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Abstract: In this paper, we present a method for system stabilisation through
independent designs of the decentralised controller. The proposed method extends
the practical applicability of the conventional µ interaction measure (µ-IM) to
unstable systems. The decentralised controller is designed based on a block
diagonal approximation that is different from the block diagonal elements, but
has the same number of unstable poles as the system. By expressing the µ-IM in
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1 Introduction

Despite the performance advantages of full multivariable controller, decentralised control
is almost the exclusive choice for control of large-scale systems. For power systems,
decentralised control is necessitated due to physical distances between different stations
and the large cost of establishing a communication network. In process industries, the use
of decentralised controllers is motivated by the ease of tuning and design. Decentralised
control is also the preferred choice by nature, for example, the secretion of different enzymes
and hormones in the human body is controlled by different sections of the brain.

Over the years, three different approaches have evolved for decentralised
controller design:

1 Simultaneous design using parametric search methods: the decentralised controller
is chosen to have a fixed structure (e.g. PID controller) with unknown parameters.
The optimal value of these parameters is found by minimising the appropriate
norm of the closed loop system. Though useful, this approach results in optimisation
problems that are not usually convex and can be highly complicated even for simple
systems (Bao et al., 1999).

2 Sequential design: the controllers are designed sequentially using a lexicographical
ordering of the individual controllers. The lowest level controller is designed first
and the loop is closed. The next controller is designed based on the partially closed
loop system. The resulting performance strongly depends on the ordering of the
loops and often a trial and error approach is required to obtain acceptable
performance (Hovd and Skogestad, 1994; Mayne, 1973).

3 Independent design: the individual controllers are designed independently of each
other based on a block diagonal approximation that is usually taken as the block
diagonal elements of the system. Then, the decentralised controller design problem
reduces to design a number of small dimensional full multivariable controllers.
When the interactions are small, such a controller also stabilises the closed loop
system with minimal loss of performance in comparison to the design basis (Hovd
and Skogestad, 1993; Skogestad and Morari, 1989). This approach always results in
suboptimal performance because the tuning of other controllers is neglected.
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In this paper, we focus on the independent design approach. Although suboptimal, the
controller design is much simpler as compared to other techniques.

Grosdidier and Morari (1986) proposed the use of µ-Interaction Measure (µ-IM) to
assess the feasibility of system stabilisation through independent designs of individual
loops. This approach yields sufficient conditions to ensure that the decentralised controller
that stabilises the block diagonal part of the system also stabilises the system itself.
The problem of decentralised controller synthesis through independent designs has also
been studied by Limbeer (1982) and Ohta et al. (1986), who used the concepts of generalised
block diagonal dominance and quasi-block diagonal dominance, respectively. The use of
µ-IM is less conservative than these approaches because the controller structure is taken into
account. A connection between these methods based on dominance and µ-IM is established
by Kariwala et al. (2003a,b).

The conventional µ-IM requires that the system and its block diagonal part have the same
Right Half Plane (RHP) poles. Grosdidier and Morari (1986) pointed out that this condition
is not satisfied by most of the systems encountered in practice, limiting the applicability
of µ-IM to open loop stable systems. Samyudia et al. (1995) have criticised the µ-IM for
this limitation and have instead proposed a method based on ν-gap metric (Vinnicombe,
1999). In this paper, we present a modified µ-IM that easily handles unstable systems.
The decentralised controller is designed based on a block diagonal approximation that is
different from the block diagonal elements, but has the same number of unstable poles
as the system.

Clearly, the number of block diagonal systems with the required number of unstable
poles is infinite and the success of the modified µ-IM approach strongly depends on the
choice of an appropriate approximation. We express the µ-IM in terms of the closed
loop transfer matrix between disturbances and system input (or controller output). This
alternate representation shows that the block diagonal approximation can be reasonably
selected by minimising the scaled L∞ distance between the system and the approximation.
The problem of finding a structured approximation of a full multivariate system has
earlier been considered by Li and Zhou (2002), but no numerical methods for solving
the approximation problem are provided. In this paper, we present a numerical approach,
where the approximation problem is first solved at a set of chosen frequencies followed by
a parametric identification method.

Similar to the conventional µ-IM method, the stabilising decentralised controller can
be synthesised using a loop shaping approach based on the block diagonal approximation.
An advantage of alternate representation of µ-IM used here is that controller design can
be much simplified using the results on input performance limitations (Glover, 1986;
Kariwala et al., 2005). Although the focus of this paper is on finding stabilising decentralised
controllers, we also show that the stabilising controller inherently minimises an upper bound
on the input requirement for stabilisation.

The organisation of the remaining discussion in this paper is as follows: the available
results of µ-IM are reviewed and their limitation is pointed out in § 2; the alternate
representation of µ-IM is presented and upper bounds on closed loop input performance
are derived in § 3; in § 4, we consider the problem of selecting the optimal block
diagonal approximation; the simplified controller design method is presented in § 5; in
§ 6, a numerical example is presented to demonstrate the usefulness of proposed approach
followed by conclusions in § 7.

