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Abstract— By using a newly established link between self-
optimizing control and linear-quadratic optimal control [1],
[2], we show in this paper how to derive fixed-order linear
quadratic optimal controllers (no noise) and fixed-order H2
optimal controllers (with noisy measurements) by solving a
convex quadratic program. The method may be applied, for
example, to find optimal SISO and MIMO PID controllers
with and without noise. In the literature, these problems has
previously been assumed to be non-convex [3]. The validity of
the approach, and in particular of the noise assumptions, has
been verified on a small-scale laboratory experiment.

Index Terms— linear quadratic control, fixed-order control

I. I NTRODUCTION

A key result, which is a basis for this paper, is the
nullspace theorem[4] (noise-free case, see Theorem 2):

For a quadratic static optimization problem there exists
(infinitely many) linear measurement combinationsc = Hy
that are optimally invariant to disturbancesd, providedny ≥
nu + nd.

Consider a LQ problem of the form

min
u

J(u, x(0)) = xT
NPxN+

+

N−1∑

k=0

[
xT

kQxk + uT
kRuk

]

subject tox0 = x(0)

xk+1 = Axk + Buk, k ≥ 0

yk = Cxk

(1)

Here the initial states are the disturbances (nd = nx).
One sees immediately that there may be some link to

linear quadratic optimal control (LQ), because the discrete
LQ problem can be written as a static optimization problem.
The link is: If we let the “measurements”y contain the inputs
u plus the statesx, then the invariant variable combination
c = Hy is the same as the LQ feedback law, i.e.c = u−Kx.

The measurements can in theory include previous and
future outputs (states). However, for feedback control is all
measurements need to be at the same time to avoid problems
with causality. To have sufficient number of measurements
(ny ≥ nu + nd) at the present time, we need information
about all the present statesxk.

However, in generalx is not measured directly. For the
noise-free case one may use a Luenberger observer of order
nx − ny to estimate the remaining states and use the output
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from the observer as the input to the controller [5]. As noted
in [5], “another approach is to differentiate the available
outputs a number of times and the combine these derivatives
appropriately to obtain the state vector.” Is it further noticed
that “in this case, the estimate responds instantaneously to
disturbances, but it is severely degraded by a small quantity
of additive noise in the measurements” In this work we use
this approach where the derivatives give “state information”.
In addition, we provide a convex problem formulation to get
fixed-order controllers for cases where of the derivatives are
not available.

Importantly, results are further extended to the case with
noise, that is we find combinationsc = Hy that yield
minimum loss when held constant (Theorem 2).

Consider (1), but withnoisymeasurements

ym = y + ny. (2)

As above, the initial statex(0) is treated as the disturbance.
We can now use a generalization of the nullspace theorem
that handles noise as “measurements”y we include the
output, a selected number of derivatives of the outputs plus
the inputs,(yk, ∂yk

∂t , . . . , uk), and we derive a feedback law
that minimizes the deterministic objective function in (1)
subject tousing noisy measurements. As for the noise-free
case, we have aconvexformulation of the fixed-order control
problem.

The rest of the paper is organized as follows: In section
II we review two theorems from self-optimizing control. In
section III we will see that these theorems gives a nice link
to LQ control, and several examples will be given.

A. Notation

In previous works on self-optimizing control and in partic-
ular the nullspace method, candidate variables are denotedy
and thenc = nu variable combinations (controlled variables)
c = Hy. These candidate variables can be process outputs,
and also inputs. On the other hand, in process control
literaturey is referred to as measurements or process output,
but usually not inputs. In this paper we work most of the
time with discrete models, and thenyk is a process output,
whilst y is a vector of candidate variables, for example
y = (xk, uk).

Figure 1 shows the candidate variablesy that are combined
to c = Hy and control them using a feedback controller. In
this work we will show that the feedback controller can be
obtained fromc = Hy itself, if we include the inputsuk

in the candidate variablesy. Further, in this work,cs = 0

CONFIDENTIAL. Limited circulation. For review only.

Preprint submitted to 2009 American Control Conference.
Received September 22, 2008.



