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Abstract: Model predictive control (MPC) is a favored method for handling constrained linear
control problems. Normally, the MPC optimization problem is solved on-line, but in ‘explicit
MPC’ an explicit precomputed feedback law is used for each region of active constraints
(Bemporad et al., 2002). In this paper we make a link between this and the ‘self-optimizing
control’ idea of finding simple policies for implementing optimal operation. The ‘nullspace’
method (Alstad and Skogestad, 2007) generates optimal variable combinations, c = u − Kx,
which for the case with perfect state measurements are equivalent to the explicit MPC feedback
laws, where K is the optimal state feedback matrix in a given region. More importantly, this
link makes it possible to derive explicit feedback laws for cases with (1) state measurement error
included and (2) measurement (rather than state) feedback. We further show how to generate
optimal low-order controllers for unconstrained optimal control, also in the presence of noise.
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1. INTRODUCTION

Consider the general static optimization problem (Alstad
and Skogestad, 2007):

min
u0,x

J0(x, u0, d)

s.t. fi(x, u0, d) = 0, i ∈ E

hi(x, u0, d) ≥ 0, i ∈ I,

(P1)

where x ∈ R
nx are the states, u0 ∈ R

nu0 are the inputs,
and d ∈ D ⊂ R

nd are disturbances. By discretization
and reformulation this may also represent some dynamic
optimization problems. Usually f is a model of the physical
system, whilst h is a set of inequality constraints that
limits the operation (e.g., physical limits on temperature
measurements or flow constraints). In addition to (P1) we
have measurements on the form

y0 = fy(x, u0, d). (1)

In this work the emphasis is on implementation of the so-
lution to (P1). This means that the optimization problem
(P1) is solved off-line to generate a ‘control policy’ which
is suitable for on-line implementation, with particular em-
phasis on remaining close to optimal solution when there
are unknown disturbances.

In our previous work on ‘self-optimizing control’ we have
looked for simple control policies to implement optimal op-
eration, and in particular ‘what should we control’ (choice
of controlled variables (CV ’s)). Using off-line optimization
we may determine regions where different sets of active
constraints are active, and implementation of optimal op-
eration is then in each region to:

(1) Control the active constraints.

(2) For the remaining unconstrained degrees of freedom:
Control ‘self-optimizing’ variables c = Hy which have
the property that keeping them constant (c = cs)
indirectly achieves close-to optimal operation (with a
small loss), in spite of disturbances d.

A key result, which is the basis for this paper, is

For a quadratic optimization problem there exists (in-
finitely many) linear measurement combinations c = Hy
that are optimally invariant to disturbances d.

One sees immediately that there may be some link to
explicit MPC, because the discrete form MPC problem
can be written as a static quadratic problem. The link is:
If we let y contain the inputs u and the states x, then the
‘self-optimizing’ variable combination c = Hy is the same
as the explicit MPC feedback law, i.e. c = u − Kx. (This
is shown in section 3.)

Based on this, we provide in this contribution some new
ideas on explicit MPC:

(1) We propose that tracking the variables c (deviation
from optimal feedback law) for all regions, may be
used as a local method to detect when to switch
between regions. (This is discussed in Manum et al.
(2008b).)

(2) We extend the results to output feedback (c = u−Ky)
by including in y present and past outputs.

(3) For unconstrained optimal control, we show how
the links can be used to give low-order controllers
that give a small loss from optimality also for noisy
measurements.

(4) We also extend the results to the case where only
a subset of the states are measured (but in this case



there will be a loss, which we can quantify). This may
be of interest even in the unconstrained LQ case.

2. RESULTS FROM SELF-OPTIMIZING CONTROL

In this section we will present results from previous work
on self-optimizing control and relate them to quadratic
optimization problems.

2.1 Steady state conditions

Once the set of active constraints is known, we can form
the reduced problem and the unconstrained degrees of
freedom u can be determined. The unconstrained mea-
surements are

y = Gyu + Gy
dd, (2)

and y contain information about the present state and
disturbances (y may include u0 and d, but not the active
constraints.) The (measured) value of ym available for
implementation is

ym = y + ny, (3)

where ny represents uncertainty in the measurement of y
including uncertainty of implementation in u.

The following theorem describes a method to find linear
invariants that yields zero loss from optimality when the
invariants are controlled at constant setpoint. The theorem
is based on the ‘nullspace method’ presented in Alstad and
Skogestad (2007).