Notation: before proceeding with the main discussion, we standardise the notation.
We represent matrices by boldface uppercase letters and vectors by boldface lowercase
letters. Given a matrix A ∈ C

m×n, A∗ is its conjugate transpose. The maximum singular
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value is represented as σ̄ (A) and the Euclidian condition number as κ(A). The symbol �
denotes partial ordering, where A � B implies that A − B is positive semi-definite. Let the
set � ∈ C

n×m be defined as

� = {diag(�i) : �i ∈ C
ni×mi , σ̄ (�) ≤ 1}

The structured singular value of A ∈ C
m×n is given as (Doyle et al., 1982),

µ�(A) = 1

min{σ̄ (�̃) : �̃ ∈ �, det(I − A�̃) = 0}
unless no �̃ ∈ � makes (I − A�̃) singular, in which case µ�(A) = 0. Let DL,

DR be set of matrices that commute with all elements of � or DL�̃ = �̃DR for all
�̃ ∈ �, DL ∈ DL, DR ∈ DR. Then,

µ�(A) ≤ inf
DL∈DL,DR∈DR

σ̄ (DLAD−1
R ) (1)

In this paper, we denote the upper bound given by (1) as µ̄�(.).
The set of all rational stable systems is denoted as RH∞. Let G(s) = G1(s) + G2(s)

such that G1(s) ∈ RH⊥∞ and G2(s) ∈ RH∞. Then G1(s) is the unstable projection of G(s)

represented as U(G(s)), where U(G(s)) ∈ RH⊥∞. The H∞ or L∞ norm of the transfer
matrix G(s) is defined as (Zhou and Doyle, 1998)

‖G(s)‖∞ = sup
Re(s)>0

σ̄ (G(s)) = sup
ω∈R

σ̄ (G(jω))

We represent the mininum Hankel singular value of G(s) ∈ RH∞ as σH (G(s)) (Glover,
1984; Zhou and Doyle, 1998).

2 µ-Interaction measure

In this section, we briefly review the available results on µ-IM (Grosdidier and Morari,
1986), point to their limitation and suggest a modification to overcome the same. Throughout
this paper, we assume that the system does not contain any decentralised fixed modes
(Wang and Davison, 1973). The absence of decentralised fixed modes is both necessary and
sufficient for existence of a decentralised stabilising controller but only necessary, when
individual loops of the decentralised controller are designed independently of each other.

With reference to Figure 1, let the system G(s) be partitioned as G(s) = Gbd(s)+GI(s)

such that

• Gbd(s) contains the block-diagonal elements of G(s)

• Gbd(s) and G(s) have the same number of RHP poles.

Define the transfer matrices E(s) and Tbd(s) as,

Tbd(s) = GbdKbd(s) (I + GbdKbd(s))
−1 (2)

E(s) = (G(s) − Gbd(s)) Gbd(s)
−1 (3)

where Kbd(s) is the block diagonal controller. Tbd(s) can be interpreted as the
complementary sensitivity function, if GI(s) were zero and E(s) as the multiplicative
uncertainty in Gbd(s). Let Kbd(s) be designed such that Tbd(s) is stable. The central question
remains: Does Kbd(s) also stabilise G(s)? This issue has been addressed by Grosdidier and
Morari (1986), who proposed the use of µ-IM for this purpose.
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Figure 1 Partitioning of G(s) for µ-IM
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Lemma 1: Assume that G(s) and Gbd(s) have same number of RHP poles and Tbd(s) is
stable. Then T (s) = GKbd(s) (I + GKbd(s))

−1 is stable if and only if (iff) the following
conditions hold (Grosdidier and Morari, 1986)

det(I + ETbd(s)) �= 0 (4)

N(0, det(I + ETbd(s))) = 0 (5)

where N(α, .) denotes the winding number (Vinnicombe, 1999) or the number of clockwise
encirclements of the point (α, 0) by the image of Nyquist D contour.

Lemma 1 was originally proven by Grosdidier and Morari (1986), except the requirement
that (4) must hold. This is a minor technical requirement to ensure that the image of
det(I + TbdE(s)) does not pass through the origin of the complex plane. Lemma 1 forms
the basis for a more important result, as presented next.

Theorem 1: Let G(s) and Gbd(s) have same number of unstable poles. If Kbd(s) stabilises
Gbd(s), then Kbd(s) also stabilises G(s), if

σ̄ (Tbd(jω)) < µ−1
� (E(jω)) ∀ω ∈ R (6)

where � has the same block structure as Gbd(s) and, Tbd(s) and E(s) are defined by
(2) and (3), respectively.

Proof: The sufficiency of (6) for closed loop stability is proven by contradiction. Assume
that (6) is satisfied, but N(0, det(I + ETbd(s))) > 0. Thus the image of det(I + ETbd(s))

intersects the negative real axis of complex plane at a certain frequency, which we denote
as ωo. Now, let us consider the variation of det(I + βETbd(jωo)) with the scalar β.
When β = 0, det(I + βETbd(jωo)) = det(I) > 0. On the other hand, when β = 1,
det(I+βETbd(jωo)) < 0 due to intersection with negative real axis. Then due to continuity
of the determinant function, there exists a β, |β| < 1 such that

det(I + βETbd(jωo)) = 0

Similarly, let there exists a frequency ω1 such that

det(I + ETbd(jω1)) = 0

Combining these two conditions, we notice that T(s) is unstable iff there exists a β, |β| ≤ 1
such that det(I + βETbd(jω)) = 0 for some ω ∈ R. It follows from the definition of the
structured singular value that the smallest βTbd(jω) that destabilises E(jω) is given as
σ̄−1(βTbd(jω)). When (6) holds, a β with |β| < 1 such that det(I + βETbd(jω)) = 0 for
some ω ∈ R does not exist and the closed loop system is stable. �

Theorem 1 was proven by Grosdidier and Morari (1986) under the requirement that the
unstable poles of G(s) and Gbd(s) be identical. It is clear from Lemma 1 and the proof of
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Theorem 1 that the number of unstable poles of G(s) and Gbd(s) being equal suffices. In
either case, design of Kbd(s) solely based on Gbd(s) is equivalent to designing individual
loops or control susbsystems independently. The Equation (6) is known as the µ-IM. This
powerful result allows the designer to impose restrictions on individual controllers, but still
design the decentralised controller solely based on Gbd(s) such that closed loop stability is
ensured.

