Some comments on the paper by Alstad et al. (JPC, 2009) --------------------------------------------------------------------------- A. A trivial derivation of the explicit expression for the nullspace method: 1. Measurement relationship (eq.3) y = Gtildey [u d ]' Inverting this: [u d]' = Gtildey-1 y 2. Condtion for minimum then gives (eq.2) [Juu Jud] [u d]' = [Juu Jud] Gtildey-1 y =0 This gives eq.8: H = [Juu Jud] Gtildey-1 --------------------------------------------------------------------------- B. When we use inputs as part of the measurements, c = H y, where y = [x u] with noise ny = [nx nu], then the noise nu is mathematically equivalent to an input disturbance du. utrue = u + nu or utrue = u + du where u is the input computed by the controller --------------------------------------------------------------------------- % C % TOY EXAMPLE FROM ALSTAD et al. (JPC, 2009) % J = (u-d)^2 % y1=0.1*(u-d) % y2=20*u % y3=10*u-5d % y4=u nu=1 nd=1 Gy = [0.1 20 10 1]' Gyd= [-0.1 0 -5 0]' Juu=2, Jud=-2 F=[0 20 5 1]' Wd=0*eye(1) Wn=eye(4) Y=[F*Wd Wn] % Single measurements H1 = [1 0 0 0]; H2 = [0 1 0 0]; H3=[0 0 1 0]; H4=[0 0 0 1]; %M = sqrtm{Ju}*inv(H*Gy)*H*Y H=H1; M = sqrtm(Juu)*inv(H*Gy)*H*Y; L1 = 0.5*svd(M)^2 %=100 (WORST) H=H2; M = sqrtm(Juu)*inv(H*Gy)*H*Y; L2 = 0.5*svd(M)^2 %=1.0025 H=H3; M = sqrtm(Juu)*inv(H*Gy)*H*Y; L3 = 0.5*svd(M)^2 %=0.26 (BEST) H=H4; M = sqrtm(Juu)*inv(H*Gy)*H*Y; L4 = 0.5*svd(M)^2 %=2 % Nullspace combination of y2 and y3 ny=2;[u,s,v]=svd([20 5]'), Hnull=u(:,[nd+1:ny])' % = [-0.2425 0.9701] H=[0 Hnull 0]; M = sqrtm(Juu)*inv(H*Gy)*H*Y; Lnull = 0.5*svd(M)^2 %=0.0425 % Nullspace, alternative explicit expression (here using all measurements): Ha = [Juu Jud]*pinv([Gy Gyd]); Ha = Ha/norm(Ha) % = [0.0206 -0.2419 0.9700 -0.0121] H=Ha; M = sqrtm(Juu)*inv(H*Gy)*H*Y; Lnull2 = 0.5*svd(M)^2 %=0.0425 % Exact local method (loss method) He = (inv(Y*Y')*Gy)'; He = He/norm(He) % [0.0206 -0.2317 0.9725 -0.0116] H=He; M = sqrtm(Juu)*inv(H*Gy)*H*Y; Le = 0.5*svd(M)^2 %=0.0405