Explicit MPC with output feedback using self-optimizing control

Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad

Department of Chemical Engineering Norwegian University of Science and Technology N-7491 Trondheim

17th IFAC World Congress, Seoul, Korea, 2008

NTNU

1 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

< D > < P > < D > < D < P</p>

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

Outline

Optimal operation paradigms

- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

・ 戸 ト ・ ヨ ト ・ ヨ ト

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

- Optimal operation paradigms
- Self optimizing control
- Explicit MPC
- Link between the two
- Output feedback
- Extension to noisy measurements
- Examples

Implementation of optimal operation using off-line computations

Paradigm 1

On-line optimizing control where measurements are primarily used to update the model. With arrival of new measurements, the optimization problem is resolved for the inputs.

Paradigm 2

Pre-computed solutions based on off-line optimization. Typically, the measurements are used to (indirectly) update the inputs using feedback control schemes. Focus of this work.

< ロ > < 同 > < 回 > < 回 > < 回 >

Implementation of optimal operation using off-line computations

Paradigm 1

On-line optimizing control where measurements are primarily used to update the model. With arrival of new measurements, the optimization problem is resolved for the inputs.

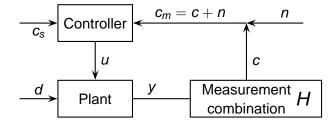
Example: Classical (implicit) MPC.

Paradigm 2

Pre-computed solutions based on off-line optimization. Typically, the measurements are used to (indirectly) update the inputs using feedback control schemes. Focus of this work.

Examples: Explicit MPC and self-optimizing control.

< ロ > < 同 > < 回 > < 回 >

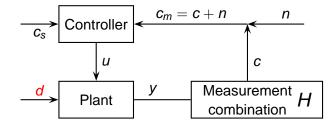


Self-optimizing control

Choice of H such that acceptable operation is achieved with constant setpoints (c_s constant).

4 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

∃ ► < ∃ ►</p>

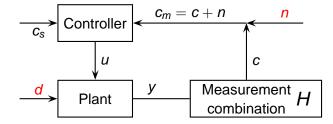


Self-optimizing control

Choice of H such that acceptable operation is achieved with constant setpoints (c_s constant).

Optimal c_s is invariant with respect to disturbances d

∃ ► < ∃ ►</p>

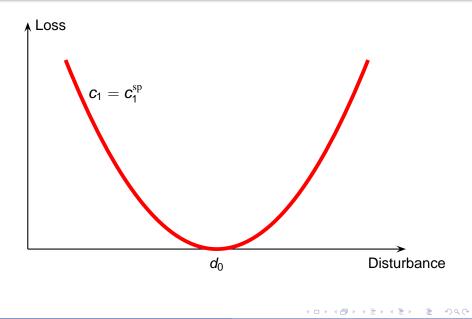


Self-optimizing control

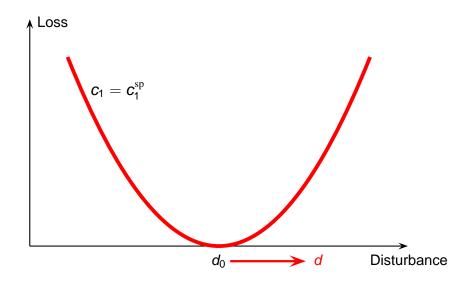
Choice of H such that acceptable operation is achieved with constant setpoints (c_s constant).

- Optimal c_s is invariant with respect to disturbances d
- Insensitive to measurement errors n

∃ ► < ∃ ►</p>



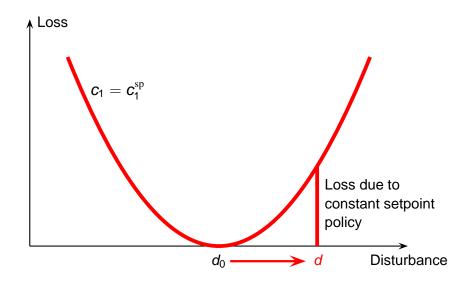
5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control