Theorem 1. (Linear invariants for quadratic optimization
problem (Alstad et al., 2008)) Consider an unconstrained
quadratic optimization problem in the variables u (input
vector of length nu) and d (disturbance vector of length
nd)

min
u

J(u, d) = [u d]

[
Juu Jud

Jud
T Jdd

] [
u
d

]

(4)

In addition, there are ‘measurement variables’ y = Gyu +
Gy

dd.

If there exists ny ≥ nu + nd independent measure-

ments (where ‘independent’ means that the matrix G̃y =[
Gy Gy

d

]
has full rank), then the optimal solution to (4)

has the property that there exists nc = nu linear variable
combinations (constraints) c = Hy that are invariant to
the disturbances d. The optimal measurement combination

matrix H is found by either: (1): Let F = ∂yopt

∂d
T be

the optimal sensitivity matrix evaluated with constant
active constraints. Under the assumptions stated above
possible to select the matrix H in the left nullspace of F ,
H ∈ N (FT), such that

HF = 0 (5)

(2): If ny = nu + nd:

H = M−1
n J̃(G̃y)−1, (6)

where J̃ =
[

J1/2
uu J−1/2

uu Jud

]
and G̃y =

[
Gy Gy

d

]
is the

augmented plant. M−1
n may be seen as a free parameter.

(Note that Mn = Jcc is the Hessian of the cost with respect
to the c-variables; in most cases we select Mn = I for
convenience.)

Remark 2. The sensitivity F matrix can be obtained from

F = −
(
GyJ−1

uu Jud − Gy
d

)
. (7)

Theorem 1 may be extended:

Lemma 3. (Linear invariants for constrained quadratic
optimization methods (Manum et al., 2008b)) Consider
an optimization problem of the form

min
u0,x

J0 = [x u0 d] S

[
x
u0

d

]

s.t. Ax + Bu + Cd = 0

Ãx + B̃u + C̃d ≤ 0,

(8)

with det(A) 6= 0 and [Ã B̃] full row rank.

Assume that the disturbance space has been partitioned
into na critical regions. In each region there are ni

u = nu0
−

ni
A ≥ 0 unconstrained degrees of freedom, where ni

A ≤ nm

is the number of optimally active constraints in region i.

If there exists a set of independent unconstrained mea-
surements yi = (Gy)iui + (Gy

d)id in each region i, such
that nyi ≥ nui + nd, the optimal solution to (8) has the

property that there exists variable combinations ci = Hiyi

that for critical region i are invariant to the disturbances
d. The corresponding optimal Hi may be obtained from
Theorem 1. Within each region, optimality requires that
ci−ci

s = 0 (where ci
s is a constant). From continuity of the

solution we have that ci is continuous across the boundary
of region i. This implies that the elements in the variable
vector ci−ci

s will change sign or remain zero when crossing
into or from a neighboring region.

2.2 Including noise

For the noise-free problem, adding the constraints c =
Hy = cs does not change the optimal solution (Theorem
1). However with measurement noise there will be some
loss, which can be minimized if H is selected as given in
Theorem 4.

Theorem 4. (Loss by introducing linear constraint for
noisy quadratic optimization problem (Alstad et al.,
2008)) Consider the unconstrained quadratic optimization
problem in Theorem 1:

min
u

J(u, d) = [u d]

[
Juu Jud

Jud
T Jdd

] [
u
d

]

and a set of noisy measurements ym = y + ny. Assume
that nc = nu constraints c = Hym = cs are added to the
problem, which will result in a non-optimal solution with
loss L = J(u, d)−Jopt(d). Consider the disturbances d and
the noise ny with magnitudes:

d = Wdd
′; ny = Wny ny′

; ‖

[
d′

ny′

]

‖ ≤ 1. (9)

Then, for a given H , the worst-case loss is Lwc = σ̄(M)2/2,
where M = [Md Mny ] is given by

Md = −J1/2
uu (HGy)−1HFWd, (10)

Mny = −J1/2
uu (HGy)HWny ., (11)

and the optimal H that minimizes σ̄(M) is given by

HT =
(

F̃ F̃T
)−1

Gy(GyT(F̃ F̃T)−1Gy)−1J1/2
uu , (12)

where F̃ = [FWd Wny ]. This solution also minimizes the
average loss ‖M‖F .