As pointed by Grosdidier and Morari (1986) that in practice, G(s) and Gbd(s) as defined
above has same number of RHP poles only for open loop stable systems limiting the
applicability of µ-IM. It is noted that this limitation only arises as Gbd(s) is chosen as
the block diagonal elements of G(s) and is easily overcome by relaxing this requirement.
The decentralised controller can be designed based on Gbd(s) that is different from the block
diagonal elements but has the same number of RHP poles as G(s). This point is further
illustrated using the following example.

Example 1: Consider the following system

G(s) = 1

(s − 1)(s − 2)

[
(s + 0.5) 0.5
(9s − 3) (s + 1)

]
(7)

Since all the minors of order 1 have (s − 1)(s − 2) as the denominator and

det(G(s)) = (s + 0.5)(s + 1) − 0.5(9s − 3)

(s − 1)2(s − 2)2

= s2 − 3s + 2

(s − 1)2(s − 2)2
= 1

(s − 1)(s − 2)

the system (7) has two unstable poles at 1 and 2 (MacFarlane and Karcanias, 1976;
Skogestad and Postlethwaite, 2005). Let Gbd(s) be chosen as the diagonal elements of
G(s). In this case,

det(Gbd(s)) = (s + 0.5)(s + 1)

(s − 1)2(s − 2)2

Due to absence of pole-zero cancellation, Gbd(s) has poles at the same locations as G(s),
but repeated twice and the assumption of µ−IM that G(s) and Gbd(s) have same number
of unstable poles, is violated. Consider that Gbd(s) is chosen as,

Gbd(s) =
[

1
(s−α1)

f1(s) 0
0 1

(s−α2)
f2(s)

]

where α1, α2 > 0 and f1(s), f2(s) are arbitrary stable transfer matrices. With this choice,
the assumption that Gbd(s) and G(s) have the same number of unstable poles is easily
satisfied. Note that for an arbitrary choice of α1, α2 > 0, the diagonal blocks of GI(s) are
not necessarily zero. A similar approach can be used for partitioning any arbitrary system.

Remark 1: The approach for choosing Gbd, as illustrated above, still holds when some of
the RHP poles of the system do not appear in any of its block diagonal elements. It is pointed
out, however, that in this case, it may be very difficult to design a block diagonal controller
Kbd to satisfy the µ-IM condition, as the corresponding diagonal blocks will have large
element-wise uncertainties associated with them (up to 100%, if the diagonal block is 0).

Though the generalisation used in choosing Gbd(s) extends the practical applicability of
µ-IM to unstable systems, the generalisation introduces an additional degree of freedom.
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Clearly, whether the µ-IM condition (6) is satisfied depends on the choice of Gbd(s), which
is dealt with in subsequent sections.

3 Alternate representation of µ-IM

For a given Gbd(s), a loop shaping approach can be used to find Kbd(s) for closed loop
stability. In the present case, Gbd(s) can also be treated as a free parameter with the
requirement of having the same number of unstable poles as G(s).

The task of jointly finding the pair (Gbd(s), Kbd(s)) such that the closed loop system is
stable, is very difficult. We note in (6), both σ̄ (Tbd(jω)) andµ�(E(jω))depend on Gbd(jω),
but E(jω) is independent of the controller. Then, a convenient (and not optimal) approach
is to find Gbd(s) such that µ�(E(jω)) is minimised and then design the decentralised
controlled based on it to satisfy the µ-IM condition; however, E(s) is not an affine function of
Gbd(s). We next show that this difficulty can be overcome by representing µ-IM alternately
in terms of transfer matrix between the disturbances and the inputs.

Proposition 1: Let G(s) be partitioned as G(s) = Gbd(s) + GI (s) such that Gbd(s) and
G(s) have the same number of RHP poles. Define Sbd(s) = (I + GbdKbd(s))

−1. Then
Kbd(s) stabilising Gbd(s) also stabilises G(s) if

σ̄ (KbdSbd(jω)) < µ−1
� (GI (jω)) ∀ω ∈ R (8)

where � has the same structure as Gbd(s).

Proof: Note that

det(I + ETbd(s)) = det(I + GI(s)KbdSbd(s))

Now the sufficiency of (8) is shown by using Lemma 1 and following the proof of
Theorem 1. �

Since the RHS of (8) is affine in Gbd(s), the block diagonal approximation can be
suboptimally selected by minimising µ�(GI(jω). This approach is suboptimal as the LHS
of (8) also depends on Gbd(s). For a particular choice of Gbd(s) that optimally minimises
µ�(GI(jω)), there may not exist any controller satisfying (8) and vice-versa. This issue is
further discussed later in this paper.

Remark 2: Compared to the necessary and sufficient conditions provided by Lemma 1, the
conditions provided by Theorem 1 and Proposition 1 are sufficient only. It is possible that
there exists a controller Kbd(s) that violates (6) or (8), but renders a stable closed loop
system, which shows the conservatism of µ-IM. In this case, however, there exists some
other controller K̄bd(s) that also violates (8) with σ̄ (K̄bd(jω)(I + GbdK̄bd(jω))−1) =
σ̄ (KbdSbd(jω)) for some ω ∈ R and K̄bd(s)(I + GbdK̄bd(s))

−1 is unstable. Thus, the
strength of µ-IM is that when (6) or (8) hold, any decentralised controller that stabilises
Gbd(s) also stabilises G(s).