5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

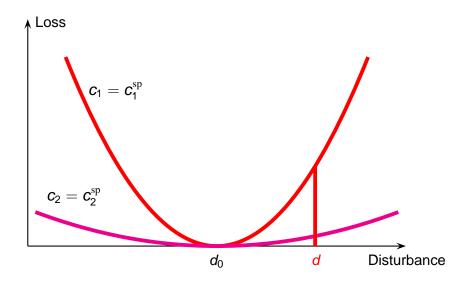
3



5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

э

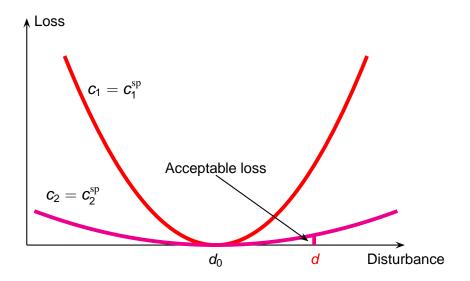
< 17 ▶



5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

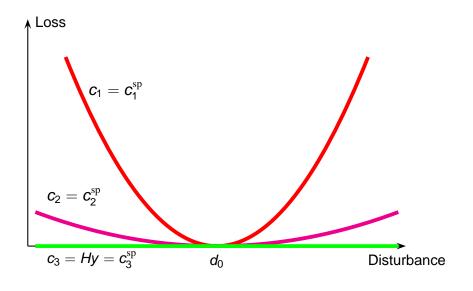
3



5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

→ ∃ > < ∃ >

< 17 ▶



5 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

・ロト ・聞 ト ・ 国 ト ・ 国 ト …

E 900

The nullspace method is restated for QP's

- Theorem (Nullspace method for QP)
 - Consider the quadratic problem

$$\min_{u} J = \begin{bmatrix} u & d \end{bmatrix} \begin{bmatrix} J_{uu} & J_{ud} \\ J_{ud}^{\mathrm{T}} & J_{dd} \end{bmatrix} \begin{bmatrix} u \\ d \end{bmatrix}$$
(1)

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ

If there exists $n_y \ge n_u + n_d$ independent measurements, then the optimal solution to (1) has the property that there exists variable combinations c = Hy that are invariant to the disturbances d.

• *H* may be found from HF = 0, where $F = \frac{\partial y^{opt}}{\partial d^{T}}$

 The "classical" MPC problem can, by substitution, be written as a quadratic problem:

$$\min_{U} J(U, x(t)) = \begin{bmatrix} U^{\mathrm{T}} & x(t)^{\mathrm{T}} \end{bmatrix} \begin{bmatrix} H & F \\ H & Y \end{bmatrix} \begin{bmatrix} U \\ x(t) \end{bmatrix}$$

s.t. $GU \leq W + Ex(t)$

- The initial state *x*(*t*) is considered to be a parameter and a parametric program is solved.
- The solution of the parametric program gives regions in the state space.
- Given an algorithm for deciding the current region (*i*), one implements a continuous piece-wise affine control law

$$u=F^ix+g^i.$$

< ロ > < 同 > < 回 > < 回 > < □ > <

Link between explicit MPC and self-optimizing control

Let

$$d = x_0$$
 and $y = \begin{bmatrix} u \\ x \end{bmatrix}$

The optimal combination

$$c = Hy$$

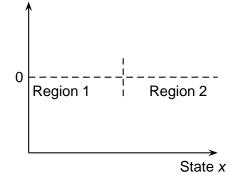
can be written as the feedback law

$$c = u - (Kx + g)$$

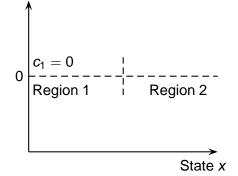
and H (or K) can be obtained from nullspace method

< /□ > < □ >

- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when c_i - c_j changes sign



- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when c_i - c_j changes sign

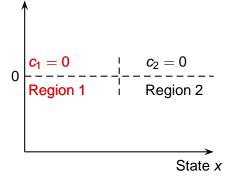


- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when c_i - c_j changes sign

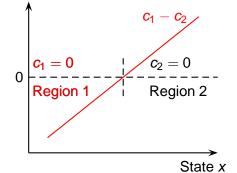
$$0 \begin{bmatrix} c_1 = 0 & | & c_2 = 0 \\ \hline Region 1 & | & Region 2 \end{bmatrix}$$

