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Abstract:
In many cases, optimal operation for a plant is the same as maximum throughput.
In this case a rigorous model for the plant is not necessary if we are able to
identify the bottleneck. Optimal operation is the same as maximum throughput in
the bottleneck. If the bottleneck does not move, this can be realized with single-
loop controller from the throughput manipulator to the bottleneck. However, if the
bottleneck moves, single-loop control would require reassignment of loops which is
undesirable. A better approach is then to use a multivariable coordinator controller
since input and output constrains are directly included in the problem formulation.
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1. INTRODUCTION

Real-time optimization (RTO) offers a direct
method of maximizing an economic objective
function. Typically, RTO systems are model-
based, closed-loop systems whose objective is to
maintain the process operation as nearly as pos-
sible to the optimum plant operation (Zhang and
Forbes, 2000). Lu (2003) claims that the wide use
of MPC establishes a solid foundation for large-
scale optimization. Dynamic coordination among
MPC controllers is a key to tight integration be-
tween advanced process control and plant wide
optimization.

In many cases the prices and market conditions
are such that real-time optimization of the plant
is the same as maximizing plant throughput. The
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maximum throughput in a plant (network) is lim-
ited by the ”bottleneck” of the network. In order
to maximize the throughput, the flow through
the bottleneck should be at its maximum flow.
In particular, if the actual flow at the bottleneck
is not at its maximum at any given time, then
this gives a loss in production which can never
be recovered (sometimes referred to as a ”lost
opportunity”). Maximize throughput in a network
is a common problem in several settings (Phillips
et al., 1976; Ahuja et al., 1993). In the special
but important case of a linear network, optimal
operation is the same as maintaining maximum
flow through the bottleneck(s) (max-flow min-
cut theorem). A detailed nonlinear network model
is not necessary in this simple case because the
objective is to identify the active ”bottleneck”
constraint and implement maximum throughput
at the bottleneck. If the bottleneck is fixed, a
single-loop controller based on manipulating the



throughput can be used (Skogestad, 2004). If the
bottleneck moves, a coordinator MPC (Aske et
al., 2006) is suitable because of its ability to han-
dle constraints in its process inputs and outputs
(Qin and Badgwell, 2003) and because the local
MPCs can be used to estimate the available ca-
pacity in each unit. This paper discusses these two
approaches in more detail.

2. BACKGROUND

2.1 Inventory control

Inventory control deals with how the mass balance
is maintained in the plant. A chemical plant has
usually a single ”throughput manipulator” (TPM)
which indirectly through the process and product
requirements determines all the feed and product
rates. The main exception where we have more
than one TPM, is if there are several parallel
trains from feed to product.

Definition 1. (Price and Georgakis, 1993; Price et
al., 1994). Throughput manipulator (TPM). The
TPM is the degree of freedom used to set the
throughput in the primary process path (from
the major feed streams to the major products).
Systems with parallel trains from feed to product
have one TPM for each train.

Price and Georgakis (1993) describe two kinds of
TPMs:

• Explicit TPM - flow on a primary path (from
feed to product)

• Implicit TPM - flow not an primary path,
e.g. a heat duty

There are three basic schemes for inventory con-
trol (see Figure 1), depending on where in the
process the TPM is located (Buckley, 1964; Price
et al., 1994):

• Scheme 1. Feed as TPM (given feed): Inven-
tory control system in the direction of flow
(conventional approach)

• Scheme 2. Product as TPM (”on demand”):
Inventory control system opposite to flow

• Scheme 3. TPM inside plant: Radiating in-
ventory control

The selection of throughput manipulator is im-
portant, because the chain of level controls need
to be constructed to radiate outward from the
throughput manipulator to obtain self-consistency
(Price and Georgakis, 1993), which is that the
flow is maintained through the plant by use of
the inventory loops only.

LC LC LC LCTPM

Scheme 1: Throughput manipulator at feed, resulting control in the direction of flow

LC TPMLC LC LC

Scheme 2: Throughput manipulator at product, resulting in control in the direction opposite to flow

LC LC LCTPM LC

Scheme 3: Throughput manipulator inside plant resulting in radiating inventory controls

Fig. 1. Basic schemes for inventory control

2.2 Modes of optimal operation

Most process plants have two main modes in terms
of optimal operation:

Mode 1. Given throughput. The objective is then
maximum efficiency, that is, minimize utility (en-
ergy) consumption for the given throughput. This
mode of operation occurs when (a) the feed rate is
given (or limited) or (b) the product rate is given
(or limited, for example, by market conditions).

