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Optimal measurement combinations as controlled variables
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Abstract

This paper deals with the optimal selection of linear measurement combinations as controlled variables, c ¼ Hy. The objective is to
achieve ‘‘self-optimizing control”, which is when fixing the controlled variables c indirectly gives near-optimal steady-state operation with
a small loss. The nullspace method of Alstad and Skogestad [V. Alstad, S. Skogestad, Null space method for selecting optimal measure-
ment combinations as controlled variables, Ind. Eng. Chem. Res. 46 (3) (2007) 846–853] focuses on minimizing the loss caused by dis-
turbances. We here provide an explicit expression for H for the case where the objective is to minimize the combined loss for disturbances
and measurement errors. In addition, we extend the nullspace method to cases with extra measurements by using the extra degrees of
freedom to minimize the loss caused by measurement errors. Finally, the results are interpreted more generally as deriving linear invar-
iants for quadratic optimization problems.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Optimizing control is an old research topic, and one
method for ensuring optimal operation in chemical pro-
cesses is real-time optimization (RTO)[10]. Using RTO,
the optimal values (setpoints) for the controlled variables
c are recomputed online based on online measurements
and a model of the process, see Fig. 1. In most RTO-appli-
cations, a steady-state model is used for the reconciliation
(parameter/disturbance estimation) and optimization steps
[20,19], however dynamic versions of the RTO-framework
have also been reported [7]. However, the cost of installing
and maintaining RTO systems can be large. In addition,
the system can be sensitive to uncertainty.

A completely different approach to optimizing control is
to focus on selecting the right variables c to control, which
is the idea of ‘‘self-optimizing control” [13]. The objective is

to search for combinations of measurements (y), for exam-
ple, linear combinations c ¼ Hy, which when controlled,
will (indirectly) keep the process close to the optimum
operating conditions despite disturbances and measure-
ment errors. The need for a RTO layer to compute new
optimal setpoints cs can then be reduced, or in many cases
even eliminated. Thus, the implementation is trivial and the
maintenance requirements are minimized. The idea in this
paper is extend this approach, by providing explicit formu-
las for the optimal matrix H.

The issue of selecting H can also be viewed as a ‘‘squar-
ing down” problem, as illustrated in Fig. 2. The number of
output variables that can be independently controlled (nc)
is equal to the number of independent inputs (nu), but in
most cases the number of available measurements (ny) is
larger, that is, ny > nu. The issue is then to select the non-
square matrix H such that the map (transfer function)
G ¼ HGy from u to c is square, see Fig. 2. However, select-
ing H such that G is square is not the only issue. More
importantly, as mentioned above, control of c should
(directly or indirectly) result in ‘‘acceptable operation” of
the system.
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To quantify ‘‘acceptable operation” we introduce a sca-
lar cost function J which should be minimized for optimal
operation. In this paper, we assume that the (economic)
cost mainly depends on the (quasi) steady-state behavior,
which is a good assumption for most continuous plants
in the process industry.

Self-optimizing control [13] can now be defined. It is
when a constant setpoint policy (cs constant) yields accept-
able loss, L ¼ Jðu; dÞ � J optðdÞ, in spite of the presence of
uncertainty, which is here assumed to be represented by
(1) external disturbances d and (2) implementation errors

n,cs � c, see Fig. 1.
The implementation error n has two sources: (1) the

steady-state control error nc and (2) the measurement error
ny ; and for linear measurement combinations n ¼ nc þHny .
In Fig. 1, the control error nc is shown as an exogenous sig-
nal, although in reality it is determined by the controller. In
any case, we assume here that all controllers have integral
action, so we can neglect the steady-state control error, i.e.
nc ¼ 0. The implementation error n is then given by the
measurement error, i.e. n ¼ Hny .

Ideas related to self-optimizing control have been pre-
sented repeatedly in the process control literature, but the
first quantitative treatment was that of Morari et al. [11].
Skogestad [13] defined the problem more carefully, linked
it to previous work, and also was the first to include the
implementation error. He mainly considered the case where
single measurements are used as controlled variables, that
is, H is a selection matrix where each row has a single 1

and the rest 0’s. Halvorsen at al. [3] considered the approx-
imate ‘‘maximum gain method” and also proposed an
‘‘exact local method” for the optimal measurement combi-
nation H. They proposed to obtain H numerically by solv-
ing minH�r½MðHÞ�, but did not say anything about the
properties of this optimization problem. Kariwala [8] pro-
posed an iterative method involving singular value and
eigenvalue decomposition. Hori et al.[5] considered indirect
control, which can be formulated as a subproblem of the
extended null space method presented in this paper.
Additional related work is presented in [15–17] on
measurement-based optimization to enforce the necessary
condition of optimality under uncertainty, with application
to batch processes. Bonvin et al. [2] extend these ideas and
focus on steady-state optimal systems, where a clear dis-
tinction is made between enforcing active constraints and
requiring the sensitivity of the objective to be zero.

This paper is an extension of the nullspace method of
Alstad and Skogestad [1], where it was found that, in
the absence of implementation errors (i.e., n ¼ 0), it is
possible to have zero loss with respect to disturbances,
provided the number of (independent) measurements
(ny) is at least equal to the number of (independent)
inputs (nu) and disturbances (nd), i.e., ny P nu þ nd . It is
then optimal to select H such that HF ¼ 0, where
F ¼ dyopt=ddT is the optimal sensitivity with respect to
disturbances d [1]. Note that it is not possible to have zero
loss with respect to implementation errors, because each
new measurement adds a ‘‘disturbance” through its asso-
ciated measurement error, ny .

In this paper, we include the implementation error and
provide the following new results:

(1) Optimal H for combined disturbances and implemen-
tation errors (Section 3).

(2) Optimal H for disturbances using possible extra mea-
surements to minimize the effect of implementation
error (extended null space method, Section 4).

Controller
Feedback

Optimizer
(RTO)

Process

combination
Measurement

Fig. 1. Feedback implementation of optimal operation with separate layers for optimization (RTO) and control.

