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Abstract

In many cases, economic optimal operation is the same as maximum plant throughput, which is the same as maximum flow through the
bottleneck(s). This insight may greatly simplify implementation. In this paper, we consider the case where the bottlenecks may move, with parallel
flows that give rise to multiple bottlenecks and with crossover flows as extra degrees of freedom. With the assumption that the flow through
the network is represented by a set of units with linear flow connections, the maximum throughput problem is then a linear programming (LP)
problem. We propose to implement maximum throughput by using a coordinator model predictive controller (MPC). Use of MPC to solve the LP
has the benefit of allowing for a coordinated dynamic implementation. The constraints for the coordinator MPC are the maximum flows through
the individual units. These may change with time and a key idea is that they can be obtained with almost no extra effort using the models in the
existing local MPCs. The coordinator MPC has been tested on a dynamic simulator for parts of the Kårstø gas plant and performs well for the
simulated challenges.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

Real-time optimization (RTO) offers a direct method of max-
imizing an economic objective function. Most RTO systems are
based on detailed non-linear steady-state models of the entire
plant, combined with data reconciliation to update key param-
eters, such as feed compositions and efficiency factors in units,
see, for example, Marlin and Hrymak (1996). Typically, the RTO
application reoptimizes and updates on an hourly basis the set
points for the lower-layer control system, which may consists of
set points of local MPCs based on simple linear dynamic models.
A steady-state RTO is not sufficient if there are frequent changes
in active constraints of large economic importance. For exam-
ple, this could be the case if the throughput bottleneck in a plant
moves frequently, which is the case for the application studied
in this paper. At least in theory, it is then more suitable to use
dynamic optimization with a non-linear model, which may be
realized using dynamic RTO (DRTO) or non-linear MPC with
an economic objective (Kadam et al., 2003; Tosukhowong, Lee,
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Lee, & Lu, 2004; Strand, 1991). However, a centralized dynamic
optimization of the entire plant is undesirable (Lu, 2003). An
alternative is to use local unit-based MPCs, but the resulting
steady-state target calculation may be far from optimal (Havlena
& Lu, 2005). Cheng, Forbes, and Yip (2004, 2006, 2007) have
suggested to approach this “coordination” problem by identify-
ing appropriate interactions for linking constraints to find the
steady-state targets for the local MPCs. Rawlings and Stewart
(2007) discuss a cooperative distributed MPC framework, where
the local MPC objective functions are modified to achieve sys-
tem wide control objectives. Ying and Joseph (1999) propose a
two-stage MPC complement that track changes in the optimum
caused by disturbances. The approach permits dynamic tracking
of the optimum which is not achievable with a steady-state RTO
used in conjunction with a single-stage MPC.

In this paper, we present a different and simpler solution that
achieves economic optimal operation without any of these com-
plexities. This solution applies to the common case where prices
and market conditions are such that economic optimal opera-
tion of the plant is the same as maximizing plant throughput.
The main objective is then to maximize the feed to the plant,
subject to achieving feasible operation (satisfying operational
constraints in all units). This insight may be used to implement
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optimal operation, without the need for dynamic optimization
based on a detailed model of the entire plant.

From linear network theory, the max-flow min-cut theorem
(Ford & Fulkerson, 1962) states that the maximum throughput in
a linear network is limited by the “bottleneck(s)” of the network
(Aske, Skogestad, & Strand, 2007). In order to maximize the
throughput, the flow at the bottlenecks should always be at their
maximum. In particular, if the actual flow at the bottleneck is
not at its maximum at any given time, then this gives a loss in
production that can never be recovered (sometimes referred to
as a “lost opportunity”).

