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Reply to reviewers for
L1/Q Approach for Efficient Computation of Disturbance

Rejection Measures for Feedback Control

Vinay Kariwala and Sigurd Skogestad

Reviewer 1

Comment: The largest allowable disturbance measure is misunderstood
(and of little interest), as explained in Hovd/Ma/Braatz. We are
not interested in the largest allowable disturbance, rather the smallest
disturbance that causes the maximum allowable offset with the available
manipulated variables. For example, consider G = I2, Gd = diag(100, 1)
and an allowable offset of 1 in either controlled variable. Then the
largest allowable disturbance is of magnitude just over 2 (d=[0.02;2],
u=[-1;-1], y=[1;1]), whereas the smallest disturbance that creates the
maximum allowable offset with optimal use of inputs is of magnitude 0.02
(d=[0.02;0];u=[-1;0];y=[1;0]).

Response/Action taken: We agree with the reviewer that the minimax
formulation for the finding the largest allowable disturbance was incorrect in
the original manuscript. Fortunately, our computations were based on the
correct formulation. In the revised manuscript, the formulation has been
corrected as:

γd,max = max σ (3)
s.t. max

‖d‖∞≤σ
min

‖u‖∞≤γu

‖Gu + Gd d‖∞ ≤ γy

which is same as suggested in the previous papers by Skogestad and Wolff
(1992), Hovd et al. (2003) and Kookos and Perkins (2003). To further
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aid reader’s understanding, we have included the following discussion about
the formulation of the optimization problem for finding largest allowable
disturbance in the revised manuscript:

The formulation in (3) is equivalent to finding the largest scaling for
disturbances such that the achievable output error becomes γy. It may seem
that the largest allowable disturbance can be found as

γ
′
d,max = max

‖G u + Gd d‖L1
≤γy

‖u‖∞≤γu

‖d‖∞ (4)

The formulation in (4), however, only finds “a” disturbance having
magnitude γ

′
d,max such that the bounds on outputs and inputs can be

maintained, but does not ensures the outputs and inputs can be kept bounded
for “all” disturbances having magnitude smaller than or equal to γ

′
d,max. The

subtle difference between the two different formulations in (3) and (4) is
illustrated by Hovd et al. [3] using an insightful example.

Comment: This is also the more likely reasons for the discrepancy between
the results of this paper and those of Kookos & Perkins in Example 4. Noting
that Kookos & Perkins only consider the steady state case, and a linear,
constrained model, blaming the apparent discrepancy on K&P allowing for
time-varying control seems a bit strange.

Response/Action taken: Though there was an error in the minimax
formulation for finding the largest allowable disturbance in the original
manuscript, the formulation for the L1/Q approach was correct (except
one minor typographical error). Kookos & Perkins allow the use of online-
optimization based controllers and thus their results show that larger
disturbances can be accommodated. This is the main reason behind the
discrepancy. The corresponding remark in the revised manuscript has been
corrected as:

Note that due to the practical assumption of a linear feedback-based
controller, the allowable disturbance magnitude calculated using the L1/Q
approach is lower than the minimax formulation, which allows for non-linear
and online optimization-based controllers.

For the steady-state case, when a single disturbance is considered, the
minimax formulation considered by Kookos & Perkins reduces to a standard
linear program with nu degrees of freedom. This happens as the worst-case
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always occurs at the boundary, i.e. d = 1. Now, for L1/Q approach,
there is no loss of generality in replacing QGd by Q̄, as Q can be easily
recovered later. Thus, the L1/Q also results in a linear program with nu

degrees of freedom, which is exactly the same as obtained using the minimax
formulation. These arguments show that the allowable value of d6 reported
by Kookos & Perkins is indeed incorrect. That being said, our objective
was not to blame anyone, but simply point out that the discrepancy is due
to a typographical error. The corresponding remarks have been revised as
follows:

We also note that the largest difference between the two approaches is seen,
when only disturbance d6 is considered. It can be shown easily that for
single disturbance, the minimax and L1/Q formulations are identical for the
steady-state case. Then, the apparent difference is due to the typographical
errors in [4].

Comment: Another issue is that linear feedback may be too conservative an
assumption, considering the proven success of MPC in pushing constraints
(the MPC controller becomes nonlinear when constraints are active).

Response/Action taken: For the numerical examples considered in
this paper, linear feedback-based controller performs nearly the same as
an optimization-based controller. For example, for blown film extruder
example, the maximum relative difference is about 7% and for the Tennessee
Eastman example, the maximum relative difference is about 2% for the
different cases among linear feedback-based and unrestricted controllers.
Thus, the assumption of linear feedback-based control is not very restrictive,
at least for the examples considered in this paper. That, however; does
not rule out the possibility of existence of systems for which an online-
optimization based controller can provide significant advantages over linear
feedback-based controller. We have added the following comments to the
concluding section:

For the various numerical examples considered in this paper, it is found
that a linear feedback-based controller can provide nearly the same level
of performance as an online-optimization based controller for asymptotic
rejection of constant and sinusoidal disturbances. In general, however, the
use of a linear feedback-based controller can be be conservative. Future
research will focus upon extending the results of this paper to online-
optimization based controllers, e.g. model predictive controllers.
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Response/Action taken: Adressing the advantages of feedforward only in
a steady state setting defies reason. Contrary to what is stated in the paper,
the controller should - at steady state - not need to estimate the disturbances
when there are more disturbances than outputs. We are not interested in the
components of the disturbances that have no effect on the output. At steady
state, only the magnitude of the available manipulated variables matter, and
feedforward and feedback should give the same result. Hypothetically, the
controller can wait for the disturbances to reach steady state (in the outputs)
and then calculate required inputs based on the observed outputs.