Remark 3: We note that in practice, only the upper and lower bounds on µ are computable.
Hence, to assess the feasibility of independent designs, one needs to verify

σ̄ (KbdSbd(jω)) < µ̄ −1
� (GI (jω)) ∀ω (9)

where µ̄ represents an upper bound on µ calculated by the D-scaling method with the
left and right hand sides scaling matrices being DL(ω) ∈ DL, DR(ω) ∈ DR , respectively.
Here, the sets DL and DR are given as
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DL = {diag(di · Imi
), di ∈ R}

DR = {diag(dj · Imj
), dj ∈ R} (10)

where the dimensions of individual blocks of Gbd(s) is mi × mj .
Proposition 1 provides a sufficient condition to assess whether Kbd(s) designed for

Gbd(s), can stabilise the closed loop system; however, it provides no information regarding
the closed loop performance. Grosdidier and Morari (1986) pointed out, satisfying µ-IM
condition guarantees closed loop stability, but the performance can be arbitrarily poor.
We gain some insight into this issue by deriving an upper bound on the closed loop input
performance, when the µ-IM condition (8) is satisfied.

Proposition 2: Assume that G(s) and Gbd(s) have the same number of RHP poles and
(9) holds. Then,

σ̄ (KbdS(jω)) ≤ κ(DL(ω))

σ̄−1 (KbdSbd(jω)) − µ̄�(GI (jω))
∀ω ∈ R (11)

where � has the same structure as Gbd(s) and DL(ω) ∈ DL, DR(ω) ∈ DR are chosen to
minimise σ̄

(
DL(ω)GI (jω)D−1

R (ω)
)
.

Proof: Using G(s) = Gbd(s) + GI(s),

S−1K−1
bd (s) = (I + GKbd(s))K−1

bd (s)

= K−1
bd (s) + Gbd(s) + GI(s) (12)

= (I + GbdKbd(s))K−1
bd (s) + GI(s)

= S−1
bd K−1

bd (s) + GI(s)

Let DL(ω) ∈ DL and DR(ω) ∈ DR, where DL and DR are defined by (10). Then, using
(13) and singular value inequalities (Horn and Johnson, 1991; Skogestad and Postlethwaite,
2005),

σ
(
DL(ω)S−1K−1

bd (jω)D−1
R (ω)

) ≥ σ
(
DL(ω)S−1

bd K−1
bd (jω)D−1

R (ω)
)

− σ̄
(
DL(ω)GI(jω)D−1

R (ω)
)

Noting that the above expression holds for all DL(ω) ∈ DL, DR(ω) ∈ DR, we
select these matrices to minimise σ̄

(
DL(ω)GI(jω)D−1

R (ω)
)
. Since S−1

bd K−1
bd (jω) =

DL(ω)S−1
bd K−1

bd (jω)D−1
R (ω),

σ
(
DL(ω)S−1K−1

bd (jω)D−1
R (ω)

) ≥ σ
(
S−1

bd K−1
bd (jω)

)− µ̄�(GI(jω)) (13)

For any ω ∈ R, using (13),

σ̄ (DL(ω))σ̄ (D−1
R (ω))σ

(
S−1K−1

bd (jω)
) ≥ σ

(
S−1

bd K−1
bd (jω)

)− µ̄�(GI(jω)) (14)

Since σ̄ (D−1
R (ω)) = σ̄ (D−1

L (ω)) by construction, σ̄ (DL(ω))σ̄ (D−1
R (ω)) = κ(DL(ω)).

With this choice,

κ(DL(ω)) σ
(
S−1K−1

bd (jω)
) ≥ σ

(
S−1

bd K−1
bd (jω)

)−µ̄�(GI(jω))
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Recognising that σ
(
S−1K−1

bd (jω)
) = σ̄−1 (KbdSbd(jω)), the above expression can be

rearranged to yield (11). �
For stabilisation purposes, it is useful to minimise input usage as, the likelihood

of input saturation is reduced and the disturbing effect of the stabilising control layer
on the stabilised system is minimised (Havre and Skogestad, 2003). Based on (11),
we note that when the decentralised controller stabilises the closed loop system, the
input usage always remains finite. Further, we can express the sufficient condition for
stabilisation in Proposition 1 as σ̄−1 (KbdSbd(jω)) > µ̄�(GI(jω)) ∀ω. Defining γ (ω) =
σ̄−1 (KbdSbd(jω)) − µ̄�(GI(jω)), we note that Proposition 1 is satisfied, if γ (ω) > 0 ∀ω.
Here, large γ (ω) can also be interpreted as the relative ease in stabilising the system using
independent designs. The expression in (11) shows that large γ (ω) also ensures that input
usage for stabilisation is small.

4 Block diagonal approximation

In this section, we consider the problem of finding an optimal block diagonal approximation
Gbd(s) for the given system G(s) such that µ�(G(jω) − Gbd(jω)) is minimised. Since
only µ̄�(.) is computable in practice, the block diagonal Gbd(s) can be chosen by solving,

min σ̄ (DL(ω)
(
G(jω) − Gbd(jω)

)
D−1

R (ω)) (15)

s.t.