Gy

Gy
d

u

d

ny

y

Measurement
combination (H)

c = H(y + ny)

Fig. 1. Summary of important notation.

for all candidate variable combinations, as we will typically
consider regulation problems in deviation variables.

The most important notation is also summarized in figure
1. Typically, u = (uk, uk+1, . . . , uk+N−1), d = x0 andy =
(xk, uk) or y = (yk, ∂yk

∂t , . . . , uk, uk+1, . . . , uk+N−1).

II. RESULTS FROM SELF-OPTIMIZING CONTROL

From [4] we have the following two theorems:
Theorem 1:(Nullspace theorem = Linear invariants for

quadratic optimization problem) Consider an unconstrained
quadratic optimization problem in the variablesu (input
vector of lengthnu) andd (disturbance vector of lengthnd)

min
u

J(u, d) =

[
u
d

]T [
Juu Jud

JT
ud Jdd

] [
u
d

]

. (3)

In addition, there are “measurement” variablesy = Gyu +
Gy

dd. If there existsny ≥ nu + nd independent measure-
ments (where “independent” means that the matrixG̃y =
[
Gy Gy

d

]
has full rank), then the optimal solution to (3)

has the property that there existsnc = nu linear variable
combinations (constraints)c = Hy that are invariant to
the disturbancesd. The optimal measurement combination
matrix H is found by:

First, let F = ∂yopt

∂d , where the sensitivity matrixF can
be obtained from

F = −(GyJ−1
uu Jud −Gy

d), (4)

and selectH such that

HF = 0. (5)

That is,H is in the left nullspace ofF .
A generalization of Theorem 1 is the following:
Theorem 2:(Loss by introducing linear constraint for

noisy quadratic optimization problem) Consider the uncon-
strained optimization problem in Theorem 1,

min
u

J(u, d) =

[
u
d

]T [
Juu Jud

JT
ud Jdd

] [
u
d

]

,

and a set of noisy measurementsym = y + ny, wherey =
Gyu + Gy

dd. Assume thatnc = nu constraintsc = Hym =
cs are added to the problem, which will result in a non-
optimal solution with a lossL = J(u, d)−Jopt(d). Consider
disturbancesd and noiseny with magnitudes

d = Wdd
′; ny = Wnyny;

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1.

Then for a givenH, the worst-case loss introduced by adding
the constraintc = Hy is Lwc = σ̄(M)/2, whereM is

M ,
[
Md Nny

]

Md = −J1/2
uu (HGy)−1HFWd

Mn = −J1/2
uu (HGy)−1HWny .

(6)

The optimal H that minimizes the loss can be found by
solving theconvexoptimization problem

min
H
‖HF̃‖F

subject toHGy = J1/2
uu

(7)

Here F̃ = [FWd Wny ].
The reason for using the Frobenius norm is that minimiza-

tion of this norm also minimizes̄σ(M) [6].
Remark 1: If F̃ F̃ T is non-singular we have an explicit

expression for the optimalH [4]:

HT = (F̃ F̃ T)−1Gy
(

GyT(F̃ F̃ T)−1Gy
)
−1

J1/2
uu . (8)

Remark 2:Since, in this particular case, the matrixH that
minimizes the Forbenius norm also minimizes the maximum
singular value ofM [6], this H is also a solution to
minH σ̄(M).

Remark 3:From [4] we have that any optimalH premul-
tiplied by a non-singular matrixnc×nc D, i.e.H1 = DH is
still optimal. One implication of this is that for a square plant,
nc = nu, we can writec = H1y = Hym

1 ym+Iu. To see this,
assumey = (ym, u), soH = [Hym Hu], whereHu is a non-
singularnu × nu matrix. Now,H1 = (Hu)−1[Hym Hu] =
[(Hu)−1Hym I].

