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Abstract—In this paper we use bilevel programming to controller (MPC) for the same example. The MPC could
find the maximum difference between a reference controller theoretically enteB8%° = 4.977 x 108! regions.

and a low-complexity controller in terms of the infinity- In this paper we use bilevel programming to investigate

norm difference of their control laws. A nominal MPC for the PE-sch d ibed ab but al |
linear systems with constraints, and a robust MPC for linear € -schémes described above, but also more general

systems with bounded additive noise are considered as reference I0W-complexity policies. The main idea is to calculate the
controllers. For possible low-complexity controllers we discuss maximum difference between a either a nhominal or a robust
partial enumeration (PE), Voronoi/closest point, triangulation, MPC and the low-complexity policy, and then, based on

linear controller with saturation, and others. A small difference  nis difference. draw conclusions about the proposed low-
in the norm between a low-complexity controller and a robust . '
complexity controller.

MPC may be used to guarantee closed-loop stability of the 7 o .
low-complexity controller and indicate that the behaviour or In addition to guarantees of feasibility and stability the
performance of the low-complexity controller will be similar method can be used to give bounds on the sub-optimality
to that of the reference one. We further discuss how bilevel of the low-complexity scheme, by using the value of the

programming may be used for closed-loop analysis of model qpiactive function of the reference controller as a differe

reduction. . .
Index Terms—bilevel programming, closed-loop analysis, metric of the reference and low-complexity controller.
optimal control Il. NOTATION AND PRELIMINARIES

I. INTRODUCTION A polyhedronis the intersection of a finite number of
halfspaces and polytopeis a bounded polyhedron. Given

. ) etwo sets 51,5, C R™ the Minkowski sum is defined as
model predictive control (MPC) problem for controllafear Sy Sy 2 {51+ sals1 € Sh, 2 € S5}, and the Pontryagin

systems with constraintssing a quadratic performance in- _. A
ifferen = . Bold-
dex. Later these results have been extended to cover a broa%%gfaﬁzl?srié;fihe S{Zl ‘jé:cgéf(f“? < S2i )c;g q
class of systems and performance objectives, see [2] forua (110, un 1) wht?l e boldfacelo 7isla’\.\}é(7:toj\r[ ofl's
= 0, W1y UN—-1)y
survey. .
. .- . of appropriate length.
The main drawba_ck of_epr|C|t MPC is that the control We consider control of the following discrete-time linear
law, due to the combinatorial nature of the problem, can grow

) : . . system
exponentially with the size of the optimal control problem Y

[3].
Alessio and Bemporad [2] proposed to reduce complexitwherex € R™= are the states ande R™+ are the inputs, and

of explicit MPC by either storing only thé regions with x* above is a short-hand notation fof; = Axy + Buy.

the highest Chebysev radius (if a full explicit solution isln addition we have constraints such that X andu € U,

available), or to run extensive simulations of closed-loogvhereX = {z | Fz < f} C R™ andU = {u | Gu < g} C

MPC and collect thd, most recurrent combinations of active R™= are polytopic sets.

constraints for implementation, similar to [4]. (Storinglyp The solution of an explicit MPC with quadratic objective,

a subset of the possible regions of a MPC and using thelinear process and polytopic constraints, can be written

for implementation is called partial enumeration (PE).) as a piecewise affine function of the state. A piecewise
Pannocchia et. al. [4] recently reported that by using a P&fine functionu(z) : X — R™, where X C R"= is

policy on an industrial example with more than 250 statesy polyhedral set, is piecewise affine if it is possible to

32 inputs and a 25-sample control horizon, small look-upartition X into convex polyhedral region§;R;, andz(z) =

tables with only 25-200 entries gave a control that was less‘z + ¢!, Vx € CR; [1]. In this paper “region” denotes

than 0.01% suboptimal compared to the full model predictive’ R;, written “regioni”, and (K*, ¢') is the corresponding

optimal control law, i.e. the part ofi(x) that belongs to
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methods, following [5]. For more background details thébut also differences between trajectories of either states
reader is referred to a recent survey [6]. inputs.

Bilevel problems are hierarchical in that the optimization Remark 1:We observe that (5) renders (4) non-convex
variables (y, z) are split into uppery and lowerz parts, due to the termmax ||t||., (Wheret is a convex function
with the lower level variables constrained to be an optimadf (urer, tiow-complexiy)) - However, the problem may be
solution to a secondary optimization problem: converted into a mixed integer linear program (MILP) using
a standard technique (e.g. [7]), in which we introduce kjinar
variablesn;, p; for each element of and add the condition
that the binary variable; is one if ||t = t; andn; is

min Vi (y, 2)
y

subject toGy (y, z) <0

z = argmin V(y, 2) 2) one if ||t||.oc = —t;. The method adds only linear and binary
F conditions to (4) and therefore the overall problem remains
subject toG 1 (y,z) <0 a MILP [5].