٨

- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when c_i - c_j changes sign

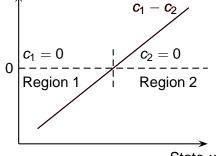


- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when c_i - c_j changes sign



9 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad Explicit MPC with output feedback using self-optimizing control

- The invariants can be used to track region changes
- By monitoring neighboring regions we switch regions when $c_i c_j$ changes sign



State x

•
$$y(t) = \frac{2}{s^2+3s+2}$$

- Input constraint: $|u(t)| \leq 2$
- Sample the system and get two-state discrete model
- Quadratic objective function

э

・ 戸 ト ・ ヨ ト ・ ヨ ト

•
$$y(t) = \frac{2}{s^2+3s+2}$$

• Input constraint: $|u(t)| \le 2$

- Sample the system and get two-state discrete model
- Quadratic objective function

Control

Alternative 1 $u_k = -Kx_k + observer$ Alternative 2 $u_k =$

 $-K_{y}[y_{k} y_{k-1}]^{\mathrm{T}}$

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

= 900

•
$$y(t) = \frac{2}{s^2+3s+2}$$

• Input constraint: $|u(t)| \le 2$

- Sample the system and get two-state discrete model
- Quadratic objective function

Control

Alternative 1 $u_k = -Kx_k + observer$ Alternative 2 $u_k =$

 $-K_{v}[y_{k} | y_{k-1}]^{T}$

•
$$y(t) = \frac{2}{s^2 + 3s + 2}$$

- Input constraint: $|u(t)| \le 2$
- Sample the system and get two-state discrete model
- Quadratic objective function

Control

Alternative 1 $u_k = -Kx_k + observer$

Alternative 2 $u_k = -K_y [y_k \ y_{k-1}]^T$

Alternative 2

•
$$y = (y_k, y_{k+1}, u_k, u_{k+1})$$

• Write $y = G^{y} \begin{bmatrix} u_{k} \\ u_{k+1} \end{bmatrix} + G_{d}^{y} x_{k}$

• Sensitivity $F = -(G^y J_{uu}^{-1} J_{ud} - G_d^y)$

Find H such that HF = 0

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

•
$$y(t) = \frac{2}{s^2 + 3s + 2}$$

- Input constraint: $|u(t)| \le 2$
- Sample the system and get two-state discrete model
- Quadratic objective function

Control

Alternative 1 $u_k = -Kx_k + observer$

Alternative 2 $u_k = -K_y [y_k \ y_{k-1}]^T$

Alternative 2

•
$$y = (y_k, y_{k+1}, u_k, u_{k+1})$$

• Write $y = G^{y} \begin{bmatrix} u_{k} \\ u_{k+1} \end{bmatrix} + G_{d}^{y} x_{k}$

• Sensitivity $F = -(G^y J_{uu}^{-1} J_{ud} - G_d^y)$

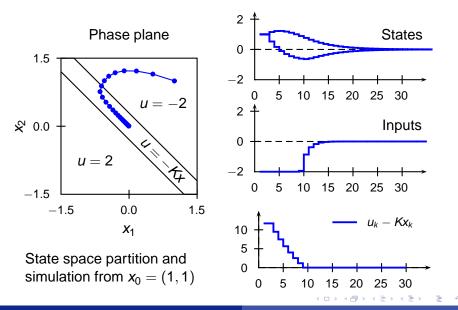
Find H such that HF = 0

₩

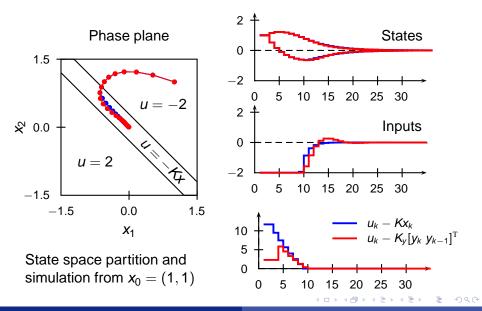
$$u_k = -(-16.7y_k + 13.7y_{k-1})$$

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

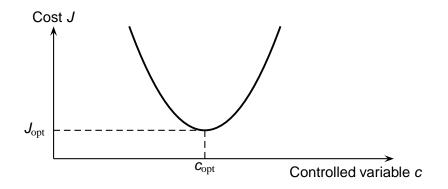
10 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control