Remark 5. The optimal H can also be found by solving
the constrained optimization problem

H = argmin
H

σ̄(HF̃ ) subject to HGy = J1/2
uu (13)

3. APPLICATION TO EXPLICIT MPC

Pistikopoulos et al. (2002) show that by substitution of the
model equations, the linear MPC problem can be rewritten
to the form

min
U

1

2
UTHU + x(t)TFU +

1

2
x(t)TY x(t)

s.t. GU ≤ W + Ex(t)
(14)

The MPC control law is based on the following idea:
At time t, compute the optimal solution U∗(t) =
{u∗

t , . . . , u
∗
t+Nu−1} and apply u(t) = u∗

t (Bemporad et al.,
2002).

If we let the initial state x(t) be treated as a disturbance,
(14) can be written as:

min
U

1

2

[
UT dT

]
[
H F
F Y

] [
U
d

]

s.t. GU ≤ W + Ed,

(15)

and we observe that (15) is on the same form as (8), where
the model equations f(x, u0, d) = 0 have already been
substituted into the objective function.

A property of the solution to (15) is that the disturbance
space (initial state space) will be divided into critical
regions. In the i’th critical region there will be ni

u = nU −
ni

A unconstrained degrees of freedom, where ni
A is the

number of active constraints in region i.

As we will discuss in section 3.1, a possible set of measure-
ments y is the current state and the inputs, yT =

[
xT uT

]
.

We further note that causality is not an issue here, as we
have the information at the current time.

3.1 Exact measurements of all states (state feedback)

The following theorem is well known, but we shown in
(Manum et al., 2008b) that it can be derived using the
nullspace method. The proof is left out here due to space
limitations.

Theorem 6. (Optimal state feedback (Bemporad et al.,
2002)) The control law u(t) = f(x(t)), f : R

n 7→ R
m,

defined by the MPC problem, is continuous and piecewise
affine

f(x) = Kix + gi if Hix ≤ ki, i = 1, . . . , Nmpc (16)

where the polyhedral sets
{
Hix ≤ ki

}
, i = 1, . . . , Nmpc ≤

Nr are a partition of the given set of states X .

Remark 7. (Comparison with previous results on uncon-
strained MPC) In the proof shown in Manum et al. (2008b)
the state feedback gain matrix is given as J−1

uu Jud. This is
gives the same result as conventional MPC, see equation
(3) in Rawlings and Muske (1993).

Remark 8. Our alternative proof of Theorem 6 leads to
some new insights. The most important is probably that
the ‘self-optimizing’ variables ci = u − (Kix + gi) which
are optimally zero in region i, may be used for identifying
when to switch between regions (Theorem 9) rather than

using a ‘centralized’ approach, for example based on a
state tree structure search. This seems to be new. Another
insight is to understand why a simple feedback solution
must exist in the first place. A third is to allow for new
extensions.

Theorem 9. (Optimal region for explicit MPC detection
using feedback law (Manum et al., 2008b)) The variables
c = uk − (Kxk +g) can be used to identify region changes.

An algorithm for implementing the region detection
scheme is presented in Manum et al. (2008b).

We present a simple example from Bemporad et al. (2002)
that confirms that our switching policy based on tracking
the sign of the c-variables works in practice.

Example 3.1. (Optimal switching). This example is taken
from Bemporad et al. (2002) (with correction), and is
included here to demonstrate optimal switching using
c = u −Kx as criterion. For more details on this example
see (Manum et al., 2008b). The system is:

y(t) =
2

s2 + 3s + 2
u(t).

With a sampling time T = 0.1 seconds the following state-
space representation is obtained:

x(t + 1) =

[
0.7326 −0.0861
0.1722 0.9909

]

x(t) +

[
0.0609
0.0064

]

u(t)

y(t) = [0 1.4142] x(t)

One observes that only the last state is measured, but it
will be assumed that both states are known (measured) in
the remainder of this example.

The task is to regulate the system to the origin while
fulfilling the input constraint

−2 ≤ u(t) ≤ 2. (17)

The objective function to be minimized is

min xt+2|t
TPxt+2|t +

1∑

k=0

[
xt+k|t

Txt+k|t + 0.01u2
t+k

]
(18)

subject to the constraints and xt|t = x(t).