Also on page 16, we should be cautious in replacing QGd with Q̄. Not only
must Gd have a left inverse, that inverse should also be stable? (this only
applies to dynamical problems, of course).

Response/Action taken: The main objective of this paper is to present
practical solutions to the three problems introduced by Skogestad and Wolff
(199). In view of the objections raised by the reviewer, we realized that
the details on the feedforward controller can cause confusion and divert
the attention of the reader from the main issues. Thus, we have removed
the whole section (and any references to these results) from the revised
manuscript. As the issue of feedforward control is only peripheral to the
the problem of computing disturbance rejection measures, we believe that
removal of these details do not cause any substantial reduction in the
contributions of our work.

Comment: The contributions of this paper definitely justify publication,
but the authors should carefully address the issues raised above, since
otherwise they risk causing more confusion than the contribution of the
paper.

Response/Action taken: We thank the reviewer for his critical
comments, which helped us in identifying issues that could have caused
confusion. The manuscript has been revised thoroughly to address all of
these issues.
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Reviewer 2

Comment: The manuscript describes a practically-useful approach for
efficiently computing disturbance rejection measures for linear time invariant
systems. The problems are appropriately formulated, the numerical
examples are well-selected, and the paper demonstrates clear advantages
over previous formulations.

Response/Action taken: We thank the reviewer for his comments.

Comment: In Remark 2, insert ”include” after ”explicitly” in the sixth
line of Remark 2 on page 15.

Response/Action taken: This typographical error has been corrected.

Comment: The last full sentence of page 17 is not quite correct, since
Hovd et al. does not state that an online optimization-based controller is
required, only that the optimization includes the possibility of the optimum
being an online optimized-based controller. An accurate restatement of the
sentence would be ”Note that the bounds presented by Hovd et al. (2003)
do not specify the structure of the controller(s) that achieves the bound, for
example, it could be a nonlinear or online optimization-based controller.

Response/Action taken: In view of the reviewer’s comments, the
corresponding remark has been revised as follows:

Hovd et al. [3] do not impose any restrictions on the controller structure and
the controller that achieves the bounds presented by them can be a nonlinear
or online optimization-based controller.

Comment: This manuscript should compare its results to that of D. L.
Ma, J. G. VanAntwerp, M. Hovd, and R. D. Braatz. Quantifying the
potential benefits of constrained control for a large scale system. IEE
Proceedings - Control Theory and Applications, 149:423-432, 2002, which
also considered controllability measures for steady-state, frequency-wise, and
dynamic systems.

Response/Action taken: Ma et al. provide explicit expressions for the
minimum required input magnitude for perfect control. The novel feature of
the results of Ma et al. is that their results are also valid for rank deficient
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G, when the disturbances are confined to their controllable subspace. We
have included the following remark in Section 2.2 of the revised manuscript
to show that the L1/Q method can be extended to compute the minimum
input magnitude required to get perfect control in the controllable subspace
of disturbances:

Sometimes, it is of interest to find the minimum input magnitude that
provides perfect control of outputs; especially at steady-state or a non-zero
frequency. When G is non-singular, an explicit solution to this problem is
available in [8]. Ma et al. [18] have extended these results to rank deficient
G by requiring perfect control only for disturbances lying in the controllable
subspace. Ma et al. [18] define the controllable subspace W as the subspace
spanned by the sign-adjusted left singular vectors corresponding to non-zero
singular values of G. While no restrictions are imposed on the controller
in [18], the minimum input magnitude required to achieve perfect control
in the controllable subspace using a linear feedback-based controller can be
computed by replacing G and Gd by WHG and WHGd in the optimization
problem in (7).

A further comparison is made for the blown film extruder example, where
the linear feedback-based controller requires the same input magnitude for
this problem. The corresponding discussion for this example is modified as
follows:

For this process, it is not possible to achieve perfect control due to non-
invertibility of G, even when arbitrarily large input variations are allowed.
For example, for k = 1, r = 0.7, the minimum output error calculated using
L1/Q approach is 0.241, when γu = 3.429 and increasing γu does not reduce
γy further indicating a fundamental limitation. Though not possible for
all disturbance directions, perfect control can be achieved for disturbances
confined to their controllable subspace with inputs having magnitude equal to
or larger than 15.303 [18]. Ma et al. [18] do not impose any restrictions on
the controller. For this problem, however, a linear feedback-based controller
provides same level of performance as the unrestricted controller showing
that linear feedback-based controller is optimal; see also Remark 3.
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Reviewer 3

Comment: This paper proposes transforming of three minimax
optimization problems of Skogestad & Wolff (1992) into the forms of L1-
norm based linear programming. There is some contribution, and it may be
made publishable.

Response/Action taken: We thank the reviewer for his comments.

Comment: At the top of page 6, the problem formulation corresponding
to the optimization problems should be justified.

Response/Action taken: Among the three cases (steady-state,
frequency-wise and dynamic systems) considered in this paper, the case of
dynamic systems is clearly most general. The steady-state and frequency-
wise versions of the problem are useful for analyzing the asymptotic
disturbance rejection capabilities of the system for constant and sinusoidal
disturbances, respectively. This has been clearly indicated in Section 2.1 of
the revised manuscript as:

Each of these problems may be formulated for the following three cases:

(a) Steady-state

(b) Frequency-wise

(c) Dynamic systems

While the case of dynamic systems is general, the steady-state and frequency-
wise formulations are useful for analyzing the capability of the system in
asymptotically rejecting constant and sinusoidal disturbances, respectively.

