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Introduction

Implementation of optimal operation using off-line
computations [Narasimhan and Skogestad(2007)]

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.
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Introduction

Implementation of optimal operation using off-line
computations [Narasimhan and Skogestad(2007)]

Paradigm 1

On-line optimizing control where measurements are primarily
used to update the model. With arrival of new measurements,
the optimization problem is resolved for the inputs.

Example: Classical (implicit) MPC.

Paradigm 2

Pre-computed solutions based on off-line optimization.
Typically, the measurements are used to (indirectly) update the
inputs using feedback control schemes. Focus of this work.

Examples: Explicit MPC and self-optimizing control.
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Introduction Self optimizing control

What variables should we control?

Controller

Plant
Measurement
combination H

d y

ncm = c + n
cs

u c

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).
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Introduction Self optimizing control

What variables should we control?

Controller

Plant
Measurement
combination H

d y

ncm = c + n
cs

u c

Self-optimizing control

Choice of H such that acceptable operation is
achieved with constant setpoints (cs constant).

Optimal cs is invariant with respect to disturbances d

Insensitive to measurement errors n
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Introduction Self optimizing control

What variables should we control?

c1 = csp
1

Loss

Disturbanced0
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Introduction Self optimizing control

What variables should we control?

c1 = csp
1

Loss

Disturbanced0 d

Loss due to
constant setpoint
policy
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Introduction Self optimizing control

What variables should we control?

c1 = csp
1

c2 = csp
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Introduction Self optimizing control

What variables should we control?

c1 = csp
1

c2 = csp
2

Loss

Disturbanced0 d

Acceptable loss
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Introduction Self optimizing control

What variables should we control?

c1 = csp
1

c2 = csp
2

Loss

Disturbanced0c3 = Hy = csp
3
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Results from self-optimizing control Noise-free case

Nullspace method for QP problems

The nullspace method in [Alstad and Skogestad(2007)] is
restated for QP’s

Theorem (Nullspace method for QP)

Consider the quadratic problem

min
u

J =
[
u d

] [
Juu Jud

JT
ud Jdd

] [
u
d

]
(1)

If there exists ny ≥ nu + nd independent measurements,
then the optimal solution to (1) has the property that there
exists variable combinations c = Hy that are invariant to
the disturbances d.

H may be found from HF = 0, where F = ∂yopt

∂dT
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Results from self-optimizing control Introduction

Classical (implicit) MPC

For a given x(t), one solves the quadratic problem

min
U

J(U, x(t)) = xT
t+Ny

Pxt+Ny +

Ny−1∑
k=0

[
xT

t+k Qxt+k + uT
t+kRut+k

]

subject to

Output and input constraints.

Discrete model

xt = x(t)

xt+k+1 = Axt+k + But+k , k ≥ 0

yt+k = Cxt+k , k ≥ 0

ut+k = Kxt+k , Nu ≤ k ≤ Ny
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Results from self-optimizing control Introduction

Explicit MPC [Bemporad et al.(2002)]

The “classical” MPC problem can, by substitution, be
written as a quadratic problem:

min
U

J(U, x(t)) =
[
UT x(t)T

] [
H F
H Y

] [
U

x(t)

]

s.t. GU ≤ W + Ex(t)

The initial state x(t) is considered to be a parameter and a
parametric program is solved.

The solution of the parametric program gives regions in the
state space.

Given an algorithm for deciding the current region (i), one
implements a continuous piece-wise affine control law

u = F ix + gi .
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Results from self-optimizing control Introduction

Link between explicit MPC and
self-optimizing control

Let

d = x0 and y =

[
u
x

]

The optimal combination

c = Hy

can be written as the feedback law

c = u − (Kx + g)

and H (or K ) can be obtained from nullspace method
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Results from self-optimizing control Introduction

When to switch region?

The invariants can be used
to track region changes

By monitoring neighboring
regions we switch regions
when ci − cj changes sign

Region 1 Region 2

State x

0
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Region 1 Region 2

State x
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When to switch region?

The invariants can be used
to track region changes

By monitoring neighboring
regions we switch regions
when ci − cj changes sign

Region 1 Region 2

State x
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c1 = 0 c2 = 0

Region 1

c1 = 0

c1 − c2

10 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad A New Approach to Explicit MPC Using Self-Optimizing Control



Results from self-optimizing control Introduction

When to switch region?