The throughput manipulators (TPMs) are the degrees of free-
dom available for implementing maximum throughput. They
affect the flow through the entire plant (or at least in more than
one unit), and therefore cannot be used to control an individual
unit or objective. Ideally, in terms of maximizing plant produc-
tion and minimizing the back off, the TPM should be located at
the bottleneck (Aske et al., 2007). However, the bottleneck may
move depending on plant operating conditions (e.g. feed com-
position), and it is generally very difficult to change the TPM,
once a decision on its location has been made. The reason is that
the location of the TPM affects the degrees of freedom avail-
able for local control, and thus strongly affects the structure of
the local control systems and in particular the structure of the
inventory control system (Buckley, 1964; Price & Georgakis,
1993). The TPM will therefore generally be located away from
the bottleneck, for example, at the feed. For dynamic reasons, it
will then not be possible to achieve maximum flow through the
bottleneck at all times, and a loss in production is inevitable.

The use of a coordinator controller that uses the throughput
manipulators (uc = TPMs) to control the remaining local capac-
ity (yc = R = F l

max − F l) in the units as illustrated in Fig. 1.
In the simplest case with a fixed bottleneck and feed rate as
the TPM, the coordinator may be a single-loop PI-controller
with the feed rate as the manipulated variable (uc) and the bot-
tleneck flow as the controlled variable (yc), Skogestad (2004).
However, more generally the coordinator must be a multivari-
able controller. Note from Fig. 1 that the “coordinator” and the
“local” controllers for the individual units are actually on the
same level in the control hierarchy, like in decentralized control.
Nevertheless, the term coordinator is used because the TPMs
strongly affect all the units and because in general the coordina-
tor controller must be designed based on a flow network model
of the entire plant. An alternative to the decentralized structure

Fig. 1. The coordinator uses the throughput manipulators (uc = TPMs) to control
the remaining capacity (yc = R) in the units.

Fig. 2. Proposed control structure where the coordinator MPC receives infor-
mation from the local MPC about the remaining capacity (R) in the units.

is to combine all the local MPCs into a large combined MPC
application that include the throughput manipulators as degrees
of freedom.

Optimal operation corresponds to R = 0 in the bottleneck, but
if the maximum flow through the bottleneck is a hard constraint,
then to avoid infeasibility (R < 0) dynamically, we need to “back
off” from the optimal point

back off (b) = Rs = F l
max − F l

s (1)

More generally, the back off is the distance to the active con-
straint needed to avoid dynamic infeasibility in the presence of
disturbances, model errors, delay and other sources for imperfect
control (Govatsmark & Skogestad, 2005; Narraway & Perkins,
1993). The back off is a “safety factor” and should be obtained
based on information about the disturbances and the expected
control performance.

In this paper, we consider cases where the bottlenecks may
move and with parallel trains that give rise to multiple bot-
tlenecks and multiple throughput manipulators. This requires
multivariable control and the proposed coordinator MPC both
identifies the bottlenecks and implements the optimal policy. The
constraints for the coordinator MPC are non-negative remaining
capacities (R ≥ b ≥ 0) in all units. The values of R may change
with time and a key idea is that they can be obtained with almost
no extra effort using the existing local MPCs, as illustrated in
Fig. 2.

The paper is organized as follows. Economic optimal opera-
tion and the special case of maximum throughput is discussed
in Section 2. Section 3 describes the coordinator MPC in addi-
tion to the capacity calculations in the local MPCs. Section 4
describes a dynamic simulation case study for a gas plant. A
discussion follows in Section 5 before the paper is concluded in
Section 6.

2. Maximum throughput as a special case of optimal
operation

Mathematically, the optimum is found by minimizing the cost
J (i.e. maximize the profit (−J)), subject to satisfying given spec-
ifications and model equations (f = 0) and operational constraints
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(g ≤ 0). At steady-state:

min
u

J(x, u, d)

s.t. f (x, u, d) = 0

g(x, u, d) ≤ 0

(2)

Here, u are the degrees of freedom (or manipulated variables,
MVs), d the disturbances and x the (dependent) state variables.
The degrees of freedom are split into those used for local control
(ul) and the TPMs used for throughput coordinator (uc),

u =
[

ul

uc

]
(3)

A typical profit function is

(−J) =
∑

j

pPjPj −
∑

i

pFiFi −
∑

k

pQk
Qk (4)

where Pj are the product flows, Fi the feed flows, Qk the utility
duties (heating, cooling, power) and p denote the prices.