Comment: The first sentence of Section 2.2 is questionable. Note that
u=k(r-y-n) is true for a unity feedback control structure (e.g., see (2.15) in
Skogestad & Postlewaite, second edition, 2005). Such exercise should be
clarified.

Response/Action taken: There is no loss of generality in assuming that
the setpoints r are zero. To clarify this issue, the first paragraph of Section
2.2 is modified as follows:
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For regulatory control, we consider that u = −Ky (negative feedback).
Though the setpoints r are considered to be zero, the results can be extended
to include the case of non-zero setpoints by replacing y by e = y − r in the
following discussion. Now, the following relationships hold, · · ·

The consideration of noise becomes important, when only the measurements
corrupted by noise (y + n) are available for feedback control and the
performance is measured in terms of y. While this issue is important, the
extension of results to include the effect of noise is non-trivial. Note that the
effect of noise has not been considered by other related publications as well.
That we are using uncorrupted measurements is clear from the expression
u = −Ky and no further discussion on this issue is deemed necessary.

Comment: In Section 2.3, the referred feedforward control structure should
be illustrated. Note that the following transfer function matrix cannot be
derived from a conventional feedforward control structure.

Response/Action taken: Based on the comments of Reviewer 1, Section
2.3 has been removed from the revised manuscript.

Comment: In the numerical examples, each process model should be
illustrated with the operation conditions/constraints. The reasons for using
your proposed optimization bounds should be given/justified. State also the
purposes of showing the two tables.

Response/Action taken: Most of the numerical examples (except the
last example) considered in this paper are taken from published literature
and the appropriate references are cited. The reader can easily refer to
the original papers to get details regarding the operating conditions and
constraints and repeating the same information in the present manuscript
will unnecessarily increase the length. With this view, the additional details
are not included in the revised manuscript.

Comment: 1dn in Eq.(2) and Eq.(4) should be changed to be a row vector.

Response/Action taken: All the vectors are denoted as column vectors
in this manuscript, e.g. αv, βv. Changing the vector of 1’s to a row vector
will only cause confusion. Similarly, changing all the vectors to row vectors
will only make the expressions look messier. Thus, the vectors of 1’s are
kept as column vectors.
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Comment: ’S=(1-GK)-1’in page 7 should be typed as ’S=(I-GK)-1’. So is
for other expressions involving the identity matrix.

Response/Action taken: We thank the review for pointing out this
typographical error. There were several such errors in Section 2.2, which
have been corrected in the revised manuscript.

Comment: The sequential number of simulation examples should begin
from 1.

Response/Action taken: We have no control over the counter for
examples (and other environments), which is set by the elsevier class file
automatically. Hence, no changes are made.

Comment: The readability of References is poor. They should be organized
in terms of the journal publication requirements.

Response/Action taken: The bibliography has been revised such that it
complies with the journal publication requirements.
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Editor

In addition to the changes arising due to the issues raised by the reviewers,
the following changes have been made in the revised manuscript:

1. The affiliation of the first author is changes to his present affiliation.

2. In Section 2.1, all the signal norms in the minimax formulation have
been corrected to ‖·‖∞, which indicates the peak norm. In the original
manuscript, some of these norms were incorrectly denoted as ‖ · ‖L1

due to typographical errors.

3. There was a typographical error in the optimization problem
formulation for finding the largest allowable disturbance using the
L1/Q approach. The error has been corrected in the revised
manuscript as follows:

min
Q

σ

s.t. ‖(I −G Q) Gd‖L1 ≤ γy σ

‖QGd‖L1 ≤ γu σ

For σ∗ solving the above optimization problem, the magnitude of the
largest allowable disturbance is given as 1/σ∗.

4. The computational efficiency of the proposed method is better than
reported in the original manuscript. For the blown film extruder
example, the approach requires at most 3 seconds and not 3 seconds
for the different cases. The revised manuscript reads

We also point out that the L1/Q approach requires at most 3 seconds
for solving the different cases on a Pentium IV 3.2 GHz PC, showing
computational efficiency.

A similar change is also made for the Tennessee Eastman problem.

10



L1/Q Approach for Efficient Computation of

Disturbance Rejection Measures for Feedback

Control ⋆

Vinay Kariwala a Sigurd Skogestad b,∗

aDivision of Chemical & Biomolecular Engineering,

Nanyang Technological University, Singapore 637722

bDepartment of Chemical Engineering,

Norwegian University of Science and Technology, N-7491 Trondheim, Norway.

Abstract

This paper presents practical methods for computation of disturbance rejection mea-

sures [1], which are useful for assessing the dynamic operability of the process. Using

L1 optimal control theory, we consider the cases of steady-state, frequency-wise and

dynamic systems. In comparison to the available methods [2–4], the proposed ap-

proach ensures that a linear, causal, feedback-based controller exists that achieves

the computed bounds and the method also scales well with problem dimensions.

Key words: Controllability analysis, Disturbance rejection, Optimal control.