Remark 4:More generally, for the case wheñFF̃ T is
singular, we can solve the convex problem (7) using for
exampleCVX, a package for specifying and solving convex
programs [7], with the following code:

cvx_begin
variable H(N*nu,ny+nu*N);
minimize norm(H*Ftilde,’fro’)
subject to

H*Gy == sqrtm(Juu);
cvx_end

An important comment regrading Theorem 2 for LQ

It is assumed in this work that the problem can be
formulated as a static problem at timet = k (with all
the measurements available at timek) This assumption is
satisfied for the PID controller with direct measurements
of the present outputyk, the derivativesy′

k and the sum
yI

k =
∑

yi (for integration).
However, if we only have available present output mea-

surements (yk), then the derivatives must be obtained by us-
ing previous measurements, e.g.y′

k = yk−yk−1. In this case,
there will then be an additional “start-up” loss, in addition
to that given in Theorem 2, and it is not guaranteed that the
solution obtained from Theorem 2 is optimal (although it is
likely to be reasonably close to the optimal case)
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III. F ULL STATE INFORMATION

A. No noise

Assume that noise-free measurements of all the states are
available. It is well known that the LQ problem (1) can be
rewritten on the form in (3) (see for example [8]) by treating
x0 as the disturbanced, and lettingu = (u0, u1, . . . , uN−1).
Thus, from Theorem 1 we know that for this problem
there existsinfinitely many invariants, but only one of these
involves only present states.

Without loss of generality consider a stable process that
can be described by the following linear model:

xk+1 = Axk + Buk, k = 0, 1, 2, . . .

x0 : known
(9)

Let y = (xk, uk, uk+1, . . . , uk+N−1) = (xk, u). Note that
this includes also future inputs, but we will use the normal
“trick” in MPC of implementing only the present (first) input
changeuk. Since we haveny = nd + nu and no noise, we
can use Theorem 1. The open loop model becomes:

y = Gyu + Gy
dd

Gy =

[
0nx×(nuN)

InuN

]

∈ R
(nx+nuN)×(nuN)

Gy
d =

[
InuN

0(nuN)×nx

]

∈ R
(nx+nuN)×nx

(10)

HereIm is anm×m identity matrix and0m×n is a m× n
matrix of zeros.

The matricesJuu and Jud are the derivatives of the
linear quadratic objective function. Here we will consider
the following infinite horizon objective function:

J =

∞∑

k=0

(
xT

kQxk + uT
kRuk

)
. (11)

If we assume that fork ≥ 0 the solution to the optimization
problem of minimizing (11), it can be shown [8] that this
particular objective function can be rewritten as

J =

N−1∑

k=0

(
xT

kQxk + uT
kRuk

)
+ xT

NPxN , (12)

whereP is a solution to the discrete Lyapunov equationP =
ATPA+Q. (For an unstable process we can setuk = −Kxk

for k ≥ N , whereK is a state feedback gain matrix such
that(A−BK) has no eigenvalues outside the unit circle. For
the objective function in (11) we can convert the problem to
finite horizon by using a final state weight matrix for example
from [9].)

For the objective in (12) with the process model in (9) we
show in [10] that

Juu

2
=






BTPB+R BTATKB ... BT(AN−1)TPB

BTPAB BTPB+R ... BT(AN−2)TPB

...
...

...
...

BTPAN−1B BTPAN−2B ... BTPB+R




 (13)

and

Jud

2
=








BT

BT

. . .
BT















P
PA

...
PAN−1








A (14)

The sensitivity matrix (optimal change iny when d is
perturbed) becomes:

F =
∂yopt

∂dT
= −(GyJ−1

uu Jud −Gy
d) =

[
Inx

−J−1
uu Jud

]

(15)

Since there is no noise we can use Theorem 1 to get the
combination matrixH, i.e. find anH such thatHF = 0:

[
H1 H2

]
[

Inx

J−1
uu Jud

]

= H1 −H2(J
−1
uu Jud) = 0 (16)

To ensure a non-trivial solution we can chooseH2 = InuN

and get the following optimal combination ofxk andu:

c = Hy = J−1
uu Judxk + u, (17)

which reads out as (uk = Kkxk), (uk+1 =
Kk+1xk), . . . , (uk+N−1 = Kk+N−1)xk, of which the
first invariantuk = Kkxk is the one to be implemented.

In [10] we prove that this gives the same result as con-
ventional linear quadratic control, by conventional meaning
for example equation (3) in Rawlings and Muske 1993 [8].