In many cases, and especially when the product prices are
high, optimal operation of the plant (maximize −J) is the same
as maximizing throughput. To understand this, let F denote the
overall throughput in the plant, and assume that all feed flows
are set in proportion to F,

Fi = kF,iF (5)

Then, under the assumption of constant efficiency in the units
(independent of throughput) and assuming that all intensive
(property) variables are constant, all extensive variables (flows
and heat duties) in the plant will scale with the throughput F,
e.g. Skogestad (1991). In particular, we have that

Pj = kP,jF ; Qk = kQ,kF (6)

where the gains kP,j and kQ,k and are constants. Note from (6)
that the gains may be obtained from nominal (denoted 0) mass
balance data:

kP,j = Pj0

F0
; kF,i = Fi0

F0
; kQ,k = Qk0

F0
(7)

Substituting (5) and (6) into (4) gives

(−J)=
⎛
⎝∑

j

pPjkP,j −
∑

i

pFikF,i −
∑

k

pQk
kQ,k

⎞
⎠ F=pF

(8)

where p is the operational profit per unit of feed F processed.
From the above derivation, p is a constant for the case with
constant efficiencies. We assume p > 0 such that we have a
meaningful case where the products are worth more than the
feedstocks and utilities. Then, from (8) it is clear that maximiz-
ing the profit (−J) is equivalent to maximizing the throughput
F. However, F cannot go to infinity, because the operational
constraints (g ≤ 0) related to achieving feasible operation (indi-
rectly) impose a maximum value for F.

In practice, the gains kP,j and kQ,k and are not constant,
because the efficiency of the plant changes. Usually, opera-
tion becomes less efficient and p decreases when F increases.
Nevertheless, as long as p remains positive, d(−J)/dF = p > 0 is
non-zero, and we have a constrained optimum with respect to
the throughput F. From (8), we see that p will remain positive
and optimal operation is the same as maximum throughput if
the feed is available and product prices pP,j are sufficiently high
compared to the prices of feeds and utilities.

3. Coordinator MPC for maximizing throughput

The overall feed rate (or more generally the throughput)
affects all units in the plant. For this reason, the throughput is
usually not used as a degree of freedom for control of any indi-
vidual unit, but is instead left as an “un-used” degree of freedom
to be set at the plant-wide level. Most commonly, the through-
put manipulators (uc) are set manually by the operator, but the
objective here is to coordinate them to achieve economic optimal
operation.

It is assumed that the local controllers (e.g. local MPCs)
are implemented on the individual units. These adjust the local
degrees of freedom ul such that the operation is feasible. How-
ever, local feasibility requires that the feed rate to the unit F l

k

is below its maximum capacity, F l
k,max, and one of the tasks of

the plant-wide coordinator is to make sure that this is satisfied.
F l

k,max may change depending on disturbances (e.g. feed compo-
sition) and needs to be updated continuously. One method is to
use the already existing models in the local MPCs, as discussed
in Section 3.2.

3.1. The coordinator MPC

The steady-state optimization problem (2) can be simpli-
fied when the optimal solution corresponds to maximizing plant
throughput. Consider the steady-state optimization problem

max
uc

(−J) s.t. (9)

F l = Guc (10)

R = F l
max − F l ≥ b ≥ 0 (11)

uc
min ≤ uc ≤ uc

max (12)

Here, Fl is a vector of local feeds to the units and R is a
vector of remaining capacities in the units. If the objective is to
maximize throughput with a single feed, then (−J) = F. More
generally, with different values of the feedstocks and products,
the profit function in (4) is used. G is a linear steady-state network
model from the throughput manipulators uc (independent feed
and crossover flows) to all the local flows Fl. In order to achieve
feasible flow through the network, it is necessary that R ≥ 0 in all
units. However, to guarantee dynamic feasibility, an additional
back off from the capacity constraint may be required, which is
represented by the vector b in (11). The main difference from
the original optimization problem (2) is that only uc (TPMs) are
considered as degrees of freedom for the optimization in (9)–(12)
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and that the original constraints for the units (f = 0, g ≤ 0) are
replaced by a linear flow network and flow constraints (R ≥ b).