DL(ω) ∈ DL, DR(ω) ∈ DR

where DL and DR are given by (10) and the number of unstable poles of Gbd(s) and G(s)

is same.
As mentioned earlier, the block diagonal elements of the system usually have more

unstable poles than the system itself. Intuitively, a suboptimal solution to the optimisation
problem (15) can be obtained by simply reducing the order of the block diagonal elements
of G(s). We next show that the diagonal blocks optimally approximate a complex matrix
partitioned into 2 blocks. This result indicates that order reduction of diagonal elements is
likely to yield a nearly optimal solution for systems decomposed into 2 blocks.

Lemma 2: For complex matrices A1 and A2

µ�

([
0 A1

A2 0

])
= √

σ̄ (A1)σ̄ (A2)

where � = diag(�1, �2) and the full complex matrices �1, �2 have the same dimensions
as A1 and A2, respectively (Skogestad and Morari, 1988).

Proposition 3: Consider a complex matrix A ∈ C
p×q , which is partitioned as,

A =
[

A11 A12

A21 A22

]

Then, Abd = diag(A11, A22) minimises µ�(A − Abd), where Abd and � have the same
structure as diag(A11, A22) and

min
Abd

µ�(A − Abd) = √
σ̄ (A12)σ̄ (A21) (16)
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Proof: Using Lemma 2, it follows that µ�(A − diag(A11, A22)) = √
σ̄ (A12)σ̄ (A21). Then,

it suffices to show that for all Abd having the required structure, the minimum achievable
value of µ�(A − Abd) is given by (16).

Let Abd = diag(A11 +B1, A22 +B2). Since � has two complex blocks (Zhou and Doyle,
1998),

µ�(A − Abd) = inf
DL∈DL,DR∈DR

σ̄ (DL(A − Abd)D−1
R )

= inf
d1,d2∈R

σ̄

([
B1

d1
d2

A12
d2
d1

A21 B2

])

Let U be a unitary matrix that permutes the off-diagonal blocks of DL(A − Abd)D−1
R to

diagonal blocks and vice versa. Without loss of generality, we can choose d1 = 1 (Zhou
and Doyle, 1998). Since the largest singular value of a matrix is larger than or equal to
largest singular value of the submatrices of the matrix (Horn and Johnson, 1991),

σ̄ (DL(A − Abd)D−1
R )

= σ̄ (DL(A − Abd)D−1
R U)

≥ max(σ̄ (d−1
2 A12), σ̄ (d2A21)) ∀d2 ∈ R

≥ max
(∣∣d−1

2

∣∣ σ̄ (A12), |d2| σ̄ (A21)
) ∀d2 ∈ R

≥ √
σ̄ (A12)σ̄ (A21)

The result follows by noting that the above expression is independent of the scaling
matrices. �

Note that Proposition 3 says nothing about the uniqueness of the optimal solution.
For (A − Abd) partitioned and permuted as done in the proof of Proposition 3 (Zhou and
Doyle, 1998, p.218),

µ�(A − Abd) ≤ max(σ̄ (A12), σ̄ (A21)) +√
σ̄ (B1)σ̄ (B2)

If B1 = 0 and σ̄ (A12) = σ̄ (A21), the upper bound on µ�(A − Abd) is the same as the
lower bound. This shows that there exists an infinite number of B2 and thus block diagonal
matrices which achieve the lower bound.

Unfortunately, Proposition 3 does not hold for matrices partitioned into more than
2 blocks; (see Kariwala, 2004) for numerical experiments. We next present an algorithm
that provides a locally optimal solution for the optimisation problem (15).

Algorithm 1: For a given system G(s) with n unstable poles, a locally optimal solution to
the block diagonal approximation problem is obtained by the following steps:

1 Solve the optimisation problem (15) at a set of chosen frequencies to yield Gbd,jω.

2 Solve a parametric optimisation problem to find G̃bd(s) that has at least n unstable
poles and minimises the worst case error between G̃bd(jω) and Gbd,jω.

3 If G̃bd(s) has more than n unstable poles, the order of G̃bd(s) is reduced to n through
optimal Hankel norm approximation to get Gbd(s).
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The role of these steps becomes clear by noting,

µ�(G(jω) − Gbd(jω)) ≤ µ�(G(jω) − Gbd,jω)

+ σ̄ (Gbd,jω − G̃bd(jω)) + σ̄ (G̃bd(jω) − Gbd(jω)) (17)

It follows from (17) that every step in the proposed method minimises the contribution of
one of terms on RHS of (17) to the total approximation error. Thus, Algorithm 1 inherently
minimises an upper bound on the objective function of the optimisation problem in (15).
In the following sections, the individual steps of the proposed method are discussed. For
the sake of brevity, the discussion is brief at places and additional details can be found
in Kariwala (2004).

4.1 Frequency wise approximation

The first step of the proposed method for finding the optimal block diagonal approximation
consists of minimising (15) at a set of chosen frequencies. The (possibly non-uniformly
spaced) set of frequencies can be selected based on σ̄ (G(jω)), that is, a larger number
of frequencies can be chosen around the peaks of σ̄ (G(jω)). In the remaining discussion,
the frequency argument of the scaling matrices is dropped for notational convenience.
Using similar arguments as used in calculating µ̄(.) by solving a Linear Matrix Inequality
(LMI) (Boyd et al., 1994),

σ̄ (DL(G(jω) − Gbd,jω)D−1
R ) ≤ γ (18)

⇔ D−∗
R (G(jω) − Gbd,jω)∗D∗

LDL(G(jω) − Gbd,jω)D−1
R 
 γ 2I (19)

⇔ (G(jω) − Gbd,jω)∗PL(G(jω) − Gbd,jω) 
 γ 2PR (20)

where PL = D∗
LDL ∈ DL, PR = D∗

RDR ∈ DR and PL, PR � 0. Note that unlike the
calculation of µ̄(.) (Boyd et al., 1994), (20) is a Bilinear Matrix Inequality (BMI) and thus
not affine in the decision variables Gbd,jω, PL and PR; however, a locally optimal solution
can be found using an iterative approach.