P solves the Lyapunov equation P = ATPA + Q, where
Q = I in this case. The P -matrix is numerically P =
[ 5.5461 4.9873
4.9873 10.4940 ]. The optimal control problem can be solved

for example using the MPT toolbox (Kvasnica et al.,
2004).

To illustrate the ideas, we show a simulation where the
control objective is to bring the process from x0 = (1, 1)
and back to x = (0, 0). State space trajectories and inputs
are shown in figures 1 and 2 (dotted line). As long as the
state is in the input-constrained region where uopt = −2,
the linear combination c = uk − Kxk remains positive.
One chooses to leave the input-constrained region when
c becomes zero. The state trajectory is the same as in
Bemporad et al. (2002).

3.2 Output feedback with no noise

Consider now the case where all the states x are not
measured. The objective is to find linear combinations
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Fig. 1. Partition of state space for first input. (Example
3.1.)

c = Hy that are optimally constant in each optimal region.
From the nullspace method, this requires that we have as
many independent measurements y as there are inputs and
disturbances.

With no measurement error, the optimal combination
c = Hy can be obtained from the nullspace method.
This requires that G̃y has full rank, which again implies
that all d’s can be observed from the outputs y. Because
of causality, G̃y will not be full rank initially (just after
the disturbance occurs), but the rank condition will be
satisfied if we consider a disturbance entering sufficiently
long (nx − 1 steps) back in time. From this time and on
the solution is the same as the state feedback solution.

In terms of detecting region changes, we suggested for the
state feedback case to use the deviation c from the optimal
feedback laws c = u−Kx as tracking variables. This simple
strategy may not work as well with output feedback, partly
because output feedback is not truly optimal, and partly
because the outputs do not contain accurate information
about the present state. (It can however be applied in the
following example.)

Example 3.2. (Output feedback). Consider the same model
and optimal control problem as in example 3.1, but assume
that only the output y(t) is available (and not both states).
Recall from figure 1 that the state space is optimally
partitioned into 3 regions with 3 different state feedback
laws. As before, let d = xk.

One approach is to find the optimal sensitivity F from
F = −(GyJ−1

uu Jud − Gy
d), where y = (yk, yk+1, U), and

y =






yk

yk+1

uk

uk+1




 =






0 0
CB 0
1 0
0 1






︸ ︷︷ ︸

Gy

[
uk

uk+1

]

+

[
C

CA

]

︸ ︷︷ ︸

Gy

d

xk (19)

By finding an H such that HF = 0, this method yields
feedback gains from the outputs to the inputs. Note that
we can always ‘decouple’ the invariants in the inputs
u when all inputs are included in the candidate vector
y. This is because nc = nu and we have a degree of
freedom in H such that multiplying by a non-singular
nc × nc matrix on the left yields the same loss as before.
Write H = [Hy Hu], then a combination matrix that is

decoupled in u is Ĥ = (Hu)−1H .
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ck = uk − (k1yk + k2yk−1)

ck = uk − (Kxk)

Fig. 2. Simulation of output feedback configuration, where
the output feedback law is used both for switching and
control. Dotted line is optimal switching and control
when both states assumed measured. (Examples 3.1
and 3.2.)

We here get two invariants, one between (uk+1, yk+1, yk),
and one between uk, yk+1, yk, where only the first one is
implementable because of causality.

The controller gains for the central region are (k1, k2) =
(−16.7, 13.7), with control equation uk = −(k1yk +
k2yk−1).

Another approach for finding F and H is to use the
optimal solution uk = −Kxk a priori, which we did not
do above. If we use the knowledge of the optimal feedback
law, we can for example find that

F ′T =

(
∂[uk yk yk+1]

T

∂xk

)opt

=
[
KT CT (C(A + BK))T

]
,

(20)

and by solving H ′F ′ = 0 we get an invariant between
(uk, yk, yk+1). This invariant is not implementable, but by
using the same idea we can find another invariant between
(yk, yk+1, yk+2), shift this invariant one time-step back and
then combine with the first one. The resulting output
feedback law becomes the same as for the method above,
where we did not use the optimal state feedback law in the
derivations.

Figure 2 shows the result of a simulation of the output
feedback control from x0 = (1, 1). Note that we use
the output feedback control law for the unconstrained
region to decide when to leave the constrained region.
The previous optimal control with both states assumed
measured is shown as the dotted line. One observers that
the optimal control scheme leaves the constrained region



one time instant before the output feedback scheme. This
is expected from the discussion above. The ‘discontinuity’
in ck at sample 1 is due to initialisation issues.