It is assumed that the local controllers generate close-to
optimal values for the remaining degrees of freedom ul, while
satisfying the original equality (f = 0) and inequality constraints
(g ≤ 0). This implies that no coordination of the local controllers
is required, or more specifically that constant set points for
the local controllers give close to optimal operation. In other
words, it is assumed that we for the local units can identify
“self-optimizing” controlled variables Skogestad (2000). If this
is not possible then centralized optimization (RTO or maybe
even DRTO) is required.

With the linear profit function (−J) in (4), the optimization
problem in (9)–(12) is an LP problem. The optimal solution to an
LP problem is always at constraints. This means that the number
of active constraints in (11) and (12) must be equal to the number
of throughput manipulators, uc. Note that an active constraint in
(11) corresponds to having Rk = F l

max,k − F l
k = bk, that is, unit

k is a bottleneck. This agrees with the max-flow min-cut theorem
of linear network theory. However, to solve the LP problem, we
will not make use of the max-flow min-cut theorem.

The steady-state optimization problem in (9)–(12) can be
extended to the dynamic optimization problem:

min
uc

(J − Js)
2 + �ucTQu�uc s.t. (13)

F l = Gdynu
c (14)

R = F l
max − F l ≥ b ≥ 0 (15)

uc
min ≤ uc ≤ uc

max (16)

�uc
min ≤ �uc ≤ �uc

max (17)

Maximum throughput under the presence of disturbances is
dynamic in nature, and here, Gdyn is a linear dynamic model
from uc (manipulated variables, MVs) to the remaining capacity
in each unit, Rk. Obtaining the dynamic models may be time
consuming. However, it is possible to use simple mass balances
to calculate the steady-state gains of Gdyn, see (7).

The dynamic cost function (13) includes penalty on the MV
moves to ensure robustness and acceptable dynamic perfor-
mance. The constraints are: back off on capacity to each unit
(15), MV high and low limits (16) and MV rate of change limits
(17). MV rate of change is mainly a safeguard for errors and is
normally not used for tuning.

The term �ucTQu�uc makes the objective function
quadratic, whereas the objective function in the original prob-
lem (9) is linear. To obtain a quadratic objective function that fits
directly into the MPC software used here, we have used a com-
mon trick of introducing a quadratic term (J − Js)2. The profit
set point Js is a high and unreachable with a lower priority than
the capacity constraints. An alternative approach would be to
include a linear term in J in (13).

Standard MPC implementations perform at each time step
two calculations (Qin & Badgwell, 2003). First, the steady-state
optimization problem with all the constraints is solved to obtain
a feasible steady-state solution. Second, the dynamic problem is
solved using the feasible targets obtained from the steady-state

calculation. In our case, the steady-state part gives a feasible set
point for the profit (or total flow) that replaces Js in the sub-
sequent solution of the dynamic problem. The dynamic terms
involving �uc do not matter in the steady-state part, so the
steady-state solution is identical to the LP problem in (9)–(12).

It is assumed that the local controllers (including local MPCs)
are closed before obtaining the dynamic flow model Gdyn. To
ensure stability, it is then advisable that the coordinator operates
with a longer time horizon than the local MPCs.

3.2. Capacity calculations using local MPCs

An important parameter for the coordinator is the maximum
flow for the individual (local) units, F l

max. A key idea in the
present work is to obtain updated values using on-line informa-
tion (feedback) from the plant. Note that it is not critical that
the estimate of the maximum capacity is correct, except when
the unit is actually approaching its maximum capacity and the
corresponding capacity constraint R = F l

max − F l ≥ b becomes
active. The use of on-line information from the actual plant will
ensure that this is satisfied.