In this paper we will only consider problems where the
lower-level problem has an unique optimizer. Moreover, wdV. APPLICATIONS OF BILEVEL PROGRAMMING
will usually have two low-level problems, one for the refer- FOR ANALYSIS OF LOW-COMPLEXITY
ence controller and one for the low-complexity controller. CONTROLLERS
We first present a nominal MPC policy based on opti-
. .mizing a quadratic performance objective subject to a finea
If the lower level problem is convex and regular, then ity ,qe| of the process at and a set of polytopic constraints on
can be replaced by its necessary and sufficient Karush-Kuhgsu, states and inputs. We thereafter present a robust MPC,
Tuqur (KKT) conditions, yielding a standard smgle-levethere the process is subject to bounded disturbances on the
optimization problem [5]: states. Both these schemes fit into the bilevel problem as a
min Vi (y, 2) reference controller.
v The choice of which reference controller to use depends on

A. Solution methods

subject toGy (y,2) <0 the problem at hand, as this defines a benchmark for control
Gr(y,z) <0 3) of the process. The robust MPC scheme can be used to give
A>0 a feasibility and stability certificate of the low-complgxi
AT GL(y,2) =0 scheme. However, in some cases the robust MPC can be
’ quite conservative, and the nominal MPC may be a better
V:L(y,2,A) =0 benchmark.

whereL(y, z, \) := Gr(y, 2)+ATGL(y, ) is the Lagrangian ~ Thereafter we show how several low-complexity polices
function associated with the lower-level problem. For th€an be expressed in the bilevel framework. The main “tool”
special case of linear constraints and a quadratic cost, #le use here is to represent any logic and bilinear terms in
constraints of (3) are linear and the complimentary coaditi the KKT-conditions with mixed integer linear constraints i
MGr(y,z) = 0 is a set of disjunctive linear constraints,order to let the resulting problem be a MILP.

which can be described using binary variables, and thuslea

to a mixed-integer linear problem. . Nominal MPC as reference controller

. T . Consider the following semi-infinite horizon optimal con-
B. Bilevel optimization for analysis of controllers .
trol problem [5]:

In this paper we use bilevel programming to find the 1
maximal difference between a reference controllerand alow  min J(x,u) = igﬁvpr 4.

order controller. Hence, for a subs&tc R"=, we solve xu
N—-1
) 1
Iaflea/%( d(uref, ’ZLIow—compIexny) + 3 Z UIRui + x;er“
subject toKKT(reference controllgr (4) i=0

subject tox; 1 = Az; + Bu;, Vi=0,...,N—1, (6)

KKT (low-complexity controlley
neX, Vi=1,...,N—1,

Typically, X is the intersection of the feasible states for the

reference and the low-complexity controller. uw €U, Vi=0,....,N—1,
Note that explicit solutions of neither the reference ner th rn € Xp,
low-complexity controllers are needed, because the suisiti To = T.

are implicitly given by the KKT conditions. . o
The distance measuré(uret, tiow-complexiry) Can be, for HereXy = {z | Hz < h} C X is a polytopic invariant set

example, the difference between the next state, for the system:* = Az+ Bp(x) for some given control law
d( o) = po: R7 — R™. FurtherP € R"=*": and @ € R"=*"=
Uref, Ulow-complexity) = are positive definite matrices artl € R %" is a positive

|27 ref(, uref) — = low-complexity(; Uiow-complexity) o = (5)  semi-definite matrix. We defind’ c R"= to be the set of
|| Buret — Btiow-complexityl] oo 5 statesz for which there exists a feasible solution to (6).



If u*(z) is the optimal input sequence of (6) for the state Proposition 1 states that the feedback policy= @ +
x, and u(z) is the resulting control law, then stability of K (x — ) keeps the states of the uncertain system (9)
the systeme™ = Az + Buf(x) can be established under theclose to the states of the so-called nominal system™ =
assumption that/y (z) = 2" Pz is a Lyapunov function for Az + Bu.
the systeme™ = Az + Bu(x) and that the decay rate dfy We can now define the robust MPC problem:
is greater than the stage cé6i, ) = v Ru+ 2" Qx within 1
the setXy [5]. min J(X,8) = ~ZNPIn + ...