B. Noisy measurement of state vector

Assume now thatnoisy measurements of the state vector
are available, and that the noise-level on all states is the same,
i.e. xm,k = xk + α. As before, we treat the initial state as
a disturbance,d = x0, and assume the following bounds on
the disturbance and noise:

d = Wdd
′, ny = Wnyny′

, Wd = I, Wny = αI,

and

∣
∣
∣
∣

∣
∣
∣
∣

[
d′

ny′

]∣
∣
∣
∣

∣
∣
∣
∣
2

≤ 1.
(18)

Hereα is thenoise-to-disturbanceratio and we have assumed
that the combined two-norm describes the disturbance and
noise variations. Further assume that an optimal state feed-
back K for the case of no noise (α = 0) has already been
found. By using Theorem 2 and the analytical expression for
H (8), we prove in appendix A that

uk =
1

1 + α2
Kxk (19)

Thus, (1 + α2) is the optimal reduction in state feedback
gain whenα > 0.

IV. OUTPUT FEEDBACK WITHOUT NOISE

In this section we will consider a second order SISO
process with noise-free output measurements. For clarity of
presentation, we present the theory by way of an example.

We will consider two cases. First, the full-information case
where we measure the derivatives and where(yk, ∂yk

∂t ) and
the inputs are combined using Theorem 1. The controller
is equivalent to a Luenberger observer with poles at−∞
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in continuous time domain and0 in discrete time, but is
derived using Theorem 1, andnot using observer theory.
In the second case a low-order controller using the explicit
expression (8) from Theorem 2 withWny = 0 is derived.

Example 1: (SISO process) Consider the processy(t) =
2

s2+3s+2u(t) taken from example 7.1 in [11]. This can be
written on “observer canonical form” (see for example [12]):

G(s) =







−3 1
−2 0

0
2

1 0
−3 1

0
0







, (20)

where have used the notationG(s) =

[
A B

C D

]

represents

the transfer functionG(s) = C(sI − A)−1B + D. The
derivative y′(t) is included as the second output from the
process. We sample the process withT = 0.1 and get the
following discreterealization:

G(z) =







0.7326 −0.0861
−0.1722 0.9909

0.009
0.200

1 0
−3 1

0
0







. (21)

The task is to regulate the system to the origin, and to achieve
this we minimize the following objective:

J(u, x0) = xT
NPxN +

N−1∑

i=0

xT
i Qxi + uT

i Rui,

subject to model equations.

(22)

We want to bring both(y, y′) to the origin and setQ =
CTI2C, while R = 0.01. P solves the Lyapunov equation
P = ATPA + Q, i.e. we assume that fork ≥ N , uk = 0.
(See [8]).

Full information case:We here use Theorem 1 as in
section III-A, but with

Gy =

[
02,nuN

Inu

]

, Gy
d =

[
C

0nuN,nx

]

(23)

After doing the calculations we find the feedback law

uk = −
[
3.59 3.58

]
[
yk

y′

k

]

. (24)

It is not surprising that the controller puts almost equal
gains on the process output and the derivative, since we
useQ = CTIC as a weight on the states in the objective
function.

Reduced-order controller case.In the full information case
we got a controller of order1, i.e. we had one differentiation
of the output. This is the same order as a reduced-order
Luenberger observer, which is of ordernx − ny [13]. A
reduced-order controller for this process is to use only the
process outputyk. This was done in [2], but is here repeated
with focus on the relation to the full information controller.
We here use (8), with

Gy =

[
01,nuN

Inu

]

, Gy
d =

[
c1

0nuN,nx

]

. (25)

Here c1 = [1 0] is the first row of theC-matrix. In this
case we need to solve an optimization problem to get the
optimal combination, sincend ≤ ny = Nnu + (nd − 1) ≤
Nnu + nd. The optimalH can now be found solving the
convex optimization problem shown in Theorem 1.

We end up with the feedback law

uk = −7.14yk. (26)

Note that this gain is the double of the gain for the full
information case.