In simple cases, one may update the maximum capacity using
the distance (�constraint ≥ 0) to a critical constraint in the unit,

F l
max = F l + c�constraint

where c is a constant and Fl is the present flow through the unit.
For example, for a distillation column �pmax − �p could be
difference between the pressure drop corresponding to flooding
and the actual pressure drop.

In more complex cases, there may be more than one con-
straint that limits the operation of the unit and thus its maximum
capacity. MPC is often implemented on the local units to improve
dynamic performance and avoid complex logic. The maximum
feed for each unit k can then be easily estimated using the already
existing models and constraints in the local MPC applications.
The only exception may be that the model must be updated to
include the feed to the unit, F l

k, as an independent variable. The
maximum feed to the unit k is then obtained by solving the
additional steady-state problem:

F l
k,max = max

ul
k
,F l

k

F l
k (18)

subject to the linear model equations and constraints of the local
MPC, which is a LP problem. Here, ul

k is the vector of manipu-
lated variables in the local MPC, and the optimization is subject
to satisfying the linear constraints for the unit. To include past
MV moves and disturbances, the end predictions of the variables
should be used instead of the present values.

4. Kårstø gas processing case study

The Kårstø plant treats gas and condensate from central parts
of the Norwegian continental shelf. The products are dry gas,
which is exported through pipelines, and natural gas liquids
(NGL) and condensate, which are exported by ships. The Kårstø
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Fig. 3. The simulated parts of the Kårstø plant.

plant plays a key role in the pipeline structure in the Norwe-
gian Sea and therefore is maximum throughput usually the main
objective.

Also, from an isolated Kårstø point of view, the plant has rela-
tive low feed and energy costs and high product prices that favors
high throughputs. There are no recycles in the plant. Usually,
feed is available and can be manipulated within given limits.

The feed enters the plant from three different pipelines and
the feed composition may change frequently in all three lines.
Changes in feed compositions can move the main bottleneck
from one unit to another and affect the plant throughput. The
coordinator MPC approach has been tested with good results
using the Kårstø Whole Plant simulator. This is a dynamic sim-
ulator built in the software D-SPICE®.

4.1. The case

To demonstrate the applicability of the coordinator MPC, we
use a detailed simulator model of parts of the Kårstø plant. To
avoid the need for large computer resources to run the process
simulator, only parts of the whole plant are used in the case study,
see Fig. 3. The selected parts include two fractionation trains,
T100 and T300. Both trains have a deethanizer, depropanizer,
debutanizer and a butane splitter. In addition T300 has two sta-
bilizers in parallel. There are six throughput manipulators (uc)
as indicated by valves in Fig. 3: two main train feeds, two liquid
streams to the trains from the dew point control unit (DPCU),
a crossover from train T100 to T300, and a flow split for the
parallel stabilizers in train T300.

The local MPCs and the coordinator are implemented in
Statoils SEPTIC1 MPC software (Strand & Sagli, 2003). Data
exchange between the simulator and the MPC applications
is done by the built-in D-SPICE®OPC server. The detailed
dynamic simulator was used to obtain “experimental” step
response models (Gdyn) in the coordinator MPC. This approach
has been found to work well in practice (Strand & Sagli,
2003).

1 Statoil Estimation and Prediction Tool for Identification and Control.

4.2. Implementation of the local MPCs

The main control objective for each column is to control the
quality in the top and bottom streams, by manipulating boil-up
(V) and reflux flow (L). In addition, the column must be kept
under surveillance to avoid overloading, which is an important
issue when maximizing throughput. Column differential pres-
sure (�p) is used as an indicator of flooding (Kister, 1990). The
remaining feed capacity for each column (Rk) is calculated in
the local MPC.

The LV-configuration with a temperature loop is used for
regulatory control of the columns (Skogestad, 2007), and the
local MPCs are configured as follows:

• CV (set point + constraint): Impurity of heavy key component.
• CV (set point + constraint): Impurity of light key component.
• CV (constraint): Column differential pressure.
• MV: Reflux flow rate set point.
• MV: Tray temperature set point in lower section.
• DV: Column feed flow.

