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Abstract

The null space method provides a simple way of selecting measurement combi-
nations as controlled variables. The objective is to obtain self-optimizing control,
which is when we can achieve near-optimal steady-state operation with constant
setpoints for the controlled variables, without the need to re-optimize when new
disturbances perturb the plant. For small disturbances, the new method yields op-
timal controlled variables c = Hy that are linear combinations of measurements y.
The matrix H is easily obtained to be in the left null space of the optimal sensi-
tivity matrix. The requirement is that we at least have as many measurements as
there are unconstrained degrees of freedom, including disturbances, and that the
implementation error can be neglected.

Keywords: Process control, Control structure selection, Optimizing control, Un-
certainty

1 Introduction
Although not widely acknowledged by control theorists, controlling the right variables
is a key element in overcoming uncertainty in operation 1;2. This paper focuses on the
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Figure 1: Block diagram of a feedback control structure including an optimizer layer.

interaction between the local optimization layer and the feedback control layer, see
Figure 1, and more specifically on the selection of the controlled variables that link
these layers. Two sub-problems are important here:

1. Selection of the controlled variables c: This is a structural decision which is
made before implementing the control strategy.

2. Selection of setpoints cs: This is a parametric decision which can be done both
online and offline.

Here, we focus on the first, structural problem of finding the controlled variables and we
will assume constant nominal optimal setpoints. We will in this paper consider the case
of linear combination, that is , c = Hy where H is a constant matrix. From Figure 1 we
see that external disturbances (d) and the manipulated inputs (u0) affect the process,
and information is available through the measurements y. Single measurements or
functions or combinations of the measurements may be used as controlled variables
(c). The objective is to obtain self-optimizing control 2, which is when we can achieve
near-optimal steady-state operation with constant setpoints for the controlled variables,
without the need to re-optimize when new disturbances perturb the plant. As seen from
Figure 1, there are two sources of uncertainty that will make a constant setpoint policy
non-optimal:

1. Disturbances d: External unmeasured disturbances.

2. Implementation error n: The sum of the effect of the measurement error and
the control error introduced by the feedback loop.

Ideas related to self-optimizing control have been presented repeatedly in the pro-
cess control history, but the first quantitative treatment was that of 1. A quantitative
method for selecting controlled variables requires that optimal operation is defined in
terms of a scalar cost function J0 to be minimized. A key point is that the controlled

2



variables are selected mainly in order to minimize the effect of uncertainty when imple-
menting optimal operation. If we keep constant setpoints for the controlled variables,
then there will be a loss L = J0 − Jopt

0 compared to the truly optimal operation, and the
objective is to find “self-optimizing” variables with a small loss.

Skogestad 2 defined the problem more carefully, linked it to previous work, and was
the first to include also the implementation error. He mainly considered the case where
single measurements are used as controlled variables, that is, H is a selection matrix
where each row has a single 1 and the rest 0’s. The loss for expected disturbances and
implementation errors was evaluated using a “brute-force” approach. An important
advantage of a brute-force evaluation is that one can also identify controlled variables
that may yield infeasability for certain disturbances or implementation errors. This was
also considered in more detail by 3 for the Tennessee-Eastman challenge problem and
4 who suggested to adjust the setpoints to achieve feasibility. However, the computa-
tional load of the “brute-force” method can be very large, so local methods based on
linearizing the behavior around the steady-state are attractive.

Skogestad 2 reviewed previous work on the selection of controlled variables for
self-optimizing control.

More recent work includes 2, which introduces the approximate maximum gain rule
as a simple method for selecting controlled variables. In the multivariable case, the gain
is the minimum singular value of the scaled steady-state transfer matrix from u to c. A
similar simple heuristic rule is presented in 5.

Halvorsen et al. 6 considered the approximate maximum gain method in more detail
and also proposed an exact local method which may be used to obtain the optimal mea-
surement combination H. However, this method is also computationally unattractive
and in addition somewhat difficult to use.

Hori et al.7 illustrate the ideas introduces in this paper on indirect control. Indirect
control can be formulated as a subproblem of the null space method presented in this
paper.