11 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control



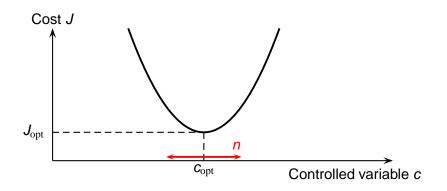
11 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestare Explicit MPC with output feedback using self-optimizing control



12 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control

문 ▶ ★ 문

< 一型

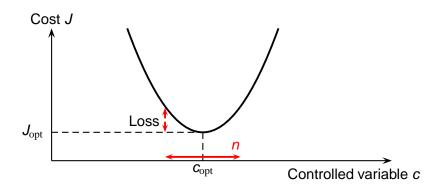


• Implementation error: $c = c_{opt} + n$.

12 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestar Explicit MPC with output feedback using self-optimizing control

∃ ► < ∃ ►</p>

< 17 ▶

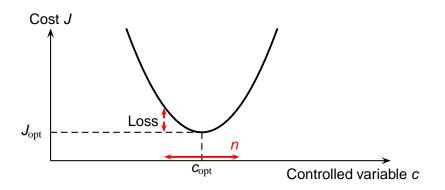


• Implementation error: $c = c_{opt} + n$.

12 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestar Explicit MPC with output feedback using self-optimizing control

∃ ► < ∃ ►</p>

< 17 ▶



• Implementation error: $c = c_{opt} + n$.

Want to find invariants c to both disturbances and noise

3 🕨 🖌 3

Loss =
$$J(u, d) - J_{opt}(d)$$
. Keep $c = Hy$ constant, where $y = G^y u + G^y_d d + n^y$

Theorem (Explicit formula for optimal H (Alstad et al, 2008))

Define
$$\tilde{F} = [FW_d \quad W_{n^y}]$$
. Then

$$H_{\text{opt}}^{\text{T}} = (\tilde{F}\tilde{F}^{\text{T}})^{-1}G^{y}\left((G^{y})^{\text{T}}(\tilde{F}\tilde{F}^{\text{T}})^{-1}G^{y}\right)^{-1}J_{uu}^{1/2}$$

Here *F* is the optimal sensitivity matrix $F = \frac{\partial y_{opt}}{\partial d}$

13 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control

< □ > < 同 > < 回 > < 回 > < 回 >

Process

$$\begin{aligned} x_{k+1} &= \begin{bmatrix} 0.73 & -0.09 \\ 0.17 & 0.99 \end{bmatrix} x_k + \begin{bmatrix} 0.060 \\ 0.006 \end{bmatrix} u_k + w_k \\ y_k &= \begin{bmatrix} 0 & 1.41 \end{bmatrix} x_k + v_k \end{aligned}$$

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control

< 回 > < 回 > < 回

Process

$$\begin{aligned} x_{k+1} &= \begin{bmatrix} 0.73 & -0.09 \\ 0.17 & 0.99 \end{bmatrix} x_k + \begin{bmatrix} 0.060 \\ 0.006 \end{bmatrix} u_k + w_k \\ y_k &= \begin{bmatrix} 0 & 1.41 \end{bmatrix} x_k + v_k \end{aligned}$$

Control

Alternative 1 $u_k = -Kx_k$ + Kalman filter

Alternative 2 $u_k = -K_y(y_k, y_{k-1}, y_{k-N})$ from "noisy nullspace method"

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Process

$$\begin{aligned} x_{k+1} &= \begin{bmatrix} 0.73 & -0.09 \\ 0.17 & 0.99 \end{bmatrix} x_k + \begin{bmatrix} 0.060 \\ 0.006 \end{bmatrix} u_k + w_k \\ y_k &= \begin{bmatrix} 0 & 1.41 \end{bmatrix} x_k + v_k \end{aligned}$$