⋆ A preliminary version of this work was presented at the annual meeting of Amer-

ican Institute of Chemical Engineers held in Cincinnati, OH, USA, 2005 [5].
∗ Corresponding author: Tel: +47-735-94154; Fax: +47-735-94080; E-mail:

skoge@chemeng.ntnu.no (Sigurd Skogestad)

Preprint submitted to Journal of Process Control 7 November 2006

* Manuscript



1 Introduction

The achievable control quality (“controllability”) is limited by the plant itself,

independent of the controller design algorithm. A key issue in the controllabil-

ity analysis is to decide upfront if there exists a controller that can reduce the

effect of disturbances to an acceptable level with the available manipulated

variables. When such a controller exists, the process is said to have “oper-

ability” [6]. A closely related problem is that of “flexibility” [7]. Skogestad

and Wolff [1] also introduced some measures for judging upon the disturbance

rejection capabilities of the process, which is similar to the dynamic oper-

ability. All these papers considered the following issue: Is it possible to keep

the outputs within their allowable bounds for the worst possible combination of

disturbances, while still keeping the manipulated variables within their physical

bounds?

In this paper, we consider the disturbance rejection measures for linear time-

invariant systems. For this case, Skogestad and Wolff [1] introduced the fol-

lowing problems:

(1) What is the minimum output error achievable with the bounded manip-

ulated variables for the worst possible combination of disturbances?

(2) What is the minimum control effort or magnitude of the manipulated

variables required to obtain an acceptable output error for the worst

possible combination of disturbances?

(3) What is the largest possible magnitude of disturbances such that for

the worst possible combination of disturbances upto that magnitude, an

acceptable output error is achievable with the bounded manipulated vari-
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ables?

These problems have been solved on a frequency-by-frequency basis for SISO

systems and also approximately for MIMO systems [8; 9]. Hovd et al. [3] pro-

vide an exact solution for the steady-state version of this problem, but require

solving a non-convex bilinear program. Kookos and Perkins [4] present an inte-

ger programming based formulation of the steady-state version of this problem.

As pointed by Hovd and Kookos [2], the latter formulation scales better with

problem dimensions. Recently, Hovd and Kookos [2] also presented a method

for calculating the upper and lower bounds on the minimum output error on

a frequency-by-frequency basis. This approach, however, is computationally

very demanding. In summary, the available solutions for disturbance rejec-

tion problem hold only for restrictive versions of the problem (steady-state or

frequency-by-frequency) and are computationally expensive.

In this paper, we consider the same problems under the assumption that the

manipulated variables are generated using a linear, causal, feedback-based con-

troller. Note that in the original problem formulation [8; 9], no such assump-

tions are made. An objective of controllability analysis is to judge upon the

existence of controllers that can satisfy the desired performance requirements.

In this sense, the restriction on the controller is necessary for practical control-

lability analysis. Under these assumptions, the calculation of disturbance re-

jection measures can be treated using L1-optimal control theory, which results

in solving convex programs [10]. This approach yields the optimal controller

and also scales well with problem dimensions. In this paper, we consider the

steady-state, frequency-wise and dynamic cases in turn.

Notation. We let the linear, causal plant and disturbance models be G(s)
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and Gd(s), respectively such that

y(s) = G(s) u(s) + Gd(s) d(s)

where y(s) is the output, u(s) is the input and d(s) is the disturbance. For sim-

plicity, we use the same symbols for the signals and their Laplace transforms.

We deal with peak norm of signals defined as

‖y(t)‖∞ = max
t

max
i

|yi(t)|

and induced L1-norm (peak to peak) of transfer matrices given as [10]

‖G(s)‖L1
= sup

‖u(t)‖∞ 6=0

‖G u(t)‖∞
‖u(t)‖∞

= sup
‖u(t)‖∞=1

‖G u(t)‖∞

When dealing with constant real or complex valued matrices, the L1-norm

reduces to the matrix 1-norm, which is defined as maximum absolute row

sum. In the following discussion, we drop the frequency argument s and time

argument t, where no confusion can arise. For the given matrix, A ∈ R
m×n,

av denotes vectorized A as

av = [A11 · · · A1n · · ·Amn]T

2 Problem Formulation

In this section, we present the mathematical formulation of the problem for

calculation of disturbance rejection measures. We first consider the exact prob-

lems posed by Skogestad and Wolff [1], which are usually of theoretical interest

only. Next, we formulate the same problems under the practical assumption

that the controller is rational, causal and feedback-based.
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2.1 Original problem: Minimax approach

We consider that the model has been scaled such that the allowable magni-

tudes of the peak values of output error, manipulated variables and distur-

bances are γy, γu and 1, respectively. A procedure for such scaling has been

outlined by Skogestad and Postlethwaite [8]. Then, the three problems in-

troduced by Skogestad and Wolff [1] require solving the following minimax

optimization problems [1; 3; 4]

(1) Minimum output error:

γy,min = max
‖d‖∞≤1

min
‖u‖∞≤γu

‖G u + Gd d‖∞ (1)

(2) Required input magnitude:

γu,min = max
‖d‖∞≤1

min
‖G u+ Gd d‖∞≤γy

‖u‖∞ (2)

(3) Largest allowable disturbance:

γd,max = max σ (3)

s.t. max
‖d‖∞≤σ

min
‖u‖∞≤γu

‖G u + Gd d‖∞ ≤ γy

Remark 1 The formulation in (3) is equivalent to finding the largest scaling

for disturbances such that the achievable output error becomes γy. It may seem

that the largest allowable disturbance can be found as

γ
′

d,max = max
‖G u + Gd d‖L1

≤γy

‖u‖∞≤γu

‖d‖∞ (4)

The formulation in (4), however, only finds “a” disturbance having magnitude

γ
′

d,max such that the bounds on outputs and inputs can be maintained, but does

not ensures the outputs and inputs can be kept bounded for“all” disturbances

having magnitude smaller than or equal to γ
′

d,max. The subtle difference between

the two different formulations in (3) and (4) is illustrated by Hovd et al. [3]
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using an insightful example.