Using the Schur complement lemma (Boyd et al., 1994), (19) can be equivalently
expressed as,[ −γ I D−∗

R (G(jω) − Gbd,jω)∗D∗
L

DL(G(jω) − Gbd,jω)D−1
R −γ I

]

 0 (21)

Note that for fixed DL, DR, (21) is an LMI in Gbd,jω. Now, a locally optimal solution for
the frequency wise approximation problem can be found by using an iterative approach,
where (21) is solved for Gbd,jω by fixing DL and DR, and (20) is solved for PL, PR using a
bisection search method by fixing Gbd,jω. This iterative method can be initialised by setting
DL = DR = I. Note that unlike a general BMI problem, the sequence of solutions obtained
using this iterative approach is guaranteed to converge (Kariwala, 2004).

Remark 4: Since the approximation problem has multiple local minima and the converged
solution depends on the initial value, the iterative procedure can converge to a minima that
is worse than using the diagonal blocks. This difficulty is overcome by using diag(Gii (jω))

as an initial guess, which is equivalent to replacing G(jω) by G(jω) − diag(Gii (jω)).
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Then, the locally optimal solution is given as Gsub
bd,jω + diag(Gii (jω)), where Gsub

bd,jω is
the solution obtained by using diag(Gii (jω)) as an initial guess. This minor modification
ensures that the obtained solution is at least as good as using the diagonal blocks.

4.2 Parametric L∞ optimal identification

It would be ideal to directly find Gbd(s) which has the same number of unstable poles as
G(s) and best approximates Gbd,jω, but the optimisation problem becomes very difficult
when the number of unstable poles is fixed. Thus, we aim at finding G̃bd(s) that has
at least as many unstable poles as G(s) followed by model order reduction discussed in § 4.3.
We minimise the worst case error or the L∞ norm of Gbd,jωi

− G̃bd(jωi) (cf. (17)). Over the
past few years, a number of different approaches for worst-case identification have appeared
in the literature and an overview of available results can be found in (Chen and Gu, 2000).

In this paper, we parameterise the class of models using transfer functions as compared
to the Finite Impulse Response (FIR) models typically used in worst-case identification;
(see e.g. Helmicki et al., 1992). An advantage of using the transfer function parametrisation
is that low order models can be identified directly in the continuous time domain, the
disadvantage being that unlike the FIR parametrisation, no worst case error bounds are
available. Nevertheless, practical experience (particularly in H2 norm minimisation case)
suggests that transfer function parametrisation works very well. For simplicity, G̃bd(s) is
identified element by element, where [G̃bd(s)]ij is parameterised as:

[G̃bd(s)]ij = a(s)

b(s)
= amsm + am−1s

m−1 + · · · a1s + a0

bnsn + bn−1sn−1 + · · · b1s + b0

with m ≤ n.
In the remaining discussion, we drop the requirement that G̃bd(s) has at least as many

poles as Gbd(s), as it is easily satisfied by choosing the order of the denominator polynomials
sufficiently large. Then, the parameters a0, . . . , am, b0, . . . , bn, are obtained by solving,

min
a0,...,am,b0,...,bn

∣∣∣∣a(jωk)

b(jωk)
− [Gbd,jωk

]ij
∣∣∣∣ k = 1 · · · nω (22)

Note that the objective function in (22) is non-linear, but can be equivalently represented as

|b(jωk)|−1
∣∣a(jωk) − b(jωk)[Gbd,jωk

]ij
∣∣ (23)

Now, the following LMI problem can be solved iteratively to minimise (23):

min
a
(i)
0 ,...,a

(i)
m ,b

(i)
0 ,...,b

(i)
n ∈R

γ 2
1 + γ 2

2

s.t.

− γ 2
1 |b(i−1)(jωk)| ≤ Re(e(jωk)) ≤ γ 2

1 |b(i−1)(jωk)|
− γ 2

1 |b(i−1)(jωk)| ≤ Im(e(jωk)) ≤ γ 2
2 |b(i−1)(jωk)|

bn = 1 (24)

e(jωk) = (
a(i)(jωk) − b(i)(jωk)[Gbd,jωk

]ij
)

where b(i−1)(jωk) denotes the identified b polynomial from the previous iteration. In (24),
the additional constraint bn = 1 is imposed for numerical stability and in general, fixing
any one of the unknown parameters suffices. In the H2 optimal identification literature, a
method similar to (24) is known as Sanathanan and Koerner’s method (Pintelon et al., 1994).
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The sequence of solutions obtained by solving optimisation problem (24) is not guaranteed
to converge, but numerical evidence suggests that a reasonable solution can be obtained
using a few iterations.

4.3 Optimal Hankel norm approximation

To satisfy the assumption of Proposition 1, we need to find Gbd(s) which has exactly n

unstable poles. We recall that for a stable transfer matrix H(s) having order k, the optimal
kth order model Ĥk(s) is found by solving (Glover, 1984),

min
Ĥk(s)∈RH∞

‖H(s) − Ĥk(s)‖H = min
Ĥk(s),F∗(−s)∈RH∞

‖H(s) − Ĥk(s) − F(s)‖∞ (25)

where ‖.‖H denotes the Hankel norm given by the largest Hankel singular value of the
transfer matrix. Next, we show how (25) can be adapted to handle the given problem, that
is, model reduction of the unstable system G̃bd(s).