Mode 2. Maximum throughput. The maximum
throughput is the largest possible given through-
put and is independent of cost data. This mode
is optimal when the product prices are high and
feed is available.

This paper focuses on mode 2. There is also a
third, but less common mode:

Mode 3. Optimized throughput. This mode of
operation occurs when feed is available (feed rate
is a degree of freedom), but where the increase in
production cost becomes large so that is not opti-
mal to go all the way to maximum throughput.

Mathematically, optimal operation in all three
cases is to minimize the cost J (maximize the
profit −J), subject to satisfying given specifica-
tions and model equations (f = 0) and opera-
tional constraints (g ≤ 0):

min
u

J(x, u, d) (1)

s. t. f(x, u, d) = 0

g(x, u, d) ≤ 0

Here u are the manipulated variables (including
the feed rates), d the disturbances and x the (de-
pendent) state variables. A typical profit function
is

−J =
∑

i

pPi
·Pi−

∑

i

pFi
·Fi −

∑

i

pQi
·Qi (2)

where Pi are products, Fi are feeds, Qi are utilities
(heating, cooling, power), and p indicates the price
for each of the element.

• In mode 1, the feed rates Fi are given and the
optimization problem is modified by adding
a set of constraint, Fi = Fi0 (alternatively,
the product rates could be given).



• In mode 2 (maximum throughput), the feed
rates Fi are degrees of freedom, and the cost
data are such that we have an constrained
optimum with respect to the feed rates (i.e.
dJ/dFi < 0). Increasing Fi above its optimal
(maximum) value gives infeasible operation.

• In mode 3 (optimized throughput), the feed
rates Fi are degrees of freedom, and the cost
data are such that we have a unconstrained
optimum with respect to the feed rates (i.e.
dJ/dFi = 0). Increasing Fi above its optimal
value is feasible, but gives a higher cost J .

In terms of location of the TPM, scheme 1 (in
Figure 1) is the natural choice for mode 1a (given
feed), scheme 2 is the natural choice for mode
1b (given product), whereas scheme 3 is the best
choice for modes 2 and 3 where the optimal
throughput is determined by some conditions in-
ternally in the plant.

2.3 Maximum Throughput (mode 2)

In mode 2 the objective is to find a feasible so-
lution with maximum throughput, and since the
maximum throughput is independent of cost data,
we can simplify the cost function J in Equation
(1). In the general case with multiple (indepen-
dent) feeds, the throughput may be defined as
the sum of the weighted feeds, and we have Fw =∑

i wiFi. The maximum throughput is then the
solution to the problem

max
u

Fw (3)

s.t. f = 0

g ≤ 0

Remark 1: For the case with a single feed this
may be written on the form J = −F in Equation
(1) and we note that dJ/dF = −1 (also at
the optimum). Remark 2: For multiple feeds, the
simplest case is were all the feeds have equally
weight, wi = 1. Remark 3: More generally, wi

should express the relative value of processing the
various feeds, but this value may be difficult to
find. Thus, to find the maximum throughput for
the case with multiple feeds, it may be better to
use the economic cost function in Equation (2).

3. BOTTLENECK

We consider here maximum throughput (mode 2),
which in practice is achieved by maximizing the
flow through the bottleneck.

Definition 2. Maximum flow for a unit. The max-
imum flow (capacity) of a unit is the maximum
feed rate that the unit can accept subject to

achieving feasible operation. Mathematically, this
corresponds to solving the maximum flow problem
in Equation 3 for a given unit i, that is, to find the
maximum value of Fi that satisfies the constraints
fi = 0 and gi ≤ 0 for the unit.

Definition 3. Bottleneck (operation). A unit is a
bottleneck if maximum throughput (maximum
network flow for the system) is obtained by oper-
ating this unit at maximum flow (with no available
capacity left). In some cases the bottleneck can
not be located to a specific unit, but rather to a
system of units (”system bottleneck”).