Numerical comparison:A simulation was run with dis-
turbances drawn from a uniform distribution with‖d‖1 ≤ 1,
and by computing the average stage costs under closed
loop, Javg = 1

N

∑N
i=0 xT

i Qxi + uT
i Rui we found that

Javg, full information = 6.4, while Javg, reduced information= 22.7.
As expected, there is a loss with only output feedback.

V. OUTPUT FEEDBACK WITH NOISE

In this section, we will use Theorem 2 to find low-order
controllers when noisy measurements are available. We will
show the methodology on a small-scale laboratory plant,
which is shown in figure 2. The low-order controller that we
want to use is a PID controller, and therefore we first show
how to derive a LQ-optimal PID controller and then apply
the controller to the laboratory plant. The laboratory-scale
plant is rather small and likely to be affected by disturbances
such as opening of lab doors, air conditioning, other lamps
switched on/off etc., hence integral action seems necessary
for controlling the plant

The PID controller is synthesized using Theorem 2, but
before finding the controller some more preliminaries are
needed. We need to

1) Augment the model with a disturbance model.
2) Modify the objective function to penalize input change

rather than absolute value of the inputs. This is nec-
essary in order let the outputs reach their setpoints
when integrating disturbances occur. (We want to use
the inputs to counteract disturbances at steady state,
hence we should not require the inputs to return to the
nominal point of operation.)

We start by augmenting the model with integrating dis-
turbances. The formulation, see (27), includes both input
and output disturbances. In addition we add integrators for
summing up the outputs. These correspond to the integrators
in the controller. (For the example, the number of integrators
in the controllerns equals number of integrating disturbances
ns = nd = ny = 1).We also add as an output the output
changeyk+1 − yk = (CAxk + CBuk)− Cxk, wheredk+1

was assumed to bedk+1 = dk. (The derivatives may also
be added by starting from a continuous model on observer
canonical form and then discretizing, as in example 1.) We
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then get the following model of the plant and controller:




xk+1

dk+1

σk+1



 =





Aplant Bd 0
0 I 0
C Cd I









xk

dk

σk



 +





B
0
0



uk





yP
k

yI
k

yD
k



 =





C Cd 0
0 0 I

C(Aplant− I) 0 0









xk

dk

σk



 +





0
0

CB



uk

(27)

We now modify the objective function to penalize∆uk ,

uk+1−uk. Assume the original objective function was on the
form J(x, u) = xT

NPxN +
∑N−1

i=0 xT
i Qxi+uT

i Rui+2xT
i Nui,

hence no term∆uTR∆∆uk. First note that in continuous
time, u = Kx ⇒ u̇ = Kẋ in closed loop. In discrete time
ẋ ≈ xk+1 − xk and we get that

u̇ = Kẋ ≈ K(xk+1 − xk) = K ((A− I)xk + Buk) (28)

The term∆uT
kR∆∆uk becomes

∆uT
kR∆∆uk = xT

k(A− I)TKTR∆K(A− I)xk+

+ ukBTKTR∆KBuk + 2xT
k(A− I)TKTR∆KBuk.

(29)

This formulation is useful because we can use, for example,
the function ’lqr’ in Matlab directly to get theKlqr

feedback matrix. This matrix is needed for the calculation of
the final weight matrixP . In earlier examples we calculated
P from P = ATPA + Q, by assuming thatuk = 0
for k ≥ N . With integral action this is wrong, since at
steady state we use the inputs to counteract the integrating
disturbances. The following final weight can be used to
change the problem from infinite to finite horizon: (See
Appendix B for a derivation.)

P = (A−BKlqr)
TP (A−BKlqr)+

+ KT
lqrRKlqr + Q−NKlqr.

(30)

Let us summarize the method for finding a (MIMO) PID
controller with quadratic objective function and noisy mea-
surements:

1) Choose weights(Q,R∆) for the LQ problem.
2) Determine weightsWd,Wny from operating data

and/or process knowledge.
3) Augment the process model as shown in (27).
4) Solve LQ problem, for example with’lqr’ in Mat-

lab, iteratively on K, with the following objective:

J =
∞∑

i=0

xT
i (Q + (A− I)TKTR∆K(A− I))xi+

+ uT
i BTKTR∆KBui+

+ 2xT
k(A− I)TKTR∆KBuk.