Let G̃bd(s) = G1(s) + G2(s) such that G∗
1(−s), G2(s) ∈ RH∞. Without loss

of generality, we can parameterise Gbd(s) as Gbd(s) = Gn
bd(s) + G2(s) + J(s) with

J(s) ∈ RH∞, which provides

‖G̃bd(s) − Gbd(s)‖∞
= ‖G1(s) − Gn

bd(s) − J(s)‖∞
= ‖G∗

1(−s) − (Gn
bd(s))

∗ − J∗(−s)‖∞

The optimal value for (Gbd(s))
∗ ∈ RH∞ is found by solving (cf. (25)),

min
(Gn

bd(s))∗,J(s)∈RH∞
‖G∗

1(−s) − (Gn
bd(s))

∗ − J∗(−s)‖∞

= ‖G∗
1(−s) − (Gn

bd(s))
∗‖H (26)

Since J(s) and G2(s) are stable, Gbd(s) found by minimising Hankel norm between G∗
1(−s)

and (Gn
bd(s))

∗ is the L∞ optimal reduced order approximation of G̃bd(s) with n unstable
poles.

5 Controller design

With the availability of Gbd(s) using Algorithm 1, controller design for the modified µ-IM
is similar to the conventional µ-IM method. A loop shaping approach can be used to find
the stabilising decentralised controller; however, finding a controller using this method to
satisfy (8) can be difficult. In this section, we show that with the alternate representation of
the µ-IM conditions in terms of KbdSbd(s), finding Kbd(s) to satisfy (8) reduces to solving
a weighted H∞ controller design problem for Gbd(s).

Lemma 3: Let G(s) be rational system. Then (Glover, 1986; Kariwala et al., 2005),

inf
K(s)

‖K(s)(I + GK(s))−1‖∞ = σ−1
H (U(G(s))∗)

where U(.) denotes the unstable part.

Proposition 4: Consider that G(s) and Gbd(s) have the same number of unstable
poles. Let the minimum phase and stable transfer matrix w(s) be chosen such that
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|w(jω)| = µ−1
� (GI (jω)) for all ω. There exists a block diagonal controller Kbd(s) such

that σ̄ (KbdSbd(jω)) < µ−1
� (GI (jω)) for all ω ∈ R iff

σ−1
H (U(w−1Gbd(s))

∗) < 1 (27)

Proof: (Sufficiency) Let us define, K̃bd(s) = w(s)Kbd(s) and G̃bd(s) = w−1(s)Kbd(s).
Then, using Lemma 3, there exists a Kbd(s) such that,

inf
Kbd(s)

‖wKbdSbd(s)‖∞

= inf
K̃bd(s)

‖K̃bd(s)(I + G̃bdK̃bd(s))
−1‖∞

= σ−1
H (U(w−1Gbd(s))

∗)

If (27) holds, there exists a Kbd(s) such that

‖wKbdSbd(s)‖∞ < 1 (28)

⇔ σ̄ (wKbdSbd(jω)) < 1 ∀ω

⇔ σ̄ (KbdSbd(jω)) < |w(jω)|−1 ∀ω

⇔ σ̄ (KbdSbd(jω)) < µ−1
� (GI (jω)) ∀ω

where the last inequality holds as |w(jω)| = µ�(GI (jω)) for all ω.
(Necessity) We show the necessity of (27) by contradiction. Consider that (27) does

not hold, but there exists a Kbd(s) such that σ̄ (KbdSbd(jω)) < µ−1
� (GI (jω)) ∀ω.

By reversing the series of inequalities used for sufficiency, Kbd(s) must satisfy (28).
The σ−1

H (U(w−1Gbd(s))
∗) denotes the least achievable value for ‖w(s)KbdSbd(s)‖∞ for

all LTI controllers. Then, ‖wKbdSbd(s)‖∞ < 1, despite σ−1
H (U(w−1Gbd(s))

∗) being less
than 1 is a contradiction and the necessity of (27) follows. �

In Proposition 4, we assumed that w(s) is stable and minimum phase. In general, w(s)

can have RHP zeros and RHP poles at the same location as Gbd(s). Note that

‖w(s)KbdSbd(s)‖∞ = ‖wms(s)KbdSbd(s)‖∞

where wms(s) denotes the minimum phase stable part of w(s). Thus, allowing w(s) to be
unstable or non-minimum phase provides no advantage and we can simply replace w(s) by
its minimum and stable part in (27). On relaxing the assumption of minimum phase stable
w(s), however, a w(s) that achieves |w(jω)| = µ−1

� (GI (jω)) becomes non-unique, where
the different instances of w(s) are related by unitary transformations.

Proposition 4 effectively reduces the task of finding a block decentralised controller
to satisfy µ-IM condition (8) to finding the minimum phase and stable w(s) such that
|w(jω)| = µ−1

� (GI (jω)) and (27) holds. When (27) is satisfied, the standard H∞ optimal
control design techniques can be used to find the stabilising decentralised controller.