4. LOW-ORDER CONTROLLERS FOR
UNCONSTRAINED OPTIMAL CONTROL IN THE

PRESENCE OF NOISE

In example 3.2 we used Theorem 3 to derive an output
feedback law, and moreover this feedback law could be
used for region detection. We will now focus on uncon-
strained optimization problems and show, by using Theo-
rem 4, how we can find optimal invariants between noisy
measurements y. To achieve this we use the weights Wd

and Wny , see (9). The approach we use is summarized in
algorithm 1. The algorithm can easily be extended to cover
a non-stable system matrix A by not setting uk = 0 for
k ≥ N .

Algorithm 1 Finding low-order controllers. (For stable
system matrix A)

1: Define cost function Ĵ(u, x) =
∑∞

k=0 xk
TQxk +

uk
TRuk.

2: Choose Ny, where uk = 0, k ≥ Ny.
3: Rewrite cost function to J(u, x) =

∑Ny−1

k=0

(
xk

TQxk + uk
TRuk

)
+ xNy

PxNy
, where

P = ATPA + Q.
4: Treat x0 as a disturbance d and find Juu and Jud.
5: Decide candidate variables y, for example y =

(yk, uk+1, uk, . . . , uk+N−1) and form the “open-loop”
model y = GyU + Gy

dd, U = (uk, . . . , uk+N−1).
6: Decide disturbance weight Wd and noise weight Wny .
7: Find H̃ by solving either the optimization problem

(13) or use (12).

8: Decouple the inputs in H̃ = [H̃x H̃u] by setting

H = H̃−1
u [H̃x H̃u] = [H̃−1

u H̃x I].

In step 2 one has to choose the input horizon Ny. In
practical applications we found that this should be set
rather high to give good performance in the low-order
controllers. In the following example, where we focus on
the central region (unconstrained) for example 3.2, we
had to increase Ny from 1 (as it was in example 3.2) to
10 to get acceptable performance. To reduce complexity
in constrained explicit MPC one can decrease the input
horizon to get less number of regions, but the resulting
controller will have a poorer performance, so obviously
there is a trade-off. In future work we will investigate
the possibility of using different input horizons for solving
the parametric program and for deriving the controllers in
each region.

The disturbance and noise weights Wd, Wny in step 6
should contain information about the expected variation
in disturbances versus measurement noise.

In the following example we compare different low-order
controllers found by using algorithm 1 with optimal LQG
controllers for the central region of example 3.2 using
output feedback.

Example 4.1. (Low-order controllers and comparison with
LQG: output feedback) In this example we investigate the
same process as before, but with noisy measurements, i.e.

xk+1 =

[
0.7326 −0.0861
0.1722 0.9909

]

xk +

[
0.0609
0.0064

]

uk + wk

yk = [0 1.4142] xk + vk, (21)

where the process noise wk are two uniformly distributed
random numbers drawn from a uniform distribution on a
[−β, β] interval, and the measurement noise vk is a uni-
formly distributed random number drawn from a uniform
distribution on a [−α, α] interval. There is no correlation

between the noises. This implies variances var(wk) = β2

3
I,

and var(vk) = α2

3
.

The objective is to find low-order controllers that can
give comparable performance with the well-known LQG
controller.

In this example we investigate the following controllers for
controlling the noisy process:

(1) LQG from yk to uk.
(2) Invariant (uk, yk).
(3) Invariant (uk, yk, yk−1).
(4) Invariant (uk, yk, . . . , yk−2).
(5) Invariant (uk, yk, . . . , yk−3).

Algorithm 1 can directly be applied to find invariants
between inputs uk and output yk, yk−1, . . . , also when
there is noise on the measurements. Here we choose Ny =
10, which will give a good performance in the resulting
controllers. Apart from this, the cost function is the same
as in (18).

In Manum et al. (2007) analytical expressions for the
derivatives Juu and Jud are given. These can be derived
by substituting the state space model into the objective
function to get an unconstrained optimization problem
as a function of (U, xk), where again we treat xk as a
disturbance.