By using z, = AFzy + Z?;& AJBuy_1_; the MPC 2

problem (6) can be rewritten as [1]: =

1
+3 ; u, Ru; + &, Q7;,

1
Vizg) = ~2/ Yo+ ...
(20) = 520Y 20 subject toz;, 1 = AZ; + Bu;, Vi=0,...,N—1, (12)

1
+min {ZUTHU + 2] FU, @) ZeX0Z Vi=1,...,N—1,
subject to GU < W + Exg}, weUoKz, Vi=0,...,N-1,
TN € Xf,
whereU" = [u] ul - uk_,].
[uo Uq uN71] To=a® 7.

We want to use (7) as a lower-level problem in bilevel
programming. The following equations define the KKT con- |n order to achieve closed loop robust stability, the ter-

ditions for this problem: minal constraint seft; must satisfy the following axioms
HU + FT20 +G™A =0 [8]:
GU —W — Ezg <0 AL: AicXp C Xy, X XS 2 KXY CUSKZ |
A>0 (8) A2 : Vi(Agx) +(z, Kx) < Vi(x), Vo € Xy,
A< Ms

where V(v) = v"Pv and (v, 2) = v"Qu + u"Ru in the
GU—-W —Exg > —M(1—s) scope of this paper.
Heres € {0,1}"", whereny, is the number of inequality ~ASSume that Z is a polytopic set such that

constraints in (7). The two last equations in (8) correspond {veR"™ | Hv 3_ k-}. )
the complementary conditioh™ Gz (y, z) = 0 in the general As for the nominal MPC, we can rewrite the robust MPC

bilevel problem, here described with binary variables\s ~ Problem as:
is a constant that is large enough such that the solution)to (8

corresponds to the solution of (7). (This is called a “Bif- ) vl g F' U
formulation.) (g}gg) [Iﬂ {F 2Y} LO}
B. Robust MPC as reference controller s v

In this subsection the results are from Mayne et. al. [8] ) G —-E]JU %% 0 _ (14)
unless otherwise noted. subjectto |y | 1S | T | ®

Consider control of the linear system (1) widdditive —_— — =
disturbancesw on the states: G w 2

ot — Az + Bu+ w. ) Ia_\?; v = (U, Zy). The KKT-conditions corresponding to (14)
The disturbance is assumed to be bounded, v+ Cr=0
welh (10) Go < W + Eu

where W is compact and contains the origin (but may not A>0 (15)
have an interior). A< Ms

SupposeK € R™*"= is such thatAx £ A+ BK is
stable. LetZ be a disturbance invariant set for the controlled
uncertain system™ = Axz + w satisfying, therefore Note that the KKT conditions in (8) are a special case of

the KKT-conditions above, since aboyg is included as a
AxZ oW C 2. (11) degree of freedom. For both nominal and robust MPC the

We use the following proposition as a basis for the robusturrent stater is a parameter driving the controller, but for
MPC: the nominal MPC we have substituted this wity) aszo = x

Proposition 1: Suppose Z is disturbance invariant for is a constraint in the nominal MPC formulation.
axt =Agzx+w. f 2 €2® Z andu = u+ K(z — z), then The main motivation for using robust MPC as a reference
xt € zt @ Z for all w € W wherez™ = Az + Bu+w  rather than nominal MPC is because the robust MPC can be
andzt = Az + Bu. used to prove feasibility and stability of the low-comptgxi

Guv>W + Ex — M(1 — s)



scheme. Both properties can be established using the follow Definition 1: (Minimal-violation distance [9]) Let the
ing proposition: collection £ be the setf = {Li}fv:ﬁl, where L; :=
Proposition 2: Consider the linear system for which ro- {z € R"= | A’z < b’} are full-dimensional polyhedra in
bust stability and feasibility are guaranteed by the robud™=. We assume that'z < b* are on Hessian normal form,
MPC: i.e. each row[A’],. of A" is normalized with||[A?],||2 = 1.