Fig. 2. Combining measurements y to get controlled variables c (linear
case).
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Finally, in the discussion section, the results are inter-
preted in terms of adding linear constraints to quadratic
optimization problems.

2. Background

The material in this section is based on [3], unless other-
wise stated. The most important notation is given in
Table 1.

The objective is to achieve optimal steady-state opera-
tion, where the degrees of freedom u are selected such that
the scalar cost function Jðu; dÞ is minimized for any given
disturbance d. Parameter variations may also be included
as disturbances. We assume that any optimally ‘‘active con-
straints” have been implemented, so that u includes only
the remaining unconstrained steady-state degrees of free-
dom. The ‘‘reduced space” optimization problem then
becomes

min
u

Jðu; dÞ ð1Þ

The objective of this work is to find a set of controlled vari-
ables c, or more specifically an optimal measurement com-
bination c ¼ Hy, such that a constant setpoint policy
(where u is adjusted to keep c constant; see Fig. 1) yields
optimal operation (1), at least locally.

With a given d, solving Eq. (1) for u gives J optðdÞ, uoptðdÞ
and yoptðdÞ. In practice, it is not possible to have
u ¼ uoptðdÞ, for example, because of implementations errors
and changing disturbances. The resulting loss (L) is defined
as the difference between the cost J, when using a non-opti-
mal input u, and J optðdÞ [14]:

L ¼ Jðu; dÞ � J optðdÞ ð2Þ

The local second-order accurate Taylor series expansion of
the cost function around the nominal point (u�; d�) can be
written as

Jðu; dÞ ¼ Jðu�; d�Þ þ ½ Ju Jd �T
Du

Dd

� �
þ 1

2

Du

Dd

� �T Juu Jud

JT
ud Jdd

� �
Du

Dd

� �
ð3Þ

where Du ¼ ðu� u�Þ and Dd ¼ ðd� d�Þ. For a given distur-
bance (Dd ¼ 0), the second-order accurate expansion of the
loss function around the optimum (Ju ¼ 0) then becomes

L ¼ 1

2
ðu� uoptÞTJuuðu� uoptÞ ¼ 1

2
zTz ð4Þ

where

z,J1=2
uu ðu� uoptÞ ð5Þ

In this paper, we consider a constant setpoint policy where
the controlled variables are linear combinations of the
measurements2

Dc ¼ HDy ð6Þ

We assume that nc ¼ nu, that is, the number of (indepen-
dent) controlled variables c is equal to the number of (inde-
pendent) steady-state degrees of freedom (‘‘inputs”) u. The
constant setpoint policy implies that u is adjusted to give
cs ¼ cþ n where n is the implementation error for c (see
Fig. 1). As mentioned in Section 1, we assume that the
implementation error is caused be the measurement error,
i.e. n ¼ Hny . We now want to express the loss variables z

in terms of d and ny when we use a constant setpoint policy,
but first some additional notation is needed.

The linearized (local) model in terms of deviation vari-
ables is written as

Dy ¼ GyDuþG
y
dDd ¼ eGy Du

Dd

� �
ð7Þ

Dc ¼ GDuþGdDd ð8Þ

whereeGy ¼ ½Gy G
y
d � ð9Þ

is the augmented plant. From Eqs. (6)–(8) we get

G ¼ HGy and Gd ¼ HGy
d ð10Þ

The magnitudes of the disturbances d and measurement er-
rors ny are quantified by the diagonal scaling matrices Wd

and Wny , respectively. More precisely, we write

Dd ¼Wdd0 ð11Þ
ny ¼Wny ny0 ð12Þ

where we assume that d0 and ny0 are any vectors satisfying

d0

ny0

� ����� ����
2

6 1 ð13Þ

A justification for using the combined vector 2-norm in Eq.
(13) is given in the discussion section of Halvorsen et al. [3].

The nonlinear functions uoptðdÞ and yoptðdÞ are also lin-
earized, and it can be shown that [3]

Duopt ¼ �J�1
uu JudDd ð14Þ

Dyopt ¼ �ðGyJ�1
uu Jud �Gy

dÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
F

Dd ð15Þ

Table 1
Notation

u Vector of nu unconstrained inputs (degrees of freedom)
d Vector of nd disturbances
y Vector of ny selected measurements used in forming c

c Vector of selected controlled variables (to be identified) with
dimension nc ¼ nu

ny Measurement error associated with y

nc Control error associated with c (this paper: nc ¼ 0)
n Implementation error associated with c; n ¼ nc þHny

2 We use D to denote deviation variables. Often, the D is omitted and we
write, for example, c ¼ Hy.
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where we have introduced the optimal sensitivity matrix F

for the measurements. In terms of the controlled variables c

we then have

ðu� uoptÞ ¼ G�1ðc� coptÞ ¼ G�1ðDc� DcoptÞ ð16Þ
Dcopt ¼ HDyopt ¼ HFDd ð17Þ
Dc ¼ Dcs � n ¼ �n ¼ �Hny ð18Þ

where we in the last equation have assumed a constant set-
point policy (Dcs ¼ 0). Upon introducing the magnitudes
of Dd and ny from Eqs. (11) and (12) we then get for the
loss variables z in (5) for the constant setpoint policy:

z ¼Mdd0 þMny ny0 ð19Þ

where

Md ¼ �J1=2
uu ðHGyÞ�1

HFWd ð20Þ
Mny ¼ �J1=2

uu ðHGyÞ�1
HWny ð21Þ

Introducing

M, Md Mny½ � ð22Þ

gives z ¼M
d0

ny0

� �
, which is the desired expression for the

loss variables. A non-zero value for z gives a loss
L ¼ 1

2
kzk2 (4), and the worst-case loss for the expected dis-

turbances and noise in (13) is then[3]

Lwc ¼ max
d0

ny0

���� ����
2

61

L ¼ 1

2
ð�r½M�Þ2

ð23Þ

where the last equality follows from the definition of the
singular value �r and the assumption about the normalized
disturbances and measurement errors being 2-norm
bounded, see Eq. (13). Thus, to minimize the worst-case
loss we need to minimize �rðMÞ with respect to H. This is
the ‘‘exact local method” in Halvorsen et al.[3], and note
that we have expressed Md in (20) in terms of the easily
available optimal sensitivity matrix F.