Each of these problems may be formulated for the following three cases:

(a) Steady-state

(b) Frequency-wise

(c) Dynamic systems

While the case of dynamic systems is general, the steady-state and frequency-

wise formulations are useful for analyzing the capability of the system in

asymptotically rejecting constant and sinusoidal disturbances, respectively.

Nevertheless, these problems are difficult to solve due to their minimax nature

and different approaches for solving the steady-state [3; 4] and frequency-by-

frequency [2] versions have been proposed. In general, these approaches, how-

ever, can be computationally very demanding. Also note that these problems

pose no restrictions on the controller. Thus achieving these bounds may re-

quire non-causal controllers with the knowledge of future disturbances. In this

paper, we provide a method for computing the solution to all the problems

mentioned above. The proposed methods provide a bound (upper bound on

γy,min and γu,min and lower bound for γd,max) for the “original” problem with

no restrictions on the controller and exact solution for the case of a linear

feedback-based causal controller.

Remark 2 The steady-state and frequency-wise cases only consider the asymp-

totic behavior of the closed-loop system and the issue of non-causality does not

arise. For these cases, the solution obtained using the minimax approach can be

practically implemented, but this may require use of online optimization-based

controller.
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2.2 L1/Q approach

For regulatory control, we consider that u = −Ky (negative feedback). Though

the setpoints r are considered to be zero, the results can be extended to in-

clude the case of non-zero setpoints by replacing y by e = y−r in the following

discussion. Now, the following relationships hold,

y = S Gd d

u = −K S Gd d

where S = (I + G K)−1 is the sensitivity function. Next, we use the Youla

parametrization of all stabilizing controllers, where G is considered to be stable

for simplicity. When the process is unstable, similar coprime factorization

based parametrization can be used; see e.g. [8]. Parameterizing K as K =

Q (I − G Q)−1,

y = (I − G Q) Gd d

u = −Q Gd d

where Q is a stable rational transfer function. Now, the three problems intro-

duced above require solving

(1) Minimum output error:

min
Q

‖(I − G Q) Gd‖L1
(5)

s.t. ‖Q Gd‖L1
≤ γu

(2) Required input magnitude:

min
Q

‖Q Gd‖L1
(6)

s.t. ‖(I − G Q) Gd‖L1
≤ γy
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(3) Largest allowable disturbance:

min
Q

σ (7)

s.t. ‖(I − G Q) Gd‖L1
≤ γy σ

‖Q Gd‖L1
≤ γu σ

For σ∗ solving the optimization problem in (7), the magnitude of the

largest allowable disturbance is given as 1/σ∗.

The formulation of these optimization problems using L1-optimal control the-

ory is along the same lines as done by Dahleh and Diaz-Bobillo [10]. The prob-

lem of computing achievable ‖y‖2 for specified disturbances (e.g. step-type)

using the Youla parameterization was also considered by Swartz [11; 12]. The

approach taken here considers the time-domain bounds characterized by ‖y‖∞

directly and also allows for the worst possible combination of disturbances, as

is relevant for computing disturbance rejection measures.

Remark 3 Sometimes, it is of interest to find the minimum input magnitude

that provides perfect control of outputs; especially at steady-state or a non-

zero frequency. When G is non-singular, an explicit solution to this problem is

available in [8]. Ma et al. [18] have extended these results to rank deficient G by

requiring perfect control only for disturbances lying in the controllable subspace.

Ma et al. [18] define the controllable subspace W as the subspace spanned by the

sign-adjusted left singular vectors corresponding to non-zero singular values of

G. While no restrictions are imposed on the controller in [18], the minimum

input magnitude required to achieve perfect control in the controllable subspace

using a linear feedback-based controller can be computed by replacing G and

Gd by W HG and W HGd in the optimization problem in (6).

In the following discussion, we only consider the minimum output error prob-
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lem (problem 1) in detail and the formulations for the remaining two problems

can be obtained similarly. Before dealing with the dynamic systems, we first

deal with the steady-state and frequency-dependent versions of disturbance re-

jection problems. The reason for detailed discussion of the steady-state version

of the problem is that its formulation is similar to the corresponding formu-

lation for discrete-time dynamic systems, which facilitates the introduction of

more involved expressions.

2.2.1 Steady-state

We recall that for constant matrices, the L1-norm reduces to the matrix 1-

norm. Now, let Q be vectorized as

qv =
[

Q11 · · · Q1ny
· · ·Qnuny

]T

Then, ‖Q Gd‖1 ≤ γu is equivalent to

−αv ≤ (Inu
⊗ GT

d ) qv ≤αv (8)

(Inu
⊗ 1nd

) αv ≤ γu · 1nu
(9)

where ⊗ is the Kronecker tensor product and 1nu
is an nu dimensional column

vector of 1’s. Similarly, ‖Gd − G Q Gd‖1 ≤ γy is equivalent to

−βv ≤ (Gd)v − (G ⊗ GT
d ) qv ≤βv (10)

(Iny
⊗ 1nd

) βv ≤ γy · 1ny
(11)

In (8) and (10), αv ∈ R
nu·nd and βv ∈ R

ny·nd bound the absolute values of the

elements of Q Gd and (Gd−G Q Gd), respectively. Similarly, in (9) and (11), the

sum of the absolute values of the elements of each row (arising due to matrix

9



1-norm) of Q Gd and (Gd − G Q Gd) are bounded by γu and γy, respectively.