(31)

The following iteration scheme was
used:

while ‖∆K‖ > β do
Qit ← Q + (A− I)TKTR∆K(A− I)
Rit ← BTKTR∆KB
Nit ← (A− I)TKTR∆KB

Plate withT -sensor

Light
bulb

Fan

(u)

(y)

(d)

Fig. 2. Laboratory thermal plant.

Knew← lqr(G,Q,it Rit , Nit)
∆K ← Knew−K
K ← αK + (1− α)Knew

end while
HereG is the state-space representation of the process,
0 ≤ α < 1 is a numerical damping factor andβ is the
convergence criterion.

5) FindP from (30), for example by’dlyap’ in Matlab.
6) Use theorem 2 to find the optimal combination between

(yP
k , yI

k, yD
k , uk).

Example 2: (Laboratory experiment: Thermal Plant [14])
In this example we want to control the temperatureyk = T
by changing the power inlet to a light bulb (uk). A sketch
of the plant is shown in figure 2. We observe that a fan is
blowing air onto the plate with the temperature sensor. We
will use this fan to generate disturbances for the plant. A
model of the plant has been found experimentally, is

G(z) =





0.9771 −0.0210
−0.0319 0.9430

10−3 · 0.1978
10−3 · 0.1955

525.1 −1.982



 . (32)

The sample time in the above model is 1 second. For this
process we choose

Q = CT





1 0 0
0 1 0
0 0 1



 C (33)

and
R∆ = 1. (34)

We further setWd = I4. For the noise weightWny , we
choose

Wny =







1
1

100
InuN







(35)

This matrix should be related to the noise-to-disturbance
ratio. Here the disturbances are the disturbances to the initial
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with LQ−optimal PID
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Disturbance (fan)

Fig. 3. Experimental data.

statesx0. In this example however, we use this matrix
as a tuning matrix in which we set a high noise-term on
the differential (the third output) and let the other terms
have same weight as the disturbance weight matrix. This
is because we do not want too much derivative action , but
at the same time we want to demonstrate the mathematical
framework for deriving a PID controller. (Of course, if we do
not want a D-term in the controller, we should have excluded
the differential as a possible “measurement” before using
Theorem 2 to find the controller.)

For the disturbance model we choose

BT
d =

[
1 1

]
, Cd = 0. (36)

Notice that

rank

[
I −Aplant −Bd

Cplant Cd

]

= 3 = nx + ny, (37)

which indicates that offset-free control at steady state should
be possible [15], [16].

As input horizion we setN = 20 in this example.
Using the above method, we first find thatKlqr =

103
[
3.1590 −0.1174 0.0010 0.0013

]
, and that

P = 106







6.8224 −0.2768 0.0029 0.0035
−0.0993 0.0547 −0.0011 0.0000
0.0010 −0.0010 0.1811 −0.0000
0.0045 −0.0000 0.0000 0.0000







.

(38)
Since we now have penalty on the input change,

∆uT
kR∆uk, the Juu matrix in (13) needs to be changed

slightly. This can be done by lettingU = (u0, u1, . . . , uN−1)

and∆U = MU where

M =






−1 1
.. .

.. .
−1 1




 ∈ R

nu(N−1)×nuN . (39)

The matrixJuu is now

Juu

2
=






BTPB+R BTATKB ... BT(AN−1)TPB

BTPAB BTPB+R ... BT(AN−2)TPB

...
...

...
...

BTPAN−1B BTPAN−2B ... BTPB+R




 +

+ MT

[
R∆

...
R∆

]

M

(40)

The structure ofJud is the same as in (14).
The open loop modely = Gyu + Gy

dd, with d = x0, is
for this example

Gy =





D 03ny×(N−1)nu

I 0
0 I





Gy
d =

[
C

0Nnu×(nx+nd+ns)

]

.

(41)

Here nd is the number of integrating disturbances andns

is the number of integrators in the controller. We have that
nd = ns = ny = 1.