3. Explicit formula for optimal H for combined disturbances

and measurement errors

From (23), the optimal measurement combination is
obtained by solving the problem (‘‘exact local method”)

H ¼ arg min
H

�rðMÞ ð24Þ

It may seem that this optimization problem is non-trivial as
M depends nonlinearly on H, as shown in (20)–(22). Hal-
vorsen et al. [3] proposed a numerical solution and Kariw-
ala [8] provides an iterative solution for the optimal H

involving the singular value and eigenvalue decomposi-
tions. However, (24) is in fact easy to solve, as shown in
the following. We start by introducing

Mn,J1=2
uu ðHGyÞ�1 ¼ J1=2

uu G�1 ð25Þ

which may be viewed as the effect of n on the loss variables
z. We then have

M ¼ Md Mny½ � ¼ �MnH FWd Wny½ � ð26Þ

Next, we use the fact that the solution of Eq. (24) is not un-
ique, so that if H is an optimal solution, then another opti-
mal solution is H1 ¼ DH, where D is a non-singular matrix
of dimension nu � nu. For example, this follows because Md

and Mny in (20) and (21) are unaffected by the choice of D.
One implication is that G ¼ HGy may be chosen freely
(which also is clear from Fig. 2 since we may add an output
block after H which allows G to be selected freely). Alter-
natively, and this is used here, it follows from (25) that Mn

may be selected freely. However, the fact that Mn may be
selected freely, does not mean that one can, for example,
simply set Mn ¼ I in (26) and then minimize �rðMÞ with
M ¼ H FWd Wny½ �. Rather, one needs to minimize
�rðMÞ subject to the constraint Mn ¼ I. IntroducingeF, FWd Wny½ � ð27Þ

the optimization problem (24) can then be stated as

H ¼ arg min
H

�rðHeFÞ subject to HGy ¼ J1=2
uu ð28Þ

This is fairly easy to solve numerically because of the line-
arity in H in both the matrix HeF and in the equality con-
straints. In fact, an explicit a solution may be found, as
shown below.

Choice of norm. The optimization problems (24) and
(28) involve the singular value (induced 2-norm) of M,
�rðMÞ, which represents the worst-case effect of combined
2-norm bounded disturbances and measurement errors on
the loss. A closely related problem is to minimize the
Frobenius norm (Euclidean or 2-norm) of M, kMkF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;jjmijj2
q

, which represents some ‘‘average” effect of

combined disturbances and measurement errors on the
loss. Actually, which norm to use is more a matter of pref-
erence or mathematical convenience than of ‘‘correctness”.
First, the difference in minimizing the two norms is gener-
ally minor; the main difference is that minimizing �rðMÞ
usually puts more focus on minimizing the largest elements.
Second, as discussed below, it appears that for this partic-
ular problem, we have a kind of ‘‘super-optimality”, where
the choice of H that minimizes kMkF, also minimizes �rðMÞ
[9].

Scalar case. For the scalar case (c is a scalar and
nu ¼ nc ¼ 1), M and HT are (column) vectors,
�rðMÞ ¼ kMkF, and an analytic solution to (28) is easily
derived. The optimization problem (28) becomes

min
HT
keFTHTkF subject to GyTHT ¼ J1=2

uu ð29Þ

and from standard results for constrained quadratic opti-
mization, the optimal solution is (see proof in Appendix)

HT ¼ ðeFeFTÞ�1
GyðGy TðeFeFTÞ�1

GyÞ�1
J1=2

uu ð30Þ
where it is assumed that eFeFT has full rank.
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General case. The explicit expression for H in (31) holds
also for the general case, that is, for minimizing kMkF for
the case when H is a matrix. This can be proved by rewrit-
ing the general optimization problem (28) for the matrix
case, into a vector problem by stacking the columns of
HT into a long vector (see Appendix A.2). In addition,
Kariwala et al. [9] have shown, as already mentioned, that
the matrix H that minimizes the Frobenius-norm of M also
minimizes the singular value of M [9]. However, the reverse
does not necessarily hold, that is, a solution that minimizes
�rðMÞ does not necessarily minimize kMkF [9], which is
because the solution to the problem of minimizing �rðMÞ
is not unique. Our findings can be summarized in the fol-
lowing Theorem (see Appendix A.2 for proof).

Theorem 1. For combined disturbances and measurement

errors, the optimal measurement combination problem in

terms of the Frobenius-norm, minHkMkF with M given by

(20)–(22), can be reformulated as minHkHeFkF subject to

HGy ¼ J1=2
uu , where eF ¼ ½FWd Wny �. F is the optimal mea-

surement sensitivity with respect to disturbances, and Wd and

Wny are diagonal weighting matrices, giving the magnitudes

of the disturbances and measurement noise, respectively.

Assuming eFeFT is full rank, we have the following explicit

solution for the combination matrix H,

HT ¼ ðeFeFTÞ�1
GyðGy TðeFeFTÞ�1

GyÞ�1
J1=2

uu ð31Þ
This solution also minimizes the singular value of M, �rðMÞ, that

is, provides the solution to the ‘‘exact local method” in (24).

Note that eFeFT ¼ FWd Wny½ � FWd Wny½ �T in (31)
needs to be full rank. This implies that (31) does not gener-
ally apply to the case with no measurement error, Wny ¼ 0,
but otherwise the expression for H applies generally for any
number ny of measurements y. One special case, when the
expression for H in (31) applies also for Wy ¼ 0, is when
ny 6 nd , because eFeFT then remains full rank.

4. Extended nullspace method

The solution for H in (31) minimizes the loss with respect
to combined disturbances and measurements errors. An
alternative approach is to first minimize the loss with respect
to disturbances, and then, if there are remaining degrees of
freedom, minimize the loss with respect to measurement
errors. One justification is that disturbances are the reason
for introducing optimization and feedback in the first place.
Another justification is that it may be easier later to reduce
measurements errors than to reduce disturbances.