Related work is presented in 8;9;10 on measurement based optimization to enforce
the necessary condition of optimality under uncertainty. The ideas are illustrated on
batch processes. Francois et al. 11 extends these ideas and focus on steady-state optimal
systems, where a clear distinction is made between enforcing active constraints and
requiring the sensitivity of the objective to be zero.

Guay and Zhang 12 present similar ideas on measurement based dynamic optimiza-
tion, no process model is necessary, however, the structure of the objective function
must be known in addition to the introduction of an external and known signal in the
process in order to find the optimal inputs to use under the influence of uncertainty.

The objective of this paper, is to derive a much simpler local method for selecting
the optimal measurement combination H for the special case with no implementation
error. In fact, the method is so simple that the second author (Skogestad) assumed
must be wrong when it was originally proposed by the first author (Alstad). We have in
this chapter attempted to keep the mathematics as simple as possible. A more detailed
comparison with previous results is presented in a forthcoming publication (see also
13).
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2 Problem formulation
We assume that the operational goal is to minimize the cost J0 while satisfying equality
and inequality constraints. The (original) constrained steady state optimization prob-
lem can, for a given disturbance d be formulated as:

min
x0,u0

J0(x0,u0,d) (1)

subject to

f(x0,u0,d) = 0
g(x0,u0,d) ≤ 0 (2)
y = fy(x0,u0,d)

where x ∈ Rnx , u0 ∈ R
nu0 and d ∈ Rnd are the states, inputs and disturbances, re-

spectively. f is the set of equality constraints corresponding to the model equation, g
is the set of inequality constraints which limits the operation, e.g. physical limits on
temperature measurements or flow constraints and y the measurements.

We assume here that we control all active constraints (assumption A3 below). Thus,
we split the original input vector u0 (degrees of freedom) into:

• u′: vector of degrees of freedom used for controlling the active constraints.

• u : vector of remaining degrees of freedom with dimension nu not used for active
constraints.

Remark. It does not actually matter how the original degrees of freedom u0 are divided into the
new subsets of manipulated variables selected for controlling the active constraints (u′) and the
“unconstrained” inputs u, as long as the problem remains well posed. If all the inputs are used
for controlling the active constraints, u′ = u0, then implementation is simple by the use of active
constraint control 14;15.

We assume that online information about the system behavior is available from the
measurements y: The issue in this paper is find a set of nu controlled variables c =
H(y) associated with the “unconstrained” degrees of freedom u. In the measurement
vector y, we generally include also the input vector u0, including the inputs u′ that
have been selected to the control active constraints. However, the measurements of the
active constraints are not included in y , since they are constant and thus provide no
information about the operation.

With the active constraints controlled, we can consider the following unconstrained
optimization problem where the scalar cost function J is to be minimized with respect
to the nu remaining degrees of freedom (inputs) u:

min
u

J(u,d) (3)

Here the equality constraints, including the model equations and active constraints, are
implicitly included, so J is generally not a simple function of u and d.
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The loss is defined as the difference between the actual cost and the optimal cost 6.

L = J(c,d) − J(copt(d),d) ≈
1
2

(c − copt)T Jcc(c − copt) (4)

where the approximation holds for small deviations from the nominal optimum. We
must assume the controlled variables to be independent for the Hessian matrix Jcc to
be nonsingular 6. With a constant setpoint policy, we have c = cs + n where n is the
implementation error. In this paper, we assume n = 0 (assumption A4 below) and
assume that the setpoint is nominally optimal, cs = copt(d∗) where d∗ is the nominal
value of the disturbance. The loss for small deviations from the nominal optimum is
then

L =
1
2

(

copt(d∗) − copt(d)
)T

Jcc

(

copt(d∗) − copt(d)
)

(5)

This gives the following insight (which is not very surprising):

With independent controlled variables c and no implementation error, a constant set-
point policy is optimal if copt(d) is independent of d, i.e. copt(d) − copt(d∗) = 0.

