D NTINU Innovation and Creativity

Optimal output selection for batch processes

Håkon Dahl-Olsen, Sridharakumar Narasimhan and Sigurd Skogestad

Outline

- Batch optimization
- Implementation schemes
- Output selection method
- Reactor case study

Batch optimization

- Minimum time to given specification
- Minimum energy to given specification
- Maximum product in fixed time

all subject to given constraints

Implementation

- Online optimization: outputs used to update model (MPC)
- Self-optimizing control: controlling "right" outputs give near optimal performance

Dynamic optimization $\min_{u(t),t_f} J(x(t_f))$ $\dot{x} = f(x, u) \quad y = h(x)$ $c(x,u) \leq 0$ $u(t) \in U[0,T]$ $x(t_f) \in X$

Pontryagin's principle

$$H = \lambda^{T} f(x, u) + \mu^{T} c(x, u)$$
$$H(x^{*}, u^{*}, \lambda^{*}) \leq H(x^{*}, u, \lambda^{*})$$
$$\dot{\lambda} = -H_{x}$$
$$\dot{x} = H_{\lambda}$$

Output selection

- Unconstrained degrees of freedom
- Look for outputs that give small loss L (deviation from optimality) when controlled at fixed reference, even under disturbances

$$H(t) = \lambda^{T} f(x, u)$$
$$L(t) = H(t) - H^{*}(t)$$

Maximum gain rule

$$L(t) = \underbrace{H_u \delta u}_{0} + \frac{1}{2} \delta u^T H_{uu} \delta u$$

Need to relate variations in inputs to variations in outputs

$$\delta y = \frac{\partial h}{\partial x^T} \frac{\partial x}{\partial u^T} \delta u = G \delta u$$

$$L(t) = \frac{1}{2} \delta y^{T} G^{-T} H_{uu} G^{-1} \delta y$$

ID NTNU
Innovation and Creativity

Maximum gain rule

• Assume the model is scaled such that $\delta y_{max} \approx I$

Select y's to minimize the following expression along the nominal trajectory

$$\min\left(\int_{t_0}^{t_f} \left\|G^{-T}H_{uu}G^{-1}\right\|_2^2 dt\right)^{1/2}$$

How to obtain G

- How do variations in inputs map to the states?
- Neighboring optimal control gives $\delta u(t) = K(t) \delta x(t)$
- We estimate G by $G \approx \frac{\partial h}{\partial x^T} K^+$

Example: Penicillin

- Fed-batch bioreactor: $S \rightarrow X \rightarrow P$
- Maximize penicillin concentration P
- The biomass concentration is constrained

Srinivasan, B., D. Bonvin, et al. (2002). "Dynamic optimization of batch processes II. Role of measurements in handling uncertainty." <u>Comp. chem. eng.</u> **27**: 27-44.

 $\stackrel{0_2}{\longrightarrow} \alpha X + \beta F$

Bioreactor

X =

Example

S cc P cc	Substrate	
P cc V		
V	Product oncentration	
	Volume	
u <		

Example

X < 3.7	Biomass concentration
S	Substrate concentration
Ρ	Product concentration
V	Volume
u < 1	Substrate feedrate

$$\dot{X} \stackrel{o}{=} \alpha X + \beta P$$

Bioreactor
$$\dot{X} = \mu(S)X - \frac{u}{V}X$$

$$\dot{S} = -\frac{\mu(S)X}{Y_X} - \frac{vX}{Y_P} + \frac{u}{V}(S_{in} - S)$$

$$\dot{P} = vX - \frac{u}{V}P$$

$$\dot{V} = u$$

- Transformation of input: $\xi = \sqrt{u}$
- Ηξξ is constant

Simulation results

y=S for X \leq 3.2 y=X for X > 3.2

Summary: Optimal output selection for batch processes

- Maximum gain rule extended to dynamics
- Variational gain from neighboring optimal control theory
- Method works well for a case study