If we neglect the implementation error (Mny ¼ 0), then
we see from (20) that Md ¼ 0 (zero loss) is obtained by
selecting H such that

HF ¼ 0 ð32Þ
This provides an alternative derivation of the nullspace
method of [1]. It is always possible to find a non-trivial solu-
tion (i.e. H–0) H satisfying HF ¼ 0 provided the number of

independent measurements (ny) is greater than the number of
independent inputs (nu) and disturbances (nd), i.e.
ny P nu þ nd [1]. One solution is to select H as the nullspace
of FT [1]:

H ¼NðFTÞ ð33Þ

The main disadvantage with the nullspace method is that we
have no control of the loss caused by measurement errors as
given by the matrix Mny ¼ �MnHWny . In this section, we
study this in more detail, by deriving an explicit expression
for H, see (37) and (41), that allows us to compute the result-
ing Mny , see (41) and (44). The explicit expression for H al-
lows us to extend the nullspace method to cases with extra
or too few measurements, i.e., to cases when ny–nu þ nd .

4.1. Explicit expression for H for original null space method

From the expansion of the loss function we have, see
eqs. (5) and (14)

z ¼ ½ J1=2
uu J1=2

uu J�1
uu Jud �

zfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{eJ
Du

Dd

� �
ð34Þ

We assume that H is selected to have zero disturbance loss,
which is possible if ny P nu þ nd . Then from (19) and (26),
z ¼ �MnHny . With the controlled variables c ¼ Hy fixed at
constant setpoints (Dc ¼ Dcs ¼ 0) we then have Dy ¼ �ny ,
and get

z ¼ �MnHny ¼MnHDy ¼MnHeGy Du

Dd

� �
ð35Þ

where eGy ¼ ½Gy Gy
d � is the augmented plant. Comparing

Eqs. (34) and (35) yields

MnHeGy ¼ eJ ð36Þ

where eJ is defined in (34). We then have the following ex-
plicit expression for H for the case where ny ¼ nu þ nd such
that eGy is invertible

H ¼M�1
n
eJ½eGy ��1 ð37Þ

This explicit expression gives H for a case with zero distur-
bance sensitivity (Md ¼ 0), and thus gives the same result
as (33). Note that Mn can be regarded as a ‘‘free” parame-
ter (e.g. we may set Mn ¼ I, see Remark 2 below).

4.2. Extended nullspace method

The explicit solution for H in (37) forms the basis for
extending the nullspace method to cases where we have
extra measurements (ny > nu þ nd) or too few measure-
ments (ny < nu þ nd).

Assume that we have nu independent unconstrained free
variables u, nd disturbances d, ny measurements y, and we
want to obtain nc ¼ nu independent controlled variables c

that are linear combinations of the measurements, c ¼ Hy.
From the results in Section 2, the loss imposed by a constant
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setpoint policy is L ¼ 1
2
zTz where z ¼Mdd0 þMny ny0. Define

E as the error in satisfying Eq. (36):

E ¼MnHeGy � eJ ð38Þ
We want to derive a relationship between E and Md . From
(15) and (9) the optimal sensitivity can be written as

F ¼ �eGy J�1
uu Jud

�I

" #
ð39Þ

which combined with (26) gives

Md ¼MnHeGy J�1
uu Jud

�I

" #
Wd ¼ ðEþ eJÞ J�1

uu Jud

�I

" #
Wd

Here eJ J�1
uu Jud

�I

� �
¼ 0 which gives

Md ¼ E
J�1

uu Jud

�I

" #
Wd ð40Þ

Note that the disturbance sensitivity is zero (Md ¼ 0) if and
only if E ¼ 0.

Let kEkF ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiP

i;je
2
ij

q
denote the Frobenius (Euclidean)

norm of a matrix, and let y denote the pseudo-inverse of
a matrix. Then we have the following theorem:

Theorem 2 (Explicit expression for H in extended nullspace
method). Selecting

H ¼M�1
n
eJðW�1

ny
eGyÞyW�1

ny ð41Þ
minimizes kEkF, and in addition minimizes the noise sensitiv-

ity kMnykF among all solutions that minimize kEkF.

Proof. Rewrite the definition (38) for E as

E ¼MnHWny|fflfflfflfflffl{zfflfflfflfflffl}
�Mny

W�1
ny
eGy � eJ ð42Þ

From the theory of linear algebra [18], the solution for
�Mny that minimizes kEkF, and in addition minimizes
kMnykF among all solutions that minimize kEkF, is given
by �Mny ¼ eJðW�1

ny
eGyÞy, which gives (41). To see this, note

that minimizing kEkF is equivalent to finding the least-
square solution X ¼ BAy to XA ¼ B, where X ¼ �Mny ,
A ¼W�1

ny
eGy and B ¼ eJ. h

Remark 1. If we have ‘‘enough” measurements (ny P
nu þ nd) then the choice for H in Eq. (41) gives E ¼ 0 and
thus Md ¼ 0. However, for the case with ‘‘too few” mea-
surements the above choice for H minimizes kEkF, whereas
we really want to minimize kMdkF. Nevertheless, since

kMdkF 6 kEkF � k
J�1

uu Jud

�I

� �
WdkF, we see that minimizing

kEkF will result in a small value of kMdkF.

Remark 2. The matrix H is non-unique and the matrix Mn

in (41) can be viewed as a parameter that can be selected
freely. For example, one may select Mn ¼ I, or one may
select Mn to get a decoupled response from u to c, i.e.

G ¼ HGy ¼ I . However, note that MnH, and the measure-
ment noise sensitivity Mny ¼ �MnHWny , are not affected as
MnH is given by (36) and (41).

Remark 3. It is appropriate at this point to make a com-
ment about the pseudo-inverse Ay of a matrix. In general,
we can write the least-square solution of XA ¼ B as
X ¼ BAy where the following are true:

(1) Ay ¼ ðATAÞ�1
AT is the left inverse for the case when

A has full column rank (we have extra measure-
ments). In this case, there are an infinite number of
solutions and we seek the solution that minimizes
kXkF.