Definition 4. Bottleneck constraints (operation).
The active constraints at maximum flow in a bot-
tleneck unit are called the bottleneck constraints.
If one of the active constraints is a flow on the pri-
mary path, then this is called a (direct) bottleneck
manipulator.

Definition 5. Back off. Back off is the deviation
between set point and optimal value (constraint)
which is primarily introduced to avoid infeasibil-
ity dynamically in the presence of disturbances
(Govatsmark and Skogestad, 2005). Typically,
back off is required for output variables like pres-
sure or temperature. The requirement of stable
operation may require back off in input variable.
For example, in a reactor, cooling may be a bottle-
neck constraint. If the cooling is used to stabilize
the reactor temperature, then some back off from
the maximum cooling rate is required to avoid
saturation.

At maximum throughput there is one bottleneck
for each TPM along the primary path. The TPM
should be used to keep (control) the flow through
the bottleneck as close as possible to its maximum.

These concepts are closely related to the problem
of maximum flow in networks considered in the
operations research community, (e.g. Phillips et
al. (1976)). Such a network consists of sources,
arcs, nodes and sinks. An arc is like a pipeline
with given (maximum) capacity, and the nodes
may be used to add or split streams. The main
restriction is that the flow must satisfy conser-
vation at the nodes. This may be written as a
linear programming problem, and the trivial but
important solution is that the maximum flow is
dictated by the network bottleneck. To see this,
one introduces ”cuts” through the network, and
the capacity of a cut is the sum of the capacity of
the forward arcs that it cuts through. The max-
flow min-cut theorem says that the maximum flow
through the network is equal to the minimum ca-
pacity of all cuts (the minimal cut). We then reach
the important insight that maximum network flow
(maximum throughput) requires that all arcs in



some cut have maximum flow, that is, they must
all be bottlenecks (with no available capacity left).

In terms of process engineering systems, a unit
with a single product is an arc, and flow splits
and flow junctions are nodes. In network the-
ory, the flow splits in nodes are free variables,
like crossovers between parallel trains in ”our”
processes. A unit with several products (e.g. a
distillation column) is a combination of an arc
and a node, but there is usually a limited degree
of freedom to adjust the split because of product
constraints. To get a linear network the split factor
must either be constant or a free variable.

To apply network theory to process engineering
systems, we first need to obtain the capacity
(maximum flow) of each unit (arc). This is quite
straightforward, and involves solving a (nonlinear)
feasibility problem for each unit (see Definition 2).
The capacity may also be computed on-line, for
example, by using local MPC implementations as
proposed in the next section.

Assumption: The mass flow through the network is

represented by a set of units (where each unit capacity

is obtained locally) with linear flow connections.

Note that the nonlinearity of the equations within
a unit is not a problem, but rather the possible
nonlinearity in terms of flows between units. The
main problem of applying linear network theory
to process engineering systems is therefore that
the flow split in a unit, e.g. a distillation column,
is not constant, but depends on the state of its
feed, and, in particular, of its feed composition.
The main process unit to change composition
is a reactor, so decisions in the reactor may
strongly influence the flow in downstream units
and recycles. Another important decision that
affects composition, and thus flows, is the amount
of recycle. One solution to avoid these sources of
nonlinearity is to treat certain combinations of
units, like a reactor-recycle system, as a single
combined unit as seen from maximum throughput
(bottleneck) point of view.

In summary, we derive from the max-flow min-cut
theorem the following useful insights (rules) about
the maximum flow solution for a linear network
which satisfies the assumption:

Rule 1. At maximum throughput the network
must have at least one bottleneck unit.

Rule 2. Additional independent feeds and flows
splits (”independent” means that they are not in-
directly determined by other flows in the process,
e.g. a crossover flow between processing trains)
may give rise to additional bottlenecks, and the
idea of ”minimal cut” may be used to identify the
location of the corresponding bottleneck units.

The flow should be at maximum at the bottle-
neck(s). This has implications for control of the
bottleneck unit (Rule 3), and in particular for use
of the throughput manipulator (Rules 4, 5 and 6).