3 The null space method
We consider the unconstrained optimization problem as given by eq. (3), that is, we as-
sume “active constraint control” where all optimally constrained variables are assumed
to be kept constant at their optimal values. The goal is to find a linear measurement
combination c = Hy to be kept at constant setpoints cs. Here H is a constant nu × ny

matrix and y is a subset of the available measurements.
In summary, we make the following assumptions:

A1 Steady-state: We consider only steady-state operation. The justification for this
is that the economics of operation is primarily determined by the steady-state.
Of course, this assumes that we have a control system in place that can quickly
bring the plant to its new steady-state.

A2 Disturbances: Only disturbances that affect the steady-state operation are in-
cluded.

A3 Active constraint control: We assume that the same active constraints remain
active for all values of the disturbances and that we control these constraints.

A4 No implementation error: Here the implementation error is the sum of the control
error and the effect of the measurement error. The assumption of no steady-state
control error is satisfied if we use a controller with integral action. It is a more
serious assumption to neglect the measurement error, so the method implicitly
assumes that the measurements have been carefully selected.

We then have the following result:
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Theorem 3.1 The null space method. Assume that we have nu independent uncon-
strained free variables u, nd independent disturbances d, ny independent measure-
ments y, and we want to obtain nc = nu independent controlled variables c that are
linear combinations of the measurements

c = Hy (6)

Let

F =
(

∂yopt

∂dT

)∗

be the optimal sensitivity matrix evaluated with constant active constraints. If ny ≥

nu + nd, it is possible to select the matrix H in the left null space of F, H ∈ N(FT ), such
that we get

HF = 0

With this choice for H, keeping c constant at its nominal optimal value gives zero loss
for small disturbance changes ∆d.

Proof: We first prove that selecting H such that HF = 0 gives zero disturbance loss. For small
disturbances, the optimal change in the measurements to a change in the disturbances can be
written

yopt(d) − yopt(d∗) = F(d − d∗) (7)

where

F =
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(8)

is the optimal sensitivity matrix evaluated at the nominal point ∗. From eq. (6) the corresponding
optimal change in the controlled variables is copt(d) − copt(d∗) = H(yopt(d) − yopt(d∗) and by
inserting eq. (7) we get

copt(d) − copt(d∗) = HF(d − d∗) (9)

From the insight stated in the previous section, the constant setpoint policy is optimal if

copt(d) − copt(d∗) = 0 (10)

which gives the requirement
HF(d − d∗) = 0 (11)

This needs to be satisfied for any (d − d∗) so we must require that

HF = 0 (12)

To satisfy this, we need to select H such that H ∈ N(FT ), and we next need to prove under which
conditions this is possible. The rank of the nc × ny matrix H is nu (because ny ≥ nc, nc = nu and
the controlled variables are independent). The rank of the ny ×nd matrix F is nd (because ny ≥ nd

and the disturbances are assumed independent). The fundamental theorem of linear algebra 17

says that the left null space of F (N(FT )) has rank ny − r where r = nd is the rank of F. To
be able to find a H of rank nu in the left null space of F we must then require, ny − nd ≥ nu or
equivalently ny ≥ nu + nd . �
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The ny×nd matrix F may be obtained numerically by perturbing the disturbances d
and re-solving the optimization problem in eq. (3) to obtain new optimal inputs uopt(d),
assuming that the active constraints are constant. Ganesh and Biegler 16 provide an
efficient and rigorous strategy for finding the optimal sensitivity based on a reduced
Hessian method. Note that we do not necessarily need an explicit model of the plant as
we can find the optimal sensitivity numerically. In addition, many process simulators
have built-in optimizers from which the optimal sensitivity F is easily available.

Numerically, H may be obtained from a singular value decomposition of FT . We
have FT HT = 0. Thus, selecting HT as the input singular vectors of FT corresponding
to zero singular values in FT gives an orthogonal basis.

Selecting H according to Theorem 3.1 is exact for small disturbance perturbations.