The minimal-violation distancéy;y of z to L is given b
v =Azx+Bu+w, weW, My BT g y

and that dwy = min{aj(z)}, (20)
W={weR™ | |lw[e <e} where
Let w. be the control input from the low-complexity i (x) = argmin {o; €R | Al <V +a,1},  (21)
controller, andupvpc the input from the robust MPC. The fol-
lowing holds for the system controlled by the low-complgxit forall i = 1,..., N, and1 =1 --- 1]".
controller: The solution of the LP (21) can be found using the KKT
xT = Az + By conditions:
- -C
Tyt
= Az + Bui.c — Bumpc + Bumvpc (16) 1- 1 A= Qv
0< N < Ms', (22)

= Az + Buwpc + B(uic — trmpc)-

Hence, if 0<b+a;1—-Ar<M(1-5"),

| B(wc — umpc) oo <, (17)  wheres’ € {0,1}"" is a vector of binary variables of length
corresponding to the number of faces in the polytépe=
{z e R"™ | Alz <b'}.
C. Low-complexity controllers as low-level problems in Let 3 € {0,1}"“ be binary variables such that
bilevel _prograrnmlng _ | _ b1 as<a; Vi, (23)
In this section we describe various low-complexity con-
trollers that fit into the bilevel programming frameworkvSe Wwhich implies that) " 3; = 1. We can then define the PE
eral more are possible, but not included for space resinisti control law as
1) Linear quadratic regulator with saturationA simple ne
low-complexity control policy is the linear quadratic regu U = sat {Z Bi (Kix + c’)} , (24)
lator (LQR) with saturation. In the “unconstrained region” i=1
this is optimal, and its behaviour can be modelled usingere (Ki,c') is the optimal feedback in region and

the low-complexity controller is both feasible and stable.

few binary variables. First, we definéor = —Kz. FOr ;411 is a normal saturation function. Equation (24) is
simplicity we assume that the constraintsiomay be written  pijinear in the optimization variabless;, z, and can be
as implemented in the bilevel framework with the following
uh <y <, =1 n (18) ; ; ; .
i = i = Uy yeees equations (added as constraints in the problem):

Now, fO( each rowgin (18), we define a corresponding binary “M1-B) <a— (K'z+c) < M1 - B). (25)
vector d* € {0,1}°. The saturation can now be modelled

using Remark 2: The proposed PE-scheme, which follows from
[9], can be implemented on-line as follows:

uigu?—i—Mdi, _ _
ai:maX{Ala:—bl}, i1=1,...,L

w; > ul — Mdj, . .
di " dé " dé -h (19) 3) Del nay atrgmlml{ot{i} A that f int
CM(1 = di) < sat(u) — {uske < M(1— di), ) Delaunay triangulation:Assume tha or some points
(1,...,2n,) We precompute a Delaunay triangulation. In
k=123, addition we store the optimal inpyu7,...,u ) at those
points. A Delaunay triangulation can be understood by the
of {u;} empty circle method [10]: Consider all triangles formed by
it

2) Partial enumeration (PE)Here we follow the ideas of the points such that the circumcircle of each triangle istgmp

[4] and [2], and we store only a subset of the possible acti\)%f other sites, where the sites in this case are the storedspoi

sets. The controller implementation is here to first lochge t (¥1>--- » Tny)- ) . i

closest region to the current stateand then use the control 1he Delaunay triangulation of the points, ..., .,)

law from the corresponding region. In order to satisfg U, can e used to find an interpolated control law:

we saturate the input before applying the input to the plant. « Denote the triangles from the Delaunay triangulation by
Here we use theninimal-violation distancérom Christo- Li,...;Lpy.

phersen et. al. [9] to find the closest region for a Sebf « For a given state:

stored polytopes. 1) Find the current trianglé; that containtse.

(26)

where {u;} = {ul',u;,ul}, and {u;}, is the k'th element



2) Expressr as a convex combination of the verticesWe do not add any terminal constraint og as we want to
of L;, x = Y A\yzl, wherez! denotes the vertices compare our results with [2].

of L; We want to compare the nominal MPC to a PE-scheme,
« Implement the following interpolated control law: hence we want to solve
UDelaunay = Z)\Icuzi> (27) hew 1B (™ = @)oo
whereu; " are the optimal inputs corresponding to the subject toa; = argmina
points zj,. subject toA’z < b + a;1
The Delaunay triangulation itself can be implicitly defined 1 <oVt
using the following set of equations, which can be added as Bi = { » M a? J7r (32)
mixed-integer linear constraints to the overall problem: 0, otherwise
=Y Aw, s A=0, Y A=1, i= Y B(E'w+c),
i=1,-,L
A <oy, Zai =n+1 (28) 4 = sat(a)
lle = aill3 < lle — ;3 + Moy + M(1 — 03), u” = arg min (31)
where the last equation can be rewritten as This problem can be rewritten to a MILP using (22) for
Fe—22T e+ 2la; g%—%} cHalait... the minimal violation distance.
=~ T — =~ The main focus of this paper is to calculate the difference
% ! a; bi (29) between two controllers, but we may also use this method
o+ Mo+ M(1—o0;) for controller synthesis. This can be achieved by:
ajc+b; < aJT.c +b; + Mo+ M(1 - o;) « Solve (32) to get the worst point in the state spate
ne and the worst case norfhB(u* — 4)||. = [Jz*T —

Herec € R~ is an extra optimization variable, € {0,1}
is a vector of binaries and/ is a large constant.