(2) Ay ¼ ATðAATÞ�1 is the right inverse for the case when
A has row column rank (we have too few measure-
ments). In this case there is no solution and we seek
the solution that minimizes the Frobenius norm of
E ¼ B� XA (regular least squares).

(3) In the general case with extra measurements, but
where some are dependent, A has neither full column
or row rank, and the singular value decomposition
may be used to compute the pseudo-inverse Ay.

4.3. Special cases of Theorem 2

We have some important special cases of Theorem 2:

4.3.1. ‘‘Just-enough” measurements (original nullspace

method)

When ny ¼ nu þ nd , the measurements and disturbances
are independent, so eGy is invertible and (41) becomes

H ¼M�1
n
eJðeGyÞ�1 ð43Þ

as derived earlier in (37). This choice gives Md ¼ 0 (zero
disturbance loss) and from (26) the resulting effect of the
measurement noise is

Mny ¼ �eJ½eGy ��1
Wny ð44Þ

Note that we in this case have no degrees of freedom left
for affecting the matrix Mny .

4.3.2. Extra measurements: select ‘‘just-enough’’ subset

If we have extra measurements (ny > nu þ nd), then one
possibility is to select a ‘‘just-enough” subset (such that
we get ny ¼ nu þ nd) before forming c and then obtain H

from (43) to achieve zero disturbance loss (Md ¼ 0). The
degrees of freedom in selecting the measurement subset
can then be used to minimize the loss with respect to the
measurement noise, that is, to minimize the norm of Mny

in (44). The worst-case loss caused by measurement noise is

Lwc ¼ max
kn0yk261

L ¼ 1

2
�rðMny Þ2 ¼ 1

2
�rðeJðfGy Þ�1

Wny Þ2

6
1

2
ð�rðeJÞrðfGy Þ�rðWny ÞÞ2 ð45Þ
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The selection of measurements does not affect the matrix eJ,
since it from (33) depends only on the Hessian matrices Juu

and Jud . However, the selection of measurements affects the
matrix eGy . Thus, in order to minimize the effect of the
implementation error, we propose the following two rules:

(1) Optimal: In order to minimize the worst-case loss,
select measurements such that �rðMny Þ ¼
�rðeJ½fGy ��1

Wny Þ is minimized.
(2) Sub-optimal: Assume that the measurements have

been scaled with respect the measurement error such
that Wny ¼ I. From the inequality in Eq. (45), it then
follows that the effect of the measurement error ny

will be small when rðeGyÞ (the minimum singular
value of eGy) is large. Thus, it is reasonable to select
measurements y such that rðfGy Þ is maximized.

the optimal rule requires evaluation of all possible measure-
ment combination, which may be impractical. On the other
hand, for the sub-optimal selection rule of maximizing rðfGy Þ
there exists efficient branch and bound algorithms [9]. The
sub-optimal rule was used successfully in [1] to select measure-
ments from 60 candidates for a Petlyuk distillation case study.

4.3.3. Extra measurements: use all

For the case with extra measurements (ny > nu þ nd), we
may alternatively use all the measurements when forming c

and obtain H from (41) in Theorem 2. This gives the solu-
tion that minimizes the implementation (measurement
error) loss subject to having zero disturbance loss
(Md ¼ 0). More precisely, when ny > nu þ nd and the mea-
surements and disturbances are independent, the choice for
H in (41), where y denotes the left inverse, minimizes
kMnykF (Frobenius norm) among all solutions with
Md ¼ 0. Note that we need to include the noise weight
before taking the pseudo-inverse in (41).

4.3.4. ‘‘Too few’’ measurements

If there are many disturbances, then we may have too
few measurements to get Md ¼ 0. For the case when both
the measurements and disturbances are independent, we
have ‘‘too few” measurements when ny < nu þ nd . In this
case, the optimal H given in (41) in Theorem 2 is not
affected by the noise weight, and (41) becomes

H ¼M�1
n
eJðeGyÞy ð46Þ

where y denotes the right inverse and Mn is, as before, free
to choose. However, this explicit expression for H mini-
mizes kEkF, whereas, as noted in Remark 1, we really want
to minimize kMdkF. Minimizing kMdkF is equivalent to
solving the following optimization problem

H ¼ arg min
H
kHFWdk2 subject to HGy ¼ J1=2

uu ð47Þ

For this case, with few measurements and no consideration
of measurement error, we have not been able to derive an
explicit expression for H, similar to (31) in Theorem 1.

However, for practical applications, Eq. (46) is most likely
acceptable, at least provided we scale the system (i.e. Gy

d)
such that Wd ¼ I . There may also be cases where we do
have enough measurements, but we nevertheless want to
use ‘‘too few” measurements to simplify implementation.
In this case, we have that Mny ¼ eJðeGyÞyWny and to mini-
mize �rðMny Þ (the effect of measurement error), we may first
select the set of measurements that maximizes rðMny Þ, and
then select H according to (46). Also, note that if we have
sufficiently few measurements, i.e. ny < nd , then (31) applies
with Wny ¼ 0 (see comment following Theorem 1).

5. Example

As a simple example, consider a scalar problem with
nu ¼ 1 and nd ¼ 1 [3]. The cost function to be minimized is

J ¼ ðu� dÞ2 ð48Þ
where the nominal disturbance is d� ¼ 0. Assume that the
following four measurements are available:

y1 ¼ 0:1ðu� dÞ; y2 ¼ 20u; y3 ¼ 10u� 5d; y4 ¼ u

We assume that the system is scaled such that jdj 6 1 and
jnij 6 1, i.e.,

Wd ¼ 1; Wny ¼ I ð49Þ
and we want to find the optimal measurements or combina-
tions to control at constant setpoints.

Solution. From (48), it is clear that J optðdÞ ¼ 0 8d and
the optimal input is uoptðdÞ ¼ d. We find Juu ¼ 2 and
Jud ¼ �2 and

Gy T ¼ ½ 0:1 20 10 1 � and G
y
d

T ¼ ½�0:1 0 �5 0 �
ð50Þ

The optimal sensitivity matrix F is obtained from (15) or
(39). This gives F ¼ 0 20 5 1½ �T.