These MVs correspond to ul (local degrees of freedom), and
CVs are the same as yl. The feed rate is a disturbance variable
(DV) for the local MPC, and is used as a degree of freedom when
solving the extra LP problem to obtain the remaining capacity
(R) to be used by the coordinator. Some of the columns have
additional limitations that are included as CVs in the local MPC.
The product qualities are described as impurity of the key com-
ponent and a logarithmic transformation is used to linearize over
the operating region (Skogestad, 1997). The high limits on the
product qualities are given by the maximum levels of impurity
in the sales specifications and the differential pressure high limit
is placed just below the flooding point.

The control specification priorities for solving the steady-
state feasibility problem for the local MPC are as follows:

(1) High limit differential pressure.
(2) Impurity limits.
(3) Impurity set points.
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where (1) has the highest priority. The priority list is used in
the steady state part in the MPC solver and leads to relaxation
of the impurity set points (and in worst case limits) to avoid
exceeding the differential pressure high limit (Strand & Sagli,
2003). By quality relaxation the column can handle the given
feed rate without flooding the column. The low-priority quality
set points are not used when solving the extra steady-state LP
problem to obtain the remaining capacity R, because set point
deviations are acceptable if the alternative is feed reduction.

The local MPC applications are built with experimental step
response models as described in Aske, Strand, and Skogestad
(2005). The prediction horizon is 3–6 h, which is significantly
longer than the closed-loop response time. The sample time in
the local MPC is set to 1 min. From experience, this is sufficiently
fast for the distillation column applications and is the actual
sample time used in the plant today.

4.3. The design and implementation of the coordinator
MPC

The objective function for the coordinator is to maximize
the total plant feed, −J = F =

∑
Fi, which is the sum of the

train feeds and the flows from the DPCU (FEEDT300VWA +
21FC5288VWA +21FC5334VWA+21FR1005VWA). The CVs
and MVs for the coordinator MPC are:

• CV (high set point): Total feed flow F to the plant (PLANT
FEED).

• CVs (constraints): Remaining feed capacity Rk in columns, 10
in total (R-ET100, R-PT100, R-BT100, R-BS100, R-STAB1,
R-STAB2, R-ET300, R- PT300, R-BT300, R-BS300).

• CV (constraint): T100 deethanizer sump level controller out-
put (LC OUTLET).

• MV: Feed train 100 (21FR1005VWA).
• MV: Feed train 300 (FEEDT300VWA).
• MV: Feed from DPCU to train 100 (21FC5334VWA).
• MV: Feed from DPCU to train 300 (21FC5288VWA).
• MV: Crossover flow from T100 to T300 (24FC5074VWA).
• MV: Stabilizers feed split (27FC3208VWA).

These MVs correspond to uc (coordinator degrees of free-
dom). The deethanizer sump level controller output CV (gives
the feed to PT100) is used to avoid emptying or overfilling up
the sump level in ET100 when manipulating the crossover. The
total plant feed has a high unreachable set point with low pri-
ority. The remaining feed capacity low limits, and high and low
limits of the level controller output have high priority.

Note that each train has two feeds; one train feed and one
from the dew point control unit (DPCU). The two feeds have
different compositions, and this makes it possible for the coor-
dinator to adjust the feed composition, and thus adjust the load to
specific units. The two stabilizers are identical in the simulator,
so the stabilizer split (27FC3208VWA) will ensure equal load to
the stabilizers. The coordinator uses experimental step response
models, obtained in the same way as for the local MPCs. The
models were obtained at 80–95% of the maximum throughput,
which is typical for the current plant operation. The coordinator

execution rate is slower than in the local MPCs to ensure robust-
ness and is here chosen to be 3 min. The prediction horizon is
set to 20 h.