Rule 3. Focus on the bottleneck unit. To maxi-
mize throughput, the flow through the bottleneck
should be as close as possible to its maximum
at any given time. This requires ”tight” control
of the bottleneck unit, as any deviation from
optimal operation in the bottleneck unit due to
poor control (including any deviation or back off
from the bottleneck constraints) implies a loss in
throughput (which can never be recovered).

Rule 4. Use TPM for control of the bottleneck
unit. This follows because TPM is the degree
of freedom for throughput which according to
Rule 3 should be maximized at the bottleneck.
In practice, TPM is often used to control one of
the bottleneck constraints (see Definition 4).

Further refinements of Rules 3 and 4 are given by
Rules 5 and 6.

Rule 5. TPM should be located so that control-
lability of the bottleneck unit is good (Skogestad,
2004). This is to reduce the throughput loss due to
imperfect control. For example, if TPM is used to
control one of the bottleneck constraints then the
effective time delay from TPM to its bottleneck
constraint should be small. Selecting TPM as a
bottleneck manipulator (if there is one; see Defi-
nition 4) is a good choice as it directly maximizes
the flow through the bottleneck.

Rule 6. Bottlneck unit: focus on tight control on
the variable with the most costly back off in terms
of loss in throughput. This follows because back
off is needed on the constraint variables in the
presence of disturbances.

Rule 7. Self-consistency of the inventory control
system. For the material balance to be main-
tained, inventory control must be in the direction
of flow downstream of TPM, and in direction
opposite to flow upstream of TPM (see Figure 1).

The ideas of linear network theory may be very
useful for ”our” systems. Although the linear-
ity assumptions will not hold exactly in most of
”our” systems, the bottleneck result is neverthe-
less likely to be optimal in most cases.

4. REALIZE MAXIMUM THROUGHPUT

In terms of realizing maximum throughput there
are two problems:



(1) Identify the bottleneck(s)
(2) Implement maximum flow at the bottleneck

In the simplest case, the bottleneck is fixed and we
can use single-loop control. However in the general
case model based control is proposed.

4.1 Fixed bottleneck: single-loop control

Assume that the bottleneck is always located in
the same unit. In this case single-loop control is
sufficient and the following discussion is based on
Skogestad (2004).

As we increase the throughput we reach a point
where the bottleneck reaches its maximum capac-
ity and becomes a bottleneck for further increase
in production. In addition, as we reach the bot-
tleneck constraint, we lose a degree of freedom
for control, and to compensate for this we have
several options:

(1) Manual control: Reduce the throughput and
”back off” from the constraint in the bottle-
neck unit (gives economic loss).

(2) Use the throughput manipulator as a degree
of freedom for control of the (new) bottleneck
constraint. For example, if the new constraint
is a manipulated variable that saturates, then
there are two options:
(a) Fix the manipulated variable at its maxi-

mum and use the bottleneck manipulator
to take over its ”lost” control task. Prob-
lem: May get poor control due to ”long”
loop (long physical distance).

(b) Keep the existing loop in place, and in-
troduce an outer flow control loop where
TPM is adjusted on a longer time scale
to reset the inner loop set point. This
is known as input resetting (Skogestad
and Postlethwaite, 2005), mid-ranging
control (Allison and Isaksson, 1998) or
a valve positioning scheme (Shinskey,
1988). Problem: Large back-off in flow
(and loss in throughput) if ”long” loop,
that is, large effective delay from TPM
to bottleneck unit.

To avoid this slow (”long”) loop one may either:

(3) Install a surge tank upstream of the bottle-
neck, and reassign its outflow to take over
the lost control task, and use the throughput
manipulator to reset the level of the surge
tank, or

(4) Move the throughput manipulator to the
bottleneck and reassign all inventory control
loops between the bottleneck and the original
throughput manipulator. The reassignment
is to ensure self-consistency (Rule 7) and may
involve many loops.

All these options are undesirable. A better so-
lution is to permanently move the throughput
manipulator to the bottleneck unit. The justifi-
cation for this rule is that the economic benefits
of increasing the production are usually very large
(when the market conditions are such), so that it
is important to maximize flow at the bottleneck.
On the other hand, if market conditions are such
that we are operating with a given feedrate or
given product rate, then the economic loss im-
posed by using a outer cascade loop to adjust
the production rate at the bottleneck (somewhere
inside the plant) is usually zero, as deviations
from the desired feed or production rate can be
averaged out over time, provided we have storage
tanks for feeds or products.