5.1. Single measurement candidates

Let us first consider the use of individual measurements
as controlled variables (c ¼ yi, i ¼ 1; 2; 3; 4). The losses
Lwc ¼ 1

2
�rðMÞ2 are

L1
wc ¼ 100; L2

wc ¼ 1:0025; L3
wc ¼ 0:26; L4

wc ¼ 2 ð51Þ
Measurement y1 has Dyopt

1 ¼ 0, so it happens to have zero
disturbance loss (Md ¼ 0). However, this measurement is
sensitive to noise (as can be seen from the small gain in
Gy) and we see that this choice actually has the largest loss
L1

wc ¼ 100. y3 is the best single measurement candidate.
This illustrates the importance of taking into account the
implementation error (measurement noise).

5.2. Measurement combinations: use two of the four

measurements

Consider combining two measurements, c ¼ Hy ¼
h1yi þ h2yj. Let us first consider combinations that give
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zero disturbance loss Md ¼ 0, which is possible since
nu þ nd ¼ ny ¼ 2. The ‘‘null space” combination
(H ¼ ðh1 h2Þ) is most easily obtained using (33). For exam-
ple, for measurements (2; 3), F ¼ 20 5½ �T and

H ¼ ½h1 h2� ¼Nð½20 5�Þ ¼ ½�0:2425 0:9701� ð52Þ

The controlled variable is then c ¼ �0:2425y2 þ 0:9701y3.
The same result is obtained from (41).

The results with the nullspace method for all six possible
combinations are given in Table 2. The table gives the
worst-case loss Lwc caused by the measurement error. We
have Lwc ¼ 1

2
�rðMÞ2, where, since Md ¼ 0, M ¼Mny ¼eJðeGyÞ�1

Wny . To compare, we also show in Table 2
rðeGyÞ, which according to the ‘‘sub-optimal rule for select-
ing measurements” should be maximized in order to mini-
mize the implementation error. We note that for this
example that maximizing rðeGyÞ gives the same (correct)
ranking as minimizing Lwc.

From Table 2, we see that combinations involving mea-
surement y1 are all sensitive to noise. Combination
ði; jÞ ¼ ð2; 3Þ is the best, followed by (3, 4), while (1, 2),
(1, 4) and (1, 3) have the same noise sensitivity when they
are combined using the nullspace method. The reason is
that NðF TÞ ¼ 1 0½ �, so that only measurement y1 is used.
Combination (2; 4) yields infinite noise sensitivity to noise
with the nullspace method, since eGy is singular.

Next, consider the optimal combination of two measure-
ments for disturbances and measurements error (‘‘exact
local method”). The results are summarized in Table 3.
Again, we find that the best combination is ð2; 3Þ with a
loss L23

wc ¼ 0:0406. This gives Md ¼ �0:0635 so, as
expected, the disturbance loss is non-zero. For this combi-

nation, the result is very similar to the extended nullspace
method which gave L23

wc ¼ 0:0425 and Md ¼ 0. However,
for the other 5 two-measurement combinations, the differ-
ences are much larger as the use of (31) gives a significantly
lower sensitivity to measurements error, see Table 3. How-
ever, note that Lwc for those five cases is only slightly better
than using a single measurement, see (51).

5.3. Measurement combinations: use all four measurements

Consider again first the case when we want zero distur-
bance loss (Md ¼ 0), and Eq. (41) in the extended nullspace
method gives (after normalizing (scaling) the elements in H

to get kHkF ¼ 1):

H ¼ 0:0206 �0:2419 0:9700 �0:0121½ � ð53Þ

which gives G ¼ 4:852 and Mn ¼ 0:2915. The loss contri-
butions from the disturbance and the noise are Md ¼ 0
and Mny ¼ �0:0060 0:0705 �0:2827 0:0035½ �, respec-
tively. The corresponding loss is Lwc ¼ �r2½Md Mny �=2 ¼
0:04248.

To compare, the optimal combination (‘‘exact local
method”) with respect to combined disturbances and mea-
surement noise, obtained from (31) is (after normalizing
to get kHkF ¼ 1) [3]

Hopt ¼ ½ 0:0208 �0:2317 0:9725 �0:0116 � ð54Þ

which gives G ¼ 5:082 and Mn ¼ 0:2783. The loss contri-
bution from the disturbance and the noise are Md ¼
�0:0606 and Mny ¼ ½�0:0057 0:0645 � 0:2706 0:0032�,
respectively. The resulting loss is Lwc ¼ 0:0405, which is
very similar to the extended null space method, and only
marginally improved compared to using only two measure-
ments (L23

wc ¼ 0:0406). The reduction in loss is small com-
pared to using only two measurements (L23

wc ¼ 0:0406).
In summary, the simple two-step nullspace method,

where one first selects a ‘‘just-enough” set of measurements
by maximizing rðeGyÞ, and then obtains H from the null
space method, using either Eq. (43) or (33), works well
for the example.

6. Example 2: control of refrigeration cycle

For a more physically motivated example, we consider
the optimal operation of a CO2 refrigeration cycle [6], for
example, it could be the air condition (AC) unit for a
house, see Fig. 3. The cycle has one unconstrained degree
of freedom (nu ¼ 1), which may be viewed as the high pres-
sure (y1 ¼ ph) in the cycle. Ideally, ph should be kept at its
optimal value by varying the free input (u); which is the
choke valve position. However, simply keeping a constant
setpoint ph;s is far from optimal because of disturbances.
Three disturbances (nd ¼ 3) are considered: the outside
temperature T H , the inside temperature T C (e.g. because
of a setpoint change) and the heat transfer rate UA. As a
start, control of single variables is considered, because this
is the simplest and is the preferred choice if such a variable

Table 2
Combinations of two measurements, c ¼ h1yi þ h2yj, with zero distur-
bance loss (Md ¼ 0) and resulting loss Lwc caused by measurement error

yi yj H from (41) rðeGyÞ
h1 h2 Lwc

2 3 �0.2425 0.9701 0.0425 4.449
3 4 �0.1961 0.9806 1.04 0.446
1 2 �1 0 100 0.1
1 4 �1 0 100 0.0995
1 3 �1 0 100 0.0447
2 4 �0.0499 0.988 1 0