The invariants can be used
to track region changes

By monitoring neighboring
regions we switch regions
when ci − cj changes sign

Region 1 Region 2

State x

0
c1 = 0 c2 = 0

c1 − c2c1 − c2
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Results from self-optimizing control Examples

Examples

We will now show 3 examples. These are based on the
explicit MPC paper by [Bemporad et al.(2002)].
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Results from self-optimizing control Examples

Examples

We will now show 3 examples. These are based on the
explicit MPC paper by [Bemporad et al.(2002)].
Problem formulation:

min
ut ,ut+1,··· ,ut+Nu−1

xT
t+Nu

Pxt+Nu +

Nu−1∑
k=0

xT
t+kQxt+k + uT

t+kRuy+k

s.t. xk = x(t)

xk+1 = Axk + Buk

input constraints

state constraints
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Examples

We will now show 3 examples. These are based on the
explicit MPC paper by [Bemporad et al.(2002)].
Problem formulation:

min
ut ,ut+1,··· ,ut+Nu−1

xT
t+Nu

Pxt+Nu +

Nu−1∑
k=0

xT
t+kQxt+k + uT

t+kRuy+k

s.t. xk = x(t)

xk+1 = Axk + Buk

input constraints

state constraints

Examples:
1 SISO system y = 1

s2+3s+2u subject to input constraint.
2 Same system with additional state constraint.
3 Double integrator y = 1

s2 u with input constraint.
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Results from self-optimizing control Examples

Example 1: Simple SISO system

SISO with input constraint.
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State space partition and
simulation from x0 = (1, 1).

0 5 10 15 20 25 30
−1

−0.5

0

0.5

1

1.5
States x(t)

0 5 10 15 20 25 30
−2

−1

0

1
Input u(t)

0 5 10 15 20 25 30
0

5

10

15
ck = uk − (Kxk)
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Results from self-optimizing control Examples

Example 2: Same system with state constraint

Additional constraint
xk+1,k+2 ≥ −0.5.
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Results from self-optimizing control Examples

Example 3: Double integrator y = 1
s2 u with Nu = 6

We merge all regions
were the first input is
the same.

−15 −10 −5 0 5 10 15
−4
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−2

−1

0
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2

3

4

x
1

x 2

Bemporad et al.: 57 regions (from 73)

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad A New Approach to Explicit MPC Using Self-Optimizing Control



Results from self-optimizing control Examples

Example 3: Double integrator y = 1
s2 u with Nu = 6

We merge all regions
were the first input is
the same.

−15 −10 −5 0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

1
2

3
4

56

7
8

9
10 11

u = 1

u = −1

11 regions

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad A New Approach to Explicit MPC Using Self-Optimizing Control



Results from self-optimizing control Examples

Example 3: Double integrator y = 1
s2 u with Nu = 6

We merge all regions
were the first input is
the same.

The resulting merged
regions were in this
case not convex, but,. . .

−15 −10 −5 0 5 10 15
−4

−3

−2

−1

0

1

2

3

4

x
1

x 2

1
2

3
4

56

7
8

9
10 11

u = 1

u = −1

11 regions

14 Henrik Manum, Sridharakumar Narasimhan, Sigurd Skogestad A New Approach to Explicit MPC Using Self-Optimizing Control



Results from self-optimizing control Examples

Example 3: Double integrator y = 1
s2 u with Nu = 6

We merge all regions
were the first input is
the same.

The resulting merged
regions were in this
case not convex, but,. . .

. . . taking directions into
account the “relevant”
boundaries form a
convex polyhedron.
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Results from self-optimizing control Examples

Summary of the examples

Examples 1,2

The optimal solution for each active set can be used both
for control and tracking the active region.
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Results from self-optimizing control Examples

Summary of the examples

Examples 1,2

The optimal solution for each active set can be used both
for control and tracking the active region.

Example 3: Double integrator

Problem: Not all merged regions were convex.

Fix: Used the direction of the process and observed that
the relevant boundaries make the regions convex.
Storage

Original partition: 73 regions
Bemporad et. al., 2002: need to store 57 regions.
Our approach: 11 regions/boundaries needs to be stored.
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Conclusions and further work

Extensions

Extensions
1 Include measurement error in explicit MPC.
2 Extend the results to output feedback (u = Ky).
3 Explicit expressions for fixed low-order controllers, e.g.,

MIMO-PID
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Conclusions and further work

Extensions

Extensions
1 Include measurement error in explicit MPC.
2 Extend the results to output feedback (u = Ky).
3 Explicit expressions for fixed low-order controllers, e.g.,

MIMO-PID

See IFAC World Congress, Seoul, July 2008
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Conclusions and further work

Conclusion

MPC: Quadratic optimization problem at each time sample

From link to self-optimizing control: Must exist invariants
c = Hy

Correspond to feedback law: u = Kx + g
Gives new insights

Simple feedback solution to MPC must exist (explicit MPC)
Region changes identified by tracking variables c from
neighboring regions
Low-order output feedback, etc.
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Conclusions and further work
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