However, one should be careful when reassigning,
as also other considerations may be important,
such as the control of the individual units (e.g.
distillation column) which may be affected by
whether inflow or outflow is used for level control.

4.2 Moving bottleneck: multivariable control

If the bottleneck may move in the plant, then
single-loop control requires reassignment of loops.
In addition, the bottleneck needs to be identi-
fied. A better approach is to use a multivariable
controller were input and output constraints are
included directly in the problem formulation (e.g.
MPC).

The bottleneck can be identified (Problem 1) by
using a detailed steady-state model of the plant.
However, there are two drawbacks here. First, a
detailed model for the whole plant is expensive to
obtained, time consuming to solve and second, the
models may not be accurate.

A better approach is to use a multivariable co-
ordinator controller (Aske et al., 2006), a sepa-
rate MPC installed at the plant. The local MPC
on each unit is slightly extended to estimate re-
maining feed capacity, based on the models and
constraints already available. The estimate of re-
maining feed capacity is solved in the steady state
part of the MPC at each sample. The calculations
are executed at each sample and the estimate
will tend to be better when operating closer to
the bottleneck, and this is what is important for
maximizing throughput.

Using the estimate of the remaining capacity
in each unit, the coordinator MPC can use the
throughput manipulators (usually feeds) and also
any internal crossovers and splits to maximize the
throughput subject to keeping the units within
its capacity. A case study using this method is
described in Aske et al. (2006). In the case the
conventional inventory control (scheme 1 in Figure



1) is considered and feeds, feed splits and crossover
are used to maximize the plant throughput.

Also when using coordinator MPC, there may be a
”long” loop between the bottleneck and the TPM
(feeds). Therefore is back off needed on the con-
straint variables in the presence of disturbances
(Rule 6). There are two ways of avoiding this
long loop. First, the TPM can be moved closer
the the expected bottleneck unit. This requires
(permanent) reassignment of the level loops. The
idea is that the ”mean” distance to the bottleneck
unit will be smaller, which is similar to the argu-
ments of Price and Georgakis (1993). However,
if the bottleneck moves the distance to the loop
may still be longer than desired. Also, moving the
TPM inside the plant requires that the inventory
control will be in both direction of flow and direc-
tion opposite to flow in the plant, to ensure self-
consistency in the plant (Rule 7), and this may be
undesirable, for example because it adds confusion
for engineers and operators.

Another way for reducing the long loop is to use
inventories (buffer tanks etc.) as dynamic degrees
of freedom to maximize the flow through the
bottleneck unit. The coordinator can manipulate
on the level control set points in the hold-up
volume or directly manipulate the bias on the
flow. The first approach has the disadvantage that
is depends strongly on the tuning of the inventory
loops. For example, if the hold-up level control is
tuned to work as a buffer volume, the response
from the level control set point to the flow change
will be slow. The second approach where the
coordinator MPC can manipulate directly on the
level control valve depends less on the tuning
of the level loop in the regulator control layer.
The disadvantage that it requires the bias for the
inputs is available in the MPC layer.

By using inventories, the flow rate through a
bottleneck can be corrected faster due to shorter
dead time and settling time in the plant, compare
to using only the TPMs. This leads so a reduction
in back off and then again an increase in the
production.

5. CONCLUSION

In many cases, the optimal operation for a plant is
the same as maximum throughput. The concepts
are closely related to maximum flow in networks
considered in operation research community. The
max-flow min-cut theorem can be used in process
engineering systems under the assumption of the
mass flow through the network can be represented
as a set of units with linear flow connections.
The theorem says that maximum throughput is
obtained with maximum flow in the bottleneck.

If the bottleneck is fixed in the same unit, single-
loop control from the bottleneck to the TPM can
be used to maximize throughput. If the bottleneck
move, MPC to maximize throughput is an alter-
native approach. In the latter case, the dynamic
response can be improved by using inventories as
additional dynamic degrees of freedom.
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