We note that the last equation of (28) is an expression for *
the “empty-circle method”.

21| oo-

Add the corresponding region and corresponding opti-
mal control law to the PE-controller.

o Resolve (32) and add the corresponding worst-case

V. EXAMPLES region until the worst-case norm is less than a user-
In this section we show two examp|es where we use defined value or the number of regions in the PE is
the bilevel programming to identify the worst-case dis- larger than a user-defined value.

tance between a reference controller and a proposed low-This example can be solved explicitly using MPT. The
complexity controller. The calculations where done usindull enumeration is shown in the upper right part of figure
ILoG CPLEX® and the problems were written inAYMIP 1. In order to test our software we started out with an initial
[7]. Set calculations and explicit solution of MPC’s werePE controller using the 3 largest regions, shown in the top-
done using Multi-Parametric Toolbox (MPT) [11]. left part of figure 1. The lower part of the figure shows
Example 1: Double integrator with nominal MPC as refer-the maximum difference between the reference controller
ence controller and PE as low-complexity controller .(nom_mal MPC) a“‘?‘ the PE-controller. W? the_n performed

] . . iterations as described above, at each iteration we added

In this example we consider the double integrator dethe region corresponding to the worst case paiht One

scribed i_n [1], example 7.3, but _V\_’ith a sample time Ofyseryeg that initially the difference is equal to the maxim
Ts = 0.1 in order to match the conditions in [2]. The proces%ossible difference, a8 = [ 9, ] and |Ju]| < 1. However, as

is hence we add regions to the PE controller the difference decreases
o {1 0.1} o { 0 } v, —1<u<l1 to quite low levels. _ _
0 1 0.1 (30) Note that even though the full enumeration was available
—— N~

for this example, we do not use this solution while solving
(32), rather we use the KKT-conditions of the corresponding
MPC problem.

Closed-loop simulations, even from the worst case points,
shows very small difference between the nominal MPC and
the PE, also for quite high values of the worst-case norm,
and are not included here for brevity.

A B
The control parameters al® = 8, @ = [} )] and R =
0.1. The final weightP corresponding to the LQR controller
is P =[585 3.3
The nominal MPC problem is now:
7
min 23 Pxg + Z x] Qi + Ru?
’ i=0 Example 2: Double integrator with robust MPC as reference
subject toxy 1 = Axy + Bug,k=0,...,7 (31) controller
To =T For the same process as in Example 1, with the same
—1<u <1, k=0,1...,7 objectives for the controller, we designed a robust MPCausin
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Fig. 1. Example 1: double integrator.

the method described in section IV-B, and we use this one ased for the preparation of this paper. Further we greatly
the reference controller. The motivation for using the gibu acknowledge the fruitful discussions with Daniel Axehill,
MPC rather than the nominal MPC is because we can veriffhomas Besselmann, and Alexandéilld-Fuchs.

closed-loop stability of the low-complexity scheme, given

that ||B(Urobust_ Ulow—complexity)”oo < Hw”oo

A box constraint onv was used such thgtw||,, < 0.01,
and we used the algorithm from Rakovet. al. [12] to
compute Z, and in order to computeX; we used MPT.

We wanted to use this robust controller to prove closed{?]
loop nominal stability of the PE-controller from Example

1. However, we observed thahax,cx ||B(trobust MPC—
Unominal MPQ ||cc Was growing faster thanjw| .., i.e. the
robust MPC was very conservative with increasifg|| ..

Since the PE-controller from Example 1 is close to the
nominal MPC, it is clear that we cannot use the robust MPC
scheme to prove stability of the PE-scheme, moreover we cahy
not even use it to prove closed-loop stability of the nominal

MPC.

One reason for why| B (urobust MPC — Unominal MPQ)[[co 1S
growing faster than|wl||« Is that the scalar input. can
only act on the process in the directiéy while the vector

w is acting directly on both states (through the identity
transformation/). Changing the formulation of the robust [g]

MPC to restrictw to act only in the directiorB is planned
as further work in this project.

VI. CONCLUSIONS

A bilevel framework for closed loop comparison of dif- 1]
ferent control schemes has been presented. Many challenges
still remain, but it seems like this framework will be useful
for proving stability for some “ad-hoc” low complexity
control schemes, and moreover it seems to have potenti&?]

in the field of model reduction.
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