Define x = [qT
v αT

v βT
v γy]

T . Then, in the standard linear program form

the minimum output error is determined by solving

min
x





0 0 0 1



 x

s.t.



































































Inu
⊗ GT

d −I 0 0

−Inu
⊗ GT

d −I 0 0

0 Inu
⊗ 1nd

0 0

−G ⊗ GT
d 0 −I 0

G ⊗ GT
d 0 −I 0

0 0 Iny
⊗ 1nd

−1ny



































































x ≤



































































0

0

γu · 1nu

−(Gd)v

(Gd)v

0







































































−∞ 0 0 0



 ≤ x ≤ ∞

The above linear program is sparse with (nu ny + nu nd + ny nd + 1) variables

and (2 (nu nd + ny nd) + nu + ny) constraints. In this paper, we use Tom-

lab/CPlex [13] for solving this program. Note that for finding the required

input magnitude, one only needs to change the roles of γu and γy in the above

formulation.

2.2.2 Frequency-wise

We next consider the calculation of minimum output error on a frequency-by-

frequency basis. As compared to the steady-state case, the additional compli-

10



cation is that the matrix 1-norm requires calculation of absolute values, which

is non-linear for complex scalars in terms of its real and imaginary parts. To

overcome this difficulty, Hovd and Kookos [2] suggest under and overestimat-

ing the peak norms of various signals using polyhedral approximations. Such

an approximation, however, increases the computational requirements consid-

erably, especially when the approximation error is required to be small. In the

following discussion, we show that under the L1/Q approach, the calculation

of minimum output error can be posed as a convex program. The formulation

is based on the observation that though non-linear, the absolute value of a

complex scalar can be bounded using a linear matrix inequality (LMI) [14].

We recall that the vectorized format of Q Gd is given as (Inu
⊗ GT

d )qv. Let

[(Inu
⊗ GT

d )]i∗ denote the ith row of (Inu
⊗ GT

d ). Then the magnitude of the

elements of Q Gd can be bounded as

∣

∣

∣[(Inu
⊗ GT

d )]i∗ qv

∣

∣

∣ ≤ [αv]i

⇔|ai + j bi| ≤ [αv]i

⇔





ai bi









ai bi





T

≤ [αv]
2
i

⇔





























[αv]i ai bi

ai [αv]i 0

bi 0 [αv]i





























≥ 0 (12)

where the last equivalence is obtained using Schur complement lemma [14].

Here

ai = Re [(Inu
⊗ GT

d )]i∗ Re qv − Im [(Inu
⊗ GT

d )]i∗ Im qv

bi = Re [(Inu
⊗ GT

d )]i∗ Im qv + Im [(Inu
⊗ GT

d )]i∗ Re qv
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Similarly, the the magnitude of the elements of (Gd−G Q Gd) can be bounded

using the following LMI





























[βv]j cj dj

cj [βv]j 0

dj 0 [βv]j





























≥ 0 (13)

where

cj =Re [(Gd)v]j − Re [(G ⊗ GT
d )]j∗ Re qv + Im [(G ⊗ GT

d )]j∗ Im qv

dj =Im [(Gd)v]j − Re [(G ⊗ GT
d )]j∗ Im qv − Im [(G ⊗ GT

d )]j∗ Re qv

Now, by defining z = [Re qT
v Im qT

v αT
v βT

v γy]
T , the problem requires

solving

min
z





0 0 0 0 1



 z

s.t.

















0 0 Inu
⊗ 1nd

0 0

0 0 0 Iny
⊗ 1nd

−1ny

















z ≤

















γu · 1nu

0

















(12) for i = 1, 2, · · ·nu nd

(13) for j = 1, 2, · · ·ny nd




−∞ −∞ 0 0 0



 ≤ z ≤ ∞

In this paper, we use the software package Tomlab/PenSDP [13] using the

interface Yalmip [15] for solving this semi-definite program.
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2.2.3 Dynamic systems

For continuous-time systems, the computation of L1-norm is difficult and the

problems involving this norm are almost exclusively solved using discretized

models. For the discrete-time univariable system g(z−1), the L1-norm is given

as

‖g(z−1)‖L1
=

∞
∑

i=1

|gi|

where gi is the ith impulse response coefficient and z−1 is the backshift op-

erator. In practice, finite impulse response (FIR) models are used and a

method for selecting the order of the FIR model is given by Dahleh and Diaz-

Bobillo [10]. For the multivariable system G(z−1) with ny outputs and nu

inputs, the L1-norm is

‖G(z−1)‖L1
=

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

‖G11(z
−1)‖L1

· · · ‖G1nu
(z−1)‖L1

... · · ·
...

‖Gny1(z
−1)‖L1

· · · ‖Gnynu
(z−1)‖L1

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

∥

1

With this minor detour, we next formulate the linear programming problem

that can be used for calculating the minimum output error. We consider that

for G(z−1) and Gd(z
−1), FIR models of order N are used, whereas the order of

FIR model of Q(z−1) is NQ with NQ ≤ N . Note that the order of the decision

variable Q(z−1) is difficult to determine a priori and in practice, NQ can be

increased sequentially, until convergence.

For posing this problem as a standard linear program, we need to vectorize the

impulse response coefficients of Q(z−1) Gd(z
−1) and Gd(z

−1)−G(z−1) Q(z−1) Gd(z
−1).
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For this purpose, it is useful to represent these impulse response coefficients

using matrix notation. The impulse response coefficients of Q(z−1) Gd(z
−1)

are given as









































(Q Gd)1

(Q Gd)2

...

(Q Gd)N









































=









































Q1 0 · · · · · · 0

Q2 Q1 · · · · · · 0

...
...

. . .
... 0

0 · · · QNQ
· · · Q1

















































































Gd,1

Gd,2

...

