss e

s s


 

 

SIMC - - - 2.88 4.50 1.74 

Table 2: PI controller setting for proposed and SIMC 
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Fig. 6. Response for case E7 process. 
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Fig. 7. Response for case E8 process. 
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Fig. 8. Response for case E10 process. 
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Fig. 9. Response for case E11 process. 
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Fig. 5. Response for case E5 process. 
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