The coordinator attempts to maximize the total feed rate
while satisfying the capacity constraints for the units. Since the
capacity constraints are “hard”, it is necessary to introduce at
steady-state a back off b to ensure R ≥ 0 also dynamically. Tun-
ing of the coordinator MPC is a trade-off between robustness
and MV (feed) variation on the one side and keeping the flows
through the bottlenecks close their maximum on the other side.
The required back off b needs to be obtained after observing
over some time the performance of coordinator MPC. In the
case study, the value of b is about 1–2% of the feed to the unit.

4.4. Results from the simulator case study

The coordinator MPC performance is illustrated with three
different cases:

• Take the plant from unconstrained operation (with given feed
rate) to maximum throughput (at t = 0 min).

• Change in feed composition (at t = 360 min).
• Change in a CV limit in a local MPC (at t = 600 min).

All three cases are common events at the Kårstø plant. Feed
composition changes are the most frequent ones. The coordina-
tor should also be able to handle operator changes in the local
MPCs as illustrated by changing a local CV limit.

The most important CVs in the coordinator MPC are dis-
played in Fig. 4 and the corresponding coordinator MVs are
shown in Fig. 5. CVs far from their constraints are omitted. The
vertical lines in the Figures indicate the time where disturbances
are introduced (Cases 2 and 3). The back off from the capacity
constraints is indicated by dashed horizontal lines in Fig. 4. Fig. 6
shows the response of a local MPC application (BS100).

4.4.1. Case 1: Take the plant to maximum throughput
Initially, the plant is not operating at maximum throughput,

and Fig. 5 shows that all four feed rates are ramped up over the
first hour. The crossover (24FC5074VWA in Fig. 5) is reduced to
unload train 300 where BS300 is close to its capacity limit even
initially (the plant is not steady state at t = 0 min). From Fig. 4,
ET100 and the T300 stabilizers (Stab1 and Stab2) impose a bot-
tleneck upstream of the crossover, whereas BS300 is a bottleneck
downstream the crossover, at least for some period. The remain-
ing capacity in BS300 violates its lower limit of b = 1.6 t/h, and
is actually just below zero for some time. Hence, the back off
b is not sufficiently large to keep the remaining capacity just
above zero in this case. From Fig. 6, we see that the local MPC
application for BS100 relaxes the quality set points because the
column reaches the differential pressure high limit.

4.4.2. Case 2: Change in feed composition
A feed composition step change is introduced to the train

100 feed (sum of 21FR1005VWA and 21FC5335VWA). The
composition change is given in Table 1 and occurs at time
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Fig. 4. The most important CVs in the coordinator MPC (solid) with CV limits (dotted). Vertical lines indicate new case.

t = 360 min, at the first vertical line in Figs. 4–6. The reduc-
tion in ethane content leads to an increase in the remaining feed
capacity in ET100, which is a bottleneck at that time, and the
coordinator can increase the train feed. However, the increase
in iso-butane content reduces the remaining feed capacity in the
further downstream butane splitter (BS100), which becomes a
new bottleneck. The coordinator increases the crossover to make
use of some remaining capacity in train 300.

Table 1
The feed composition change in the T100 feed at t = 360 min

Component Nominal (mol%) Points change (%)

Ethane 37.3 −1.1
Propane 35.4 0.71
iso-Butane 5.64 5.6
n-Butane 11.3 −0.34
iso-Pentane 1.79 0.09
n-Pentane 1.79 0.10

4.4.3. Case 3: Change in a CV limit in a local MPC
The bottom quality high limit in BS100 is reduced at a time

where BS100 is already operating at its capacity limit, as can
be seen at t = 600 min in Fig. 6. This leads to a reduction in the
remaining feed capacity in BS100 of about 2 t/h. The coordinator
MPC responds by increasing the crossover flow from T100 to
T300 in addition to T100 feed reduction. The two butane splitters
(BS100 and BS300) are now the bottlenecks together with the
stabilizers. As expected, the overall effect of the stricter quality
limit is reduction in the total plant feed. The reduction takes a
long time, however, because the bottleneck in the butane splitters
is quite far from the plant feeds.

5. Discussion

The main assumption behind the proposed coordinator MPC
(see (13)–(17)), is that optimal operation corresponds to maxi-
mum throughput. This will always be the case if the flow network
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Fig. 5. MVs in the coordinator MPC.