Gd,N









































which can be vectorized as









































Inu
⊗ GT

d,1 0 · · · 0

Inu
⊗ GT

d,2 Inu
⊗ GT

d,1 · · · 0

...
...

. . . 0

Inu
⊗ GT

d,N · · · · · · Inu
⊗ GT

d,(N−NQ+1)

















































































(Q1)v

(Q2)v

...

(QNQ
)v









































(14)

where

(Qi)v =
[

Qi,11 · · · Qi,1ny
· · ·Qi,nuny

]T

Similarly, impulse response coefficients of Gd(z
−1) − G(z−1) Q(z−1) Gd(z

−1)
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can be vectorized as









































(Gd,1)v

(Gd,2)v

...

(Gd,N)v









































−









































G1 ⊗ GT
d,1 0 · · · 0

G1 ⊗ GT
d,2 + G2 ⊗ GT

d,1 G1 ⊗ GT
d,1 · · · 0

...
...

. . . 0

∑N
i=1 Gi ⊗ GT

d,(N−i+1) · · · · · ·
∑N−NQ+1

i=1 Gi ⊗ GT
d,(N−NQ−i+2)

















































































(Q1)v

(Q2)v

...

(QNQ
)v









































(15)

Using the vectorized impulse response coefficients in (14) and (15), and manip-

ulations similar to (8)-(11), the problem of calculating the minimum output

error for dynamic systems is same as the steady-state case with N (nu nd +

ny nd) + NQ nu ny + 1 variables and (2 N (nu nd + ny nd) + nu + ny) con-

straints. The steady-state case was handled in Section 2.2.1 and the details

are not repeated.

Remark 4 When the process has unstable zeros, these zeros give rise to in-

terpolation constraints. The interpolation constraints ensure that there are no

unstable pole-zero cancelations and thus internal stability is maintained. When

the closed-loop system is internally unstable, some of the signals become un-

bounded (e.g. u), while others may remain within bounds (e.g. y). In this

paper, we do not explicitly include the interpolation constraints, as the signals
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are bounded by finite γy and γu. In some limiting cases of theoretical interest

(e.g. cheap control), there is no finite upper bound on the magnitudes of some

signals and interpolation constraints need to be taken into account. This prob-

lem can also be approximately handled by using large but finite values for γy

or γu in the proposed approach.

3 Examples

In this section, we consider a number of process examples taken from the

literature to illustrate the concepts discussed in this paper. Some of these

examples were earlier considered using the minimax formulation in [2–4].

Example 5 We first discuss the calculation of minimum output error for

blown film extruder earlier considered by Hovd et al. [3]. This process has 15

inputs, 15 outputs and 15 disturbances, where the steady-state gain matrices of

G and Gd are circulant matrices with G being rank deficient. The disturbance

model Gd is parameterized by k, r, which defines the spatial correlation among

different variables.

[Table 1 about here.]

The minimum output error calculated using the bilinear formulation by Hovd

et al. [3] and the L1/Q approach are shown in Table 1, where γu = 1. Hovd

et al. [3] do not impose any restrictions on the controller structure and the

controller that achieves the bounds presented by them can be a nonlinear or on-

line optimization-based controller. In comparison, the L1/Q approach provides

the optimal linear controller that achieves the practical bounds. The results in

Table 1 show that there is no significant performance loss in using a linear
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feedback-based controller as compared to an online-optimization based or non-

linear controller for this process, at least for asymptotic rejection of constant

disturbances. We also point out that the L1/Q approach requires at most 3

seconds for solving the different cases on a Pentium IV 3.2 GHz PC, showing

computational efficiency.

For this process, it is not possible to achieve perfect control due to non-

invertibility of G, even when arbitrarily large input variations are allowed.

For example, for k = 1, r = 0.7, the minimum output error calculated using

L1/Q approach is 0.241, when γu = 3.429 and increasing γu does not reduce

γy further indicating a fundamental limitation. Though not possible for all dis-

turbance directions, perfect control can be achieved for disturbances confined

to their controllable subspace with inputs having magnitude equal to or larger

than 15.303 [18]. Ma et al. [18] do not impose any restrictions on the con-

troller. For this problem, however, a linear feedback-based controller provides

same level of performance as the unrestricted controller showing that linear

feedback-based controller is optimal; see also Remark 3.

Example 6 Next, we consider the calculation of largest allowable disturbance

for the Tennessee Eastman process [16]. This example was earlier considered by

Kookos and Perkins [4], where the original process was stabilized using a subset

of variables. The stabilized process has 5 outputs, 5 inputs and 7 disturbances.

The steady-state gain matrices for the stabilized process are available in [4].

[Table 2 about here.]

The magnitude of the largest allowable disturbances computed using the inte-

ger programming formulation [4] are compared with the corresponding values

calculated using the L1/Q approach for different combinations of disturbances
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in Table 2. Note that due to the practical assumption of a linear feedback-based

controller, the allowable disturbance magnitude calculated using the L1/Q ap-

proach is lower than the minimax formulation, which allows for non-linear and

online optimization-based controllers. In all cases, the disturbance magnitude

calculated using the two alternate approaches is reasonably close. The integer

programming formulation requires about 0.5 seconds for solving this problem

for the different disturbance scenarios [4]. In comparison, the L1/Q approach

requires at most 0.03 seconds for the different cases on a Pentium IV 3.2 GHz

PC, showing computational efficiency and better scalability. We also note that

the largest difference between the two approaches is seen, when only distur-

bance d6 is considered. It can be shown easily that for single disturbance, the

minimax and L1/Q formulations are identical for the steady-state case. Then,

the apparent difference is due to the typographical errors in [4].