Control

Alternative 1 $u_k = -Kx_k$ + Kalman filter

Alternative 2 $u_k = -K_y(y_k, y_{k-1}, y_{k-N})$ from "noisy nullspace method"

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogesta Explicit MPC with output feedback using self-optimizing control

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三 のQ@

Process

$$\begin{aligned} x_{k+1} &= \begin{bmatrix} 0.73 & -0.09 \\ 0.17 & 0.99 \end{bmatrix} x_k + \begin{bmatrix} 0.060 \\ 0.006 \end{bmatrix} u_k + w_k \\ y_k &= \begin{bmatrix} 0 & 1.41 \end{bmatrix} x_k + v_k \end{aligned}$$

Control

Alternative 1 $u_k = -Kx_k$ + Kalman filter

Alternative 2 $u_k = -K_y(y_k, y_{k-1}, y_{k-N})$ from "noisy nullspace method"

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestar Explicit MPC with output feedback using self-optimizing control

< □ > < 同 > < 回 > < 回 > < 回 >

э

Simulated costs
$$(J = \frac{1}{N} \sum_{i=1}^{N} x_i^T C^T Q^y C x_i + u_i^T R u_i)$$
:

Control equation

$$u_k = -[6.08 \ 6.07] x_k$$
 (perfect measurement)

 $u_k = -[6.08 \ 6.07] \hat{x}_k$ (+ Kalman filter)*

 $u_k = -(3.25y_k)$
 $u_k = -(1.54y_k + 0.5y_{k-1})$
 $u_k = -(0.78y_k + 0.44y_{k-1} - 0.03y_{k-2})$
 $u_k = -(0.39y_k + 0.28y_{k-1} + 0.12y_{k-2} - 0.09y_{k-3})$

*: Optimal for white noise signals

< 同 > < 回 > < 回 >

Simulated costs ($J = \frac{1}{N} \sum_{i=1}^{N} x_i^T C^T Q^y C x_i + u_i^T R u_i$):

Control equation	J_1
$u_k = -[6.08 \ 6.07] x_k$ (perfect measurement)	2.86
$u_k = -[6.08 \ 6.07] \hat{x}_k$ (+ Kalman filter)*	3.40
$u_k = -(3.25y_k)$	5.27
$u_k = -(1.54y_k + 0.5y_{k-1})$	3.88
$u_k = -(0.78y_k + 0.44y_{k-1} - 0.03y_{k-2})$	3.88
$u_k = -(0.39y_k + 0.28y_{k-1} + 0.12y_{k-2} - 0.09y_{k-3})$	4.11

 J_1 Process noise at all time instants

*: Optimal for white noise signals

・ 戸 ・ ・ ヨ ・ ・ ヨ ・

э

Simulated costs ($J = \frac{1}{N} \sum_{i=1}^{N} x_i^T C^T Q^y C x_i + u_i^T R u_i$):

Control equation	J_1	J_2
$u_k = -[6.08 \ 6.07] x_k$ (perfect measurement)	2.86	0.284
$u_k = -[6.08 \ 6.07] \hat{x}_k$ (+ Kalman filter)*	3.40	0.400
$u_k = -(3.25y_k)$	5.27	0.569
$u_k = -(1.54y_k + 0.5y_{k-1})$	3.88	0.401
$u_k = -(0.78y_k + 0.44y_{k-1} - 0.03y_{k-2})$	3.88	0.394
$u_k = -(0.39y_k + 0.28y_{k-1} + 0.12y_{k-2} - 0.09y_{k-3})$	4.11	0.416

 J_1 Process noise at all time instants

 J_2 Process noise at every 10th instant

*: Optimal for white noise signals

・ 同 ト ・ ヨ ト ・ ヨ ト

- Include measurement error in explicit MPC (with region switching)
- Explicit expressions for fixed low-order controllers, e.g. MIMO-PID

3 🕨 🖌 🖻

- MPC: Quadratic optimization problem
- Self-optimizing control: Exact results for QP's, both noise-free and with noisy measurements
- Link: c = u Kx
- New results:
 - c's for region switching
 - Output feedback $c = u K^y y$
 - Optimal invariants for noisy measurements

・ 同 ト ・ ヨ ト ・ ヨ ト