Table 3
Combinations of two measurements, c ¼ h1yi þ h2yj, with minimum loss
Lwc for combined disturbances and measurement error

yi yj H from (31)

h1 h2 Lwc

2 3 �0.2312 0.9729 0.0406
3 4 �0.8296 0.5584 0.198
1 3 0.2293 0.9733 0.2351
1 2 0.8753 0.4836 0.8969
2 4 0.0499 0.9988 0.9050
1 4 0.1869 0.9824 1.8670
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can be found. The best single controlled variable (with a
large scaled gain and a small loss) was found to be the mass
holdup (c ¼ M c) in the condenser [6], but it is very difficult
to measure in practice. Therefore, a combination of mea-
surements needs to be controlled. Theoretically, we need
to combine at least four measurements (nu þ nd ¼ 4) to
get zero loss, independent of the disturbances (i.e., to get
Md ¼ 0). However, to simplify the implementation we pre-
fer to use fewer measurements. Two measurements which
are easy to measure and have a reasonably large scaled gain
[6], are the high pressure (y1 ¼ ph) and the temperature
before the choke valve (y2 ¼ T h). It is not possible to get
Md ¼ 0 with only two measurement, so instead
H ¼ ½ h1 h2 � was obtained numerically by minimizing
kMdkF; see Eq. (46) (actually, the matrix H can be obtained
explicitly from (31) with Wny ¼ 0, since we have
ny ¼ 2 < nd ¼ 3; see comment following Theorem 1). This
gives a controlled variable c ¼ h1y1 þ h2y2 ¼ h1ph þ h2T h.
To get a more physical variable, we select h1 ¼ 1, which
gives a controlled variable in the units of pressure. We find
[6]

c ¼ ph;combined ¼ ph þ kðT h � 25:5 �CÞ

where k ¼ h2=h1 ¼ �8:53 bar=�C and the (constant) set-
point for c ¼ ph;combined is 97.6 bar, which is the nominally
optimal value for the high pressure. Controlling c may be
viewed as controlling the high pressure, but with a temper-
ature-corrected setpoint. A more detailed analysis using a
nonlinear model shows that this combination gives very
small losses for all disturbances and measurement errors
[6].

Other case studies. The results of this paper, and in par-
ticular the use of (31) in Theorem 1 have also been applied

successfully to a distillation case study where the issue is to
select temperature combinations [4].

7. Discussion

7.1. Local method

The above derivations are local, since we assume a linear
process and a second-order objective function in the inputs
and the disturbances. Thus, the proposed controlled vari-
ables are only globally optimal for the case with a linear
model and a quadratic objective. In general, we should
always, for a final validation, check the losses for the pro-
posed structures using a nonlinear model of the process.

7.2. Quadratic optimization problem

The following reformulations of the results in this paper
may be useful for extending them to other applications and
comparing them with other results.

First, we give a reformulation of the original nullspace
method in [1].

Theorem 3 (Linear invariants for quadratic optimization
problem). Consider an unconstrained quadratic optimization

problem in the variables u (input vector of length nu) and d

(disturbance vector of length nd )

min
u

Jðu; dÞ ¼ ½ u d �
Juu Jud

JT
ud Jdd

� �
u

d

� �
ð55Þ

In addition, there are ‘‘measurement” variables y ¼ Gyuþ
Gy

dd. If there exists ny P nu þ nd independent measurements

(where ‘‘independent” means that the matrix eGy ¼ ½Gy Gy
d �

has full rank), then the optimal solution to (55) has the prop-

erty that there exists nc ¼ nu linear variable combinations

(constraints) c ¼ Hy that are invariant to the disturbances

d. Here, H may be obtained from the nullspace method using

(33) (where the optimal sensitivity F may be obtained from

(15)) or from the explicit expression (37).

Next, the result on the worst-case loss [3] and the explicit
expression for the ‘‘exact local method” in Theorem 1 can
be reformulated as follows.

Theorem 4. (Loss by introducing linear constraint for
noisy quadratic optimization problem). Consider the

unconstrained quadratic optimization problem in Theorem 3,

min
u

Jðu; dÞ ¼ ½ u d �
Juu Jud

JT
ud Jdd

� �
u

d

� �
and a set of noisy measurements ym ¼ yþ ny , where Y ¼
GyuþGy

dd. Assume that nc ¼ nu constraints c ¼ Hym ¼ cs

are added to the problem, which will result in a non-optimal

solution with a loss L ¼ Jðu; dÞ � J optðdÞ. Consider distur-

bances d and noise ny with magnitudes

d ¼Wdd0; ny ¼Wny ny0 ;
d0

ny0

� ����� ����
2
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Fig. 3. Proposed control structure for the refrigeration cycle.
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Then for a given H, the worst-case loss is Lwc ¼ �rðMÞ2=2,

where M is given in (20)–(22), and the optimal H that mini-

mizes �rðMÞ is given by (31) in Theorem 1. This optimal H

also minimizes kMkF.

Note from Theorem 3 that if there are a sufficient num-
ber (ny P nu þ nd) of noise-free measurements, then we can
obtain zero loss in Theorem 4.

7.3. Relationship to indirect control

Indirect control is when we want to find a set of con-
trolled variables c ¼ Hy such that the primary variables
y1 are indirectly kept at constant setpoints. The case of
indirect control is discussed in more detail by Hori et al.
[5] and their results are a special case of the results for
the nullspace method presented in this paper if we select

J ¼ 1

2
ky1 � ys

1k2 ¼
1

2
½y1 � ys

1�
T½y1 � ys

1� ð56Þ

To show this, write

Dy1 ¼ G1DuþGd1Dd ¼ fG1

Du

Dd

� �
ð57Þ

and assume ny1
¼ nu, so G1 is a square matrix. We find that

Juu ¼ GT
1 G1 ð58Þ

Jud ¼ GT
1 Gd1 ð59Þ

Consider the case with ny ¼ nu þ nd , where we can achieve
perfect indirect control with respect to disturbances.
Substituting (58) and (59) into the explicit expression (37)
for the nullspace method gives

H ¼ P�1
c;0
eG1ðeGyÞ�1 ð60Þ

where we have introduced the new ‘‘free” parameter
Pc;0 ¼ G1J�1=2

uu Mn ¼ G1G�1. This is identical to the results
of Hori et al. [5].