Example 3.1 Consider a simple example with one unconstrained degree of freedom
u, nu = 1, and one disturbance d, nd = 1. The cost function to be minimized during
operation (for varying d) is

J(u, d) = (u − d)2

Nominally d∗ = 0. We have advisable two measurements

y1 = 0.9u + 0.1d

y2 = 0.5u − d

Since ny = 2 = nu + nd and the two measurements are independent it is possible to find
a linear measurement combination

c = Hy =
[

h1 h2

]

[

y1
y2

]

= h1y1 + h2y2

where a constant setpoint gives zero disturbance loss, at least locally. We first need to
obtain the optimal sensitivity matrix F. Optimality is ensured when ∂J

∂u = 2(uopt−d) = 0
which gives uopt = d and Jopt = 0 ∀d. The corresponding optimal outputs are

yopt
1 = d

yopt
2 = −0.5d

and we see that FT = [1 − 0.5]. From the null space method the desired matrix H must
satisfy HF = 0, or

h1 f1 + h2 f2 = 0

h1 + h2(−0.5) = 0⇒ h1 = 0.5h2

The solution is non-unique. For example, selecting h2 = 1 gives

c = 0.5y1 + y2

Keeping this controlled variable at its nominally optimal setpoint cs = copt(d∗) = 0,
gives zero disturbance loss, as is easily verified. Generally, the loss will be zero only
locally, i.e. for small changes in d, but for this example the cost function is quadratic,
and the loss will be zero for any magnitude of the disturbance d.
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4 Discussion

4.1 Measurement selection
Intuitively, we would like to avoid using uncertain measurements yi when forming the
combination c = Hy. The main weakness with the null space method is that it does
not consider the measurement error, or more generally the implementation error. If we
have extra measurements, that is, ny > nu + nd, then we have extra degrees of freedom
in selecting H that should be used to reduce the sensitivity to measurement error. The
simplest approach is to select a subset of the “best” measurements such that we get
ny = nu + nd, but which should these measurements be? This is outside the scope of
this paper, and is treated in more detail a forthcoming publication on the extended null
space method (see also 13), but let us provide some results.

Let the linear model be

∆y = Gy∆u +Gy
d∆d = G̃y

[

∆u
∆d

]

(13)

where y has been scaled with respect to the expected measurement error, and u and d
have been scaled such that they have similar effects on the cost. It can then be shown
that a reasonable approach is to maximize the minimum singular value of the matrix
G̃y =

[

Gy Gy
d

]

from the combined inputs and disturbances to the selected measure-
ments. To understand why this is reasonable, we may imagine using the measurements
to determine the inputs and disturbances. For the case with ny = nu+nd, G̃y is invertible
and we get

[

∆u
∆d

]

= [G̃y]-1∆y (14)

In order to avoid sensitivity to measurement errors in y we want the norm of [G̃y]-1

to be small which is equivalent to wanting a large minimum singular value, σ(G̃y).
From (14) we also see why it is reasonable to require ny ≥ nu + nd in the null space
method, because this is the requirement for being able to uniquely determine from the
measurements all independent variables (inputs and disturbances).

4.1.1 Freedom in selecting H

Even for the case ny = nu + nd, there are an infinite number of matrices H that satisfy
HF = 0. This stems from the freedom of selecting basis vectors for the null space 17.
Let H0 be one such matrix, i.e. H0F = 0. For example, H0 may consist of the one set
of basis vectors that span the null space of FT . Then H = CH0 also satisfies HF = 0
provided the nc × nc matrix C is non-singular.

Actually, the degrees of freedom in selecting C (and H) are the same as the degrees
of freedom that are used in steady-state decoupling (or similar) in control. The linear
model for the selected controlled variables can be written

∆c = H∆y = HGy∆u +HGy
d∆d = G∆u +Gd∆d (15)

8



and the degrees of freedom in the matrix C may be used to affect G = HGy and
Gd = HGy

d. For example, it is possible to select H such that G = I, and we have a
decoupled steady-state response from u to c.