We can now calculatẽF , and solve the convex optimiza-
tion problem that finds the minimum of‖HF̃‖ subject to
HGy = J

1/2
uu . As indicated above,H can be written as

H = [H
y
m Hu] and another matrix that minimizes the norm

is H1 = (Hu)−1H = [(Hu)−1Hym I]. By considering the
first row of this matrix we find that

uk + 5.04yk + 0.53

k∑

i=0

yi + 0.11(yk − yk−1) = 0. (42)

This variable combination that gives the minimum loss when
we impose a PID-structure for the controller to the original
problem. In feedback form:

uk = − 5.04yk
︸ ︷︷ ︸

P

− 0.53

k∑

i=0

yi

︸ ︷︷ ︸

I

− 0.11(yk − yk−1)
︸ ︷︷ ︸

D

(43)

Note that in the original problem formulation we obtain
yk+1 − yk for the derivative, but since this is non-causal
we have shifted the derivative one step back in the imple-
mentation.

Figure 3 shows a plot of the temperature loop in open
and closed loop, where in closed loop we implemented
the LQ-optimal PID controller. No filter on the derivative
part was used. One observes that under closed loop the
temperature is kept at its set-point at 35◦C, even with the
integrating disturbances from the fan, whilst in open loop
the temperature drifts away when the plant is subjected to
the same disturbances. In closed loop is seems like the noise
is slightly amplified, this is probably due to the derivative
term in the controller. This can be fixed by placing a filter
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in front of the derivative term. Here we want to demonstrate
the design of the controller rather than tuning, so we will
not pursue this issue further.

Discussion

Above we used pure integrators in the derivation, and
we used a penalty on∆uT

kR∆uk rather thanuT
kRuk in

the objective function. The reasoning was that since we
want integral action we want to use the input to counteract
the integrating disturbances, therefore it is not reasonable
to require that the inputs return to the nominal point. We
saw that by usingu̇ = Kẋ we could fit the penalty of
the input-change into the normal objective functionJ =
∑

∞

k=0 xT
kQxk + uT

kRuk + 2xT
kNuk, but in order to get

the optimal controller we had to iterate, since the weights
(Q,R,N) are functions of the controller itself.

Another obvious approach is to not use pure integrators,
but rather add disturbances with very large time constants.
This way we do not have to iterate on the controller. In this
setting we can also add a weight onuT

kRuk, since the states
eventually will be driven back to the origin. The main gain
from the method above seems to be that we can reduce the
input horizonN , and hence the number of the degrees of
freedom, compared to the approach of adding disturbances
with large time constants, as in order to capture the behaviour
of the process a larger input horizonN is needed.

VI. CONCLUSION

In this work we have presented a convex approach to
the design of fixed order linear quadratic controllers. In
particular, we have shown how to derive PD and PID con-
trollers for a linear plant with a quadratic control objective.
From Theorem 2 we have derived expressions for fixed-
order controller both for the case of noisy and noise-free
measurements.

In example we 2 gave all steps necessary to derive a PID
controller for a given linear plant, and we tested the controller
on a laboratory temperature loop. The framework is general
in the sense that it can be applied directly to MIMO systems
to get MIMO PID controller. In a forthcoming contribution
we will indeed give guidelines for setting up a MIMO PID
controller using the ideas presented here.
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APPENDIX

A. Proof of gain reduction for LQ control

AssumeWd = I and

Wny =

[
αI

βI

]

Hereα is the measurement noise andβ is additive noise to
the inputs. (We will show thatβ does not affect the solution.)
DefineJ = −J−1

uu Jud. We have thatF̃ F̃ T = FWdW
T
d F T +

WnyW T
ny . By the above assumptions we get that

F WdW
T
d

︸ ︷︷ ︸

I

F T = FF T =

[
I JT

J JJT

]

(44)

Due to the assumptions onWny we get

F̃ F̃ T = FWdW
T
d F T + WnyW T

ny =

[
(1 + α2)I JT

J JJT + β2I

]

(45)

This matrix has to be inverted. This can be done using
Lemma A.2 (Inverse of a partitioned matrix) in [12], with
A11 = (1 + α2)I, A12 = JT, A21 = J , A22 = JJT +
β2I. Further we haveX = A22 − A21A

−1
11 A12 = · · · =(

α2

1+α2 JJT + β2I
)

. We observe that the inverse ofX exists.