Example 7 The previous two examples dealt with steady-state case only. Here,

the usefulness of formulations for frequency-wise computation and dynamic

systems is illustrated using fluid catalytic cracker (FCC) process earlier con-

sidered by Hovd and Kookos [2]. The unscaled dynamic model for this process

is given by Wolff [9]. In this paper, we use the following scaling matrices such

that the allowed disturbance magnitude is 1.

Dy = diag





3 2 3



 ; Du = diag





3 30 4.75 × 10−4



 ; Dd = diag





5 5 4





For this process, perfect control is possible at steady-state using a linear ra-

tional controller. Hovd and Kookos [2] made a similar observation using an

integer programming formulation. Thus, there is no limitation in using a linear

controller, at least at steady-state.

18



[Fig. 1 about here.]

Next, we consider the frequency-wise computation of minimum output error.

Hovd and Kookos [2] presented lower and upper bounds on minimum output

error using polyhedral approximations. The minimum output error calculated

using the L1/Q approach, and the lower and upper bounds computed by Hovd

and Kookos [2] are shown in Figure 1, where the close proximity of the solution

obtained using L1/Q approach and Hovd and Kookos’s lower bound should be

noted. Note that the L1/Q approach gives an exact value if we require the con-

troller to be linear, causal and feedback-based, but it provides an upper bound

on the minimum output error in comparison to the minimax formulation. This

happens as in L1/Q approach, the controller and hence the manipulated vari-

ables are restricted, but the disturbances are still allowed to take all possible

values (as the minimax formulation). This shows that for the FCC process,

the lower bound computed by Hovd and Kookos [2] is tighter in comparison to

the upper bound.

[Fig. 2 about here.]

Finally, we consider the dynamic case. The continuous-time model is dis-

cretized using a sampling time of 2 minutes, for which FIR models having

order N = 150 suffice. The order of the Youla parameter Q is increased se-

quentially and no further improvements are seen for NQ ≥ 18. This results

into a sparse linear program with 2863 variables and 5406 constraints. The

variation of minimum output error for different values of γu is shown in Fig-

ure 2. It is interesting to note that the minimum output error reduces sharply

for small increments in γu intially, but requires much larger increments in γu

for similar reductions, as we get closer to the perfect control case. For exam-

19



ple, when γu is increased from 0.5 to 1, minimum output error decreases from

7.4 to 0.55. However, decreasing the minimum output error from 0.1 to 0.05

requires increasing γu from 112.61 to 138.34 (not shown in Figure 2).

Example 8 To demonstrate the effect of non-minimum phase zeros on the

minimum output error, we consider

G(z−1) =
0.05

1 + a

1 + a z−1

1 + 0.5 z−1 + 0.25z−2
; Gd(z

−1) =
0.5 z−1

1 + 0.5 z−1
(16)

where G(z−1) has a zero at z = −a (non-minimum phase for a ≥ 1). The

process gain has been scaled by the factor (1+a) such that it remains constant

for all values of a. For this process, we use N = 300 and NQ = 25. The

variation of minimum output error with the location of the zero for γu = 1 is

shown in Figure 3. For this case, the minimum output error only shows minor

variations with zero location indicating that the non-minimum phase zero puts

no serious limitations and the performance is primarily limited by the bound

on the manipulated variable.

[Fig. 3 about here.]

When γu is increased to 100, the minimum output error remains close to 0.5

for minimum phase G(z−1). In this case, the performance is limited by the unit

time delay. By canceling the controller-dependent terms, as is usually done in

minimum variance control literature [17], it can be analytically shown that

0.5 is the optimal value for minimum output error for the cheap control case.

For non-minimum phase G(z−1), the minimum output error is much larger as

compared to the minimum phase G(z−1) indicating that the limitation is due

to unstable zero. It shall also be noted that when the zero recedes away from

the unit disc, the limitation due to unstable zero decreases, as is usually the
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case [8].

4 Conclusions

We used a Youla parametrization and L1 optimal control based (L1/Q) ap-

proach for practical and efficient computation of the disturbance rejection

measures proposed by Skogestad and Wolff [1]. The approach taken in this

paper is numerical and explicit (and possibly approximate) characterization

of the limitations on the achievable output performance with bounded inputs

is an issue for future research. To this end, the reader is referred to [18], where

explicit conditions for judging the feasibility of perfect control are derived.

For the various numerical examples considered in this paper, it is found that

a linear feedback-based controller can provide nearly the same level of perfor-

mance as an online-optimization based controller for asymptotic rejection of

constant and sinusoidal disturbances. In general, however, the use of a linear

feedback-based controller can be conservative. Future research will focus upon

extending the results of this paper to online-optimization based controllers,

e.g. model predictive controllers.
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Table 1
Comparison for minimum output error for blown film extruder (steady-state)

Case Bilinear [3] L1/Q approach (This work)

(Online optimization) (Linear feedback)

k = 1, r = 0.7 0.783 0.783

k = 1, r = 0.3 0.894 0.935

k = 0.5, r = 0.3 0.382 0.409

29



Table 2
Comparison for largest allowable disturbances for Tennessee Eastman process
(steady-state)

Case Integer Programming [4] L1/Q approach (This work)

(Online optimization) (Linear feedback)

d1 − d7 0.392 0.385

d1 0.601 0.601

d2 1.273 1.273

d6 1.302 1.231

d7 3.368 3.368

d1, d2, d7 0.393 0.386
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