The open-loop model follows from the model equations.
For example, for y = (yk, yk+1,U ), where U = (u0, . . . , u9),
we establish the model:

y =

[
yk

yk+1

U

]

=






0 0
CB 0
I 0
0 I






︸ ︷︷ ︸

Gy

U +

[
C

CA
0

]

︸ ︷︷ ︸

Gy

d

xk. (22)

The disturbance weight Wd should reflect the variation in
disturbances, whilst the noise weight Wny the noises on
measurements and inputs. In (Manum et al., 2008a) it is
shown that the resulting controllers are not affected by
the noise on the inputs using the current formulation. We
therefore choose:

Wd =
β2

3
I2×2 Wny =

[
α2

3
Iñy×ñy

0

0 INy×Ny

]

, (23)

where ñy ≤ Ny is the number of measurements we want
to include in the implementation (i.e. the order of the
resulting controller).

This framework was used to generate the controllers shown
in Table 1. The LQR and LQG controllers were designed
using standard software, and the tuning was based on
the known distributions of the process and measurement
noises.



Table 1. Simulated costs for example 4.1. Noise levels for wk, vk: (α, β) = (0.8, 1).

Number Control equation J1 J2

0 uk = −[6.08 6.07]xk (noise free, perfect measurement) 2.86 0.284

1 uk = −[6.08 6.07]x̂k 3.40 0.400
2 uk = −(3.25yk) 5.27 0.569
3 uk = −(1.54yk + 0.5yk−1) 3.88 0.401
4 uk = −(0.78yk + 0.44yk−1 − 0.03yk−2) 3.88 0.394

5 uk = −(0.39yk + 0.28yk−1 + 0.12yk−2 − 0.09yk−3) 4.11 0.416

The reference controller is an LQR using full state infor-
mation (available in Matlab).

The LQG controller (from yk to uk) is implemented as:

x̂n+1|n = Ax̂n|n−1 + Bun + L(yn − Cx̂n|n−1)

x̂n|n = x̂n|n−1 + M(yn − Cx̂n|n−1)

uk = −Kx̂n|n (24)

with LT = [0.04 0.59] and MT = [0.12 0.57].

The simulated costs for the different controllers are shown
in Table 1. We investigate two cases, one where the process
noise (i.e. disturbances) occurs at all time instants (J1) and
one where the process noise occurs only every tenth instant
(J2). The simulated costs are the values of the objective
function divided by the simulation length.

When the process noise is occurring at all time instants
(see J1), the LQG controller is optimal. The best variable
combination between the present input and the outputs
back in time, controller no. 4, has a simulated cost 13%
higher than the LQG controller. However, if the process
noise occurs only every tenth time instant (see J2), a
simple combination between yk, yk−1, yk−2 actually yields
slightly better performance than the LQG controller.

As we increase the order of the controller we will reduce
the noise sensitivity but we will be more sensitive to
startup problems. The control law using yk, . . . , yk−3 is
only optimal 3 time-steps after the disturbance occurs,
this is the reason why it has a higher simulated cost than
controller number 4.

This example shows that our approach for deriving low-
order controllers has some inherent problems regarding
causality; to achieve optimal operation in the noise-free
case we need at least ny = nu + nd measurements, and
in the presence of noise we should include even more to
reduce the sensitivity of noise. However, increasing the
number of y’s in the control law makes the causality
problem more significant as we need to ‘wait’ until the
rank conditions from the disturbance to the measurements
becomes fulfilled.

The example further shows that the method works, and
we get controllers comparable with the LQG controller.
For disturbances occurring at every time instant the LQG
controller will be optimal at all times. However, in most
practical cases we do not expect that the disturbances will
change in a random manner from one time step to the next,
so the assumption of dk changing for example only every
tenth time step may not be too wrong. Further, if we are
allowed to change the sample time we can always increase
it to be faster than the dynamics of the disturbances and
our method can be applied.

5. DISCUSSION AND EXTENSIONS

In this paper we have discussed that feedback laws may
be viewed as additional constraints (invariants) to the
original optimization problem, and based on this, we have
shown that optimal linear feedback laws can be derived for
quadratic optimization problems.

Further, we have presented a mathematical framework,
Theorem 4 that gives optimal invariants of noisy mea-
surements. This theorem can also be used in the case of
too few measurements, which can be of interest even for
the unconstrained LQ case.

Currently we are working on how to determine changes in
the active set for noisy measurements and how to optimally
include integral action in the low-order controllers.
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