Using the Lemma, we get that the inverse ofF̃ F̃ T is:

(

F̃ F̃ T
)
−1

=

[ 1
1+α2 I + 1

(1+α2)2 JTX−1J − 1
1+α2 JTX−1

− 1
1+α2 X−1J X−1

]

(46)

We now need to evaluateGyT(F̃ F̃ T)−1Gy. For the current
problem formulation we have thatGyT = [0nx×nU

InU×nU
],
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and after doing the multiplication we get that

GyT(F̃ F̃ T)−1Gy = X−1 ⇒

(

GyT
(

F̃ F̃ T
)
−1

Gy

)
−1

= X

(47)

Further,
(

F̃ F̃ T
)
−1

Gy =

[
− 1

1+α2 JTX−1

X−1

]

(48)

and finally we get that

HT =
(

F̃ F̃ T
)
−1

Gy

(

GyT
(

F̃ F̃ T
)
−1

Gy

)
−1

J1/2
uu (49)

=

[
1

1+α2 (J−1
uu Jud)

TJ
1/2
uu

J
1/2
uu

]

, (50)

or

H =
[

1
1+α2 J

1/2
uu J−1

uu Jud J
1/2
uu

]

(51)

We now scaleH matrix by J
−1/2
uu to decouple the inputs

and to get an expression for the controller gains:

(J1/2
uu )−1H =

[
1

1+α2 J−1
uu Jud I

]
, (52)

and we observe that optimally we should reduce the con-
troller gains by1/(1+α2) when there is noise on the states
on the formαI. To see this, remember thaty = (x, u), and
hence we getc’s on the form

c = Hy =
1

1 + α2
J−1

uu Judx + U, (53)

which is on exactly the same form as (17).
Remark 5:From the above derivation one notes that noise

entering on the inputs does not affect the optimal solution.
This may also be seen from the norm ofHy:

‖Hy‖ = ‖(uk + Kxk) + nu + Knx‖

≤ ‖Kxk + uk‖+ ‖Knx‖+ ‖nu‖
(54)

We observe that there is a trade-off by usinguk to keep
‖Kxk + uk‖ small, but avoiding amplification of‖Knx‖.
However,nu does not affect this trade-off. Remember that
for the noise-free case with full information, the optimal
setpoint forc = Hy = u−Kx = 0.

B. Change from infinite to finite horizon problem with cross-
term

Assume we have the following objective

J(u, x) =

∞∑

i=0

[
xT

i Qxi + uT
i Rui + 2xT

i Nui

]
. (55)

This infinite horizon optimization problem can be changed
to finite horizon by assuminguk = −Klqrxk for k ≥ N .
Then, for k ≥ N xN+i = (A − BKlqr)

ixN and uN+i =
−Klqr(A−BKlqr)

ixN . This implies that
∞∑

i=N

[
xT

i Qxi + uT
i Rui + 2xT

i Nui

]
=

= xT
N{

∞∑

i=0

(A−BKlqr)
iT

(Q + KT
lqrRKlqr

−NKlqr)(A−BKlqr)}xN

(56)

Now consider P =
∑

∞

i=0 XiT
WXi =

W + XTWX + X2T
WX2 + · · · = W +

XT
(

W + XTWX + X2T
WX2 + . . .

)

X = W + XTPX.

Let X = (A − BKlqr) and W = Q + KT
lqrRKlqr − NKlqr

and we get that

J(u, x) =

∞∑

i=0

[
xT

i Qxi + uT
i Rui + 2xT

i Nui

]

≤

N−1∑

i=0

[
xT

i Qxi + uT
i Rui + 2xT

i Nui

]
+

+ xT
NPxN ,

(57)

whereP is the solution to the discrete Lyapunov equation

P = Q + KT
lqrRKlqr −NKlqr(A−BKlqr)

TP (A−BKlqr).
(58)

We have equality in (57) if, for the original problem, the
solution isuk = −Klqrxk for k ≥ N .
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