(Gdyn) is linear because we then have a LP problem. However,
as discussed in Section 2, even a non-linear network will have
maximum throughput as the optimal solution provided the prod-
uct prices are sufficiently high. Thus, the use of a linear flow
network model (Gdyn) in the coordinator MPC is not a critical
assumption. The coordinator identifies the maximum through-
put solution based on feedback about the remaining capacity in
the individual units, and the main assumption for the network
model is that the gains (from feed rates to remaining capacities)
have the right sign. Nevertheless, a good network model, both
static and dynamic, is desired because it improves the dynamic
performance of the coordinator MPC.

In this application, the remaining capacity is obtained for
individual units. However, in some cases, for example, reactor-
recycle systems, it may be better to consider system bottlenecks
caused by the combination of several units (Aske et al., 2007).

By using a decoupled strategy based on the remaining feed
capacity in each unit, the coordinator MPC exploits the already
existing models in the local MPCs. This leads to a much smaller

modelling effort compared to alternative approaches, like RTO
based on a detailed non-linear model of the entire plant. The
computation time in the coordinator MPC is small, and facili-
tates fast corrections of disturbances, model errors and transient
dynamics. The coordinator MPC effectively solves the DRTO
problem with acceptable accuracy and execution frequency.

An alternative coordinator MPC strategy would be to com-
bine all the local MPCs into one large combined MPC
application including the throughput manipulators. However, for
a complete plant the application will be over-complex leading
to challenging modelling and maintenance. The improvement
by using a combined approach compared to our simple coordi-
nator MPC is expected to be minor since the set points to the
MPC are not coordinated. Set point coordination would require
a non-linear model for the entire plant, for example, RTO.

A back off from the maximum throughput in the units is
necessary due to unmeasured disturbances and long process
response times. The back off should be selected according
to the control performance and acceptable constraint viola-
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Fig. 6. CVs, MVs and DV in BS100 MPC. Horizontal lines are set points (dashed) and limits (dotted).

tions. In general, the back off can be reduced by improving
the dynamic network model and including more plant infor-
mation to allow for feed-forward control. For example, feed
composition changes could be included in the coordinator MPC
to improve performance. Due to the lack of fast and explicit
feed composition measurements in the plant, feed composition
changes are treated as unmeasured disturbances in the simu-
lations in the current concept. However, the concept can be
extended by using intermediate flow measurements as indicator
for feed composition changes. Therefore, the use of alterna-
tive model structures that will simplify and propagate model
corrections from intermediate flow measurements should be
evaluated.

The most effective way of reducing the back off is to introduce
throughput manipulators that are located closer to the bottle-
necks. This reduces the dynamic response time and gives tighter
control of the flow through the bottleneck. In the case study,
the crossover flow introduces a throughput manipulator in the
middle of the plant, which improves the throughput control of
the units downstream the crossover. It is also possible to include

additional dynamic throughput manipulators that make use of
the dynamic buffer capacity in the various units and intermediate
tanks in the network.

The coordinator requires that the local MPC are well tuned
and work well. If the local MPC is not well tuned, a larger back
off is needed to avoid constraint violation in the coordinator
MPC. In the case study, the BS300 MPC should be retuned to
give less oscillations at high throughputs.

6. Conclusion

In many cases, optimal operation is the same as maximum
throughput. In terms of realizing maximum throughput there
are two issues, first identifying bottleneck(s) and second, imple-
menting maximum flow at the bottleneck(s). The first issue is
solved by using the models and constraints from the local unit
MPC applications to obtain an estimate of the remaining feed
capacity of each unit. The second issue is solved using a stan-
dard MPC framework with a simple linear flow network model.
The overall solution is a coordinator MPC that manipulates on
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plant feeds and crossovers to maximize throughput. The coor-
dinator MPC has been tested on a dynamic simulator for parts
of the Kårstø gas plant, and it performs well for the simulated
challenges.
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