8. Conclusion

Explicit expressions have been derived for the optimal
linear measurement combination c ¼ Hy.

The null space method [1] for selecting linear measure-
ment combinations c ¼ Hy has been extended to the gen-
eral case with extra measurements, ny > nu þ nd , see Eq.
(41) in Theorem 2. The idea of the extended nullspace
method is to first focus on minimizing the steady-state loss
caused by disturbances, and then, if there are remaining
degrees of freedom, minimize the effect of measurement
errors. Alternatively, one may minimize the effect of com-
bined disturbances and measurements errors, which is the
‘‘exact local method” of Halvorsen et al. [3]. In this paper,
we have derived an explicit solution for H for this problem,
see Eq. (31) in Theorem 1. This expression applies to any
number of measurements, including ny < nu þ nd .

To simplify, one often uses only a subset of the available
measurements when obtaining the combination c ¼ Hy. A

simple rule, which can aims at minimizing the effect of mea-
surement errors, is to select measurements to maximize
rðeGyÞ or even better, to minimize �rðeJðeGyÞ�1

Wny Þ. Here,eGy is the steady-state gain matrix from the inputs and dis-
turbances to the selected measurements.

Finally, the results can be interpreted as adding linear
constraints that minimize the effect on the solution to a
quadratic optimization problem; see Theorems 3 and 4.

Appendix A. Analytical solution for the exact local method

A.1. Scalar case

The minimization problem for the scalar case in (29) can
be rewritten as:

min
x
keFTxk2 ¼ min

x
xTeFeFTx subject to GyTx ¼ J1=2

uu ðA:1Þ

where we have introduced x,HT, which is a column-vec-
tor in the scalar case.

The solution to this problem must satisfy the following
KKT-conditions (e.g. [12, p. 444]):eFeFT �Gy

GyT 0

" #
x

k

� �
¼

0

J1=2
uu

� �
ðA:2Þ

To find the optimal x, we must invert the KKT-matrix and
from the Schur complement of the inverse of a partitioned
matrix (e.g. [14, p. 516]), we obtain that the optimal x is

x ¼ HT ¼ ðeFeFTÞ�1
GyðGyTðeFeFTÞ�1

GyÞ�1
J1=2

uu ðA:3Þ

Comment: In the scalar case, Gy is a (column) vector and
J1=2

uu is a scalar. However, the expression and proof also ap-
plies if Gy were a matrix and J1=2

uu were a vector. This fact is
important for the extension to the multivariable case.

A.2. Extension to multivariable case

To show that the solution for the scalar case also applies
to the multivariable case, we first transform the multivari-
able case into a scalar problem. In this proof, we consider a
system with two controlled variables (nu ¼ 2), but it can
easily be extended to any dimension.

The optimization problem is minHTkHeFkF subject to
HGy ¼ J1=2

uu , where we introduce X ¼ HT. The matrices X

and J1=2
uu are split into vectors

X, ½ x1 x2 �; J1=2
uu ¼ ½ J1 J2 � ðA:4Þ

We further introduce the long vectors

xn ¼
x1

x2

� �
; Jn ¼

J1

J2

� �
ðA:5Þ

and the large matrices

GyT
n ¼

GyT 0

0 GyT

" #
; eFn ¼

eF 0

0 eF
" #

ðA:6Þ
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Then, HeF ¼ XTeF ¼ xT
1

xT
2

� �eF ¼ xT
1
eF

xT
2
eF

" #
and for the 2-norm,

the following applies

kHeFkF ¼
xT

1
eF

xT
2
eF

" #�����
�����

F

¼ k½ xT
1
eF xT

2
eF �kF ¼ kxT

n
eFnkF

ðA:7Þ
where it is noted that k � kF ¼ k � k2 for a vector.

The constraints GyTX ¼ J1=2
uu become

½GyTx1 GyTx2 � ¼ ½ J1 J2 � ðA:8Þ

or GyTx1 ¼ J1 and GyTx2 ¼ J2, which can be rewritten as

GyTx1

GyTx2

" #
¼

J1

J2

� �
or GyT

n xn ¼ Jn ðA:9Þ

(A.7) and (A.9) is a vector optimization problem of the
form in (A.1) and from (A.3) the solution is

xn ¼ ðfFn
fFn

TÞ�1
Gy

nðG
yT
n ðfFn

fFn
TÞ�1

Gy
nÞ
�1

Jn ðA:10Þ
We now need to ‘‘unpack” this to find the optimal HT ¼ X.
Substituting the values and rearranging (A.10)

x1

x2

� �
¼

eF 0

0 eF
" # eF 0

0 eF
" #T

0@ 1A�1

Gy 0

0 Gy

� �

�
Gy 0

0 Gy

� �T eF 0

0 eF
" # eF 0

0 eF
" #T

0@ 1A�1

Gy 0

0 Gy

� �0@ 1A�1

�
J1

J2

� �
we see that

x1

x2

� �
¼ ðeFeFTÞ�1

GyðGyTðeFeFTÞ�1
GyÞ�1

J1

ðeFeFTÞ�1
GyðGyTðeFeFTÞ�1

GyÞ�1
J2

" #
ðA:11Þ

and finally,

HT ¼ X ¼ x1 x2½ �
¼ ðeFeFTÞ�1

GyðGyTðeFeFTÞ�1
GyÞ�1

J1 J2½ � ¼
¼ ðeFeFTÞ�1

GyðGyTðeFeFTÞ�1
GyÞ�1

J1=2
uu ðA:12Þ

This proves that the solution for the scalar case also applies
for the multivariable.
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