Remark 5: In practice, it can be difficult to find w(s) that satisfies |w(jω)| = µ−1
� (GI(jω))

for all ω ∈ R. This difficulty can be overcome by recognising that for any w(s) that lower
bounds µ�(GI(jω)) at all frequencies, if (27) holds,

σ̄ (KbdSbd(jω)) < |w(jω)|−1

⇒ σ̄ (KbdSbd(jω)) < µ−1
� (GI (jω))

Thus, for a given Gbd(s) the existence of a decentralised stabilised controller can be
established by verifying (27) with w(s) that lower bounds µ�(GI(jω)).
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6 Numerical example

In this section, we demonstrate the efficiency of Algorithm 4 for obtaining optimal block
diagonal approximation and the controller design method discussed in the previous sections
using a simple example.

Consider the following system:

G(s) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 0 0 0 1 β1 β1

0 2 0 0 β1 1 β1

0 0 3 0 β1 β1 1
0 0 0 −4 1 0.4 0.4
1 β2 β2 1 0 0 0
β2 1 β2 0.6 0 0 0
β2 β2 1 0.6 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where β1 = 0.5, β2 = 0.1.

A set of equally spaced frequencies in the range 0 − 10 is chosen and the locally optimal
diagonal approximation is obtained using the following steps:

• we use frequency-wise minimisation to achieve 3 decimal digits of accuracy
from the locally optimal solution in 2 iterations.

• we fit 4 or lower order models for the frequency data using the formulation (24)
with 2 iterations.

• the identified model has 4 unstable poles, which is reduced to a model with 3 unstable
poles using the Hankel norm approximation method discussed in Section 4.3.

The Gsub
bd (s), as obtained following these steps, is given as:

diag
(−0.002s2 + 2.22s + 3.42

s2 + 2.92s − 3.96
,
−0.015s2 + 2.04s + 6.02

s2 + 2.57s − 9.76
,
−0.0153s2 + 1.85s + 4.97

s2 + 1.75s − 8.97

)

For comparison purposes, we also calculate the sub-optimal solution Gdiag
bd (s) by reducing

the order of diagonal elements of G. In this case, five Hankel singular values of the stable
part of Gdiag

bd (s) are negligible, which are removed to get a reduced order model given as:

diag
( 2.08s + 3.27

s2 + 2.96s − 4.16
,

1.33s + 3.90

s2 + 2.06s − 7.76
,
−0.006s2 + 1.26s + 3.53

s2 + 1.42s − 10.31

)

To show the advantage of Algorithm 1 over using diagonal elements, γ sub = µ�(G(jω) −
Gsub

bd (jω)) and γ diag = µ�(G(jω) − Gdiag
bd (jω)) are compared in Figure 2. The relative

difference between γ diag and γ sub is 0.23 at the zero frequency, which monotonically
reduces to 0.21 for ω = 10. This significant reduction in the approximation error is useful
for finding the stabilising controller easily. Figure 2 also shows that the γ sub closely matches
the approximation error obtained using frequency wise minimisation. Thus, (at least for this
example), the conservativeness in using the two-step approach for identifying a model, with
same number of unstable poles as the system, is minimal.
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Figure 2 Efficiency of the proposed method for finding optimal block diagonal approximation
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Next, we consider the controller design. For the locally optimal diagonal approximation,
the following weight lower bounds µ�(GI(jω)) closely,

w1(s) = 0.0123s2 + 1.71s + 1.88

s2 + 5.495s + 4.52

Figure 3 Validation of modified µ-IM for stabilising decentralised controller designed
using independent designs
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Using this w1(s), σ H(U(w−1
1 Gsub

bd (s))∗) = 1.22 > 1 and standard H∞ optimal
controller design technique is used to find a decentralised stabilising controller.
The plots of µ−1

� (GI(jω)) and σ̄ ([KbdSbd(jω)]ii ), i = 1, 2, 3 are shown in Figure 3, where
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µ−1
� (GI(jω)) > σ̄ ([KbdSbd(jω)]ii ), as expected. On the other hand, for the suboptimal

solution obtained using the diagonal elements, the weight that lower bounds µ�(GI(jω))

closely is

w2(s) = 0.05s2 + 2.165s + 2.38

s2 + 5.404s + 4.44

and σH (U(w−1
2 (s)Gdiag

bd (s))∗) = 0.59 < 1. Then, the conservativeness of using the diagonal
elements to find a suboptimal solution is emphasised.

7 Conclusions

In this paper, we extended the practical applicability of µ-IM to unstable systems.
The decentralised controller is designed based on a block diagonal approximation that
is different from the block diagonal elements, but has same number of unstable poles as the
system. By expressing the µ-IM in terms of transfer matrix from disturbances to inputs, it
is shown that:

• the block diagonal approximation can be (suboptimally) chosen by minimising the
scaled L∞ distance between the system and the approximation.

• the task of designing the controller based on the block diagonal approximation can be
reduced to solving a weighted H∞ optimal controller design problem.

We have shown that when the system is partitioned into 2 blocks, the optimal block
diagonal approximation can be obtained by order reduction of diagonal blocks. For
the general case, a step-wise numerical approach is presented for finding the locally
optimal solution to the block diagonal approximation problem. The proposed approach
involves solving the approximation problem at a set of frequencies followed by L∞
optimal identification.

The primary limitation of choosing the block diagonal approximation by minimising
the scaled L∞ distance is that the properties of the approximation are not taken into
account. As shown in this paper, whether the stabilising controller can be easily
found depends on the minimum Hankel singular value of the approximation. A better
approach is to use a multiobjective optimisation framework, where the L∞ distance
between the system and the approximation is minimised and simultaneously the minimum
Hankel singular of the approximation is maximised. This non-trivial problem is a topic
for future work.
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