4.2 Disturbance elimination
The required number of measurements in the null space method, ny ≥ nu + nd, may be
a large if we have many disturbances (nd large). In practical applications, it is therefore
desirable to reduce the number of disturbances. Unfortunately, there does not seems to
be any simple rigorous procedure for eliminating unimportant disturbances, although
some approaches are discussed in Chapter 5 of 13.

It is obvious that we may eliminate disturbances di with
1. no steady-state effect on the measurements (y is independent of di, i.e., Gy

di
= 0)

and
2. no steady-state effect on the optimal operation (uopt is independent of di).

Note that we need to satisfy both conditions.
It could be argued that we may eliminate all “unobservable” disturbances that sat-

isfy condition 1, because we have no way of detecting them and thus correcting for
them. However, such disturbances may affect the optimal operation and result in large
losses, so an analysis based on neglecting them may be highly misleading. To achieve
acceptable operation in such cases, we need to obtain additional measurements, for ex-
ample, of the disturbance itself. One example would be a price change as is discussed
in more detail below. Also, we cannot eliminate all disturbance that have no effect on
optimal operation and thus satisfy condition 2. This is because the disturbance may
effect a measurement, and controlling this measurement will then result in a loss.

In practice, with too few measurements, one may eliminate some disturbances and
obtain the controlled variables c = Hy using the null space method, but one should
afterwards analyze the loss with all disturbances included. Alternatively, one may be
obtain the optimal combination numerically using the exact local method of Halvorsen
et al.6 or the extended null space method presented in a forthcoming publication (see
Rule 4 in Chapter 5 of 13).

4.2.1 Physical interpretation

The proposed null space method yields controlled variables that are linear combina-
tions of the available measurements. A disadvantage is that the physical interpretation
of what we control is usually lost. This is by no means a fundamental limitation, since
in principle we can control any signal from the process as long as they are indepen-
dent. Thus, if all measurements are regarded as signals, the concept of controlling a
combination of signals may be easier to grasp. If possible, one can choose to combine
measurements of one type, for instance only temperatures (e.g. in a distillation col-
umn) or only mass flows. In any case, we can scale variables such that the resulting
measurements are dimensionless, which is common in practice.
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4.2.2 Change in active constraints

A new set of optimal controlled variables (H) needs to be found for each set of active
constraints. If the active constraints change, this needs to be identified and some logic
is involved in order to switch to a new set of controlled variables. Thus, for a process
with a small operating window, where the active constraints shift with the disturbances,
other methods may be better suited for optimizing control, e.g. real-time optimization
(RTO) combined with Model predictive control (MPC). Alternatively, we could use the
ideas of15 on how to handle varying active constraints.

4.2.3 Non-observable disturbances and price changes

Self-optimizing control is based on using feedback to detect disturbances and optimally
adjust the inputs so as to achieve near-optimal operation. Thus, one must require that
the disturbances are observable (visible) in the measurements y. One example of a
“disturbance” that is not visible in the measurements is prices. However, prices pi do
enter in the objective function, because typically J =

∑

i pixi, and price changes will
change the optimal point of operation.

To handle price changes (or more generally disturbances that are not observable in
the measurements y), one must assume that the price (disturbances) is known (mea-
sured). Price changes can then be handled in two ways:

1. Adjust the setpoints in a feedforward manner. Then, for a price change ∆p we
have that

cs = cs(p∗) +HFp∆p (16)

where Fp =
(

dyopt

dpT

)

is the optimal sensitivity from the prices to the measurements.
2. Include the prices as extra measurements in y and use the regular procedure of

selecting self-optimizing control variables as above.
The first approach is probably the simplest and most transparent.

4.3 Controllability
All derivations here are based on steady-state models, and we must later check that
the candidate structure has acceptable controllability. If not, we may go back and look
for other measurements to use in the combination. Next we illustrate the null space
method on a gasoline blending example.

5 Gasoline blending example
A simple gasoline blending example is included to illustrate the null space method. In
practice, such a system is characterized by frequent price changes and thereby changes
in the active constraints, and better suited for an online-optimization approach. Nev-
ertheless, we want to use a constant setpoint policy and compare the control structure
synthesized using the null space method with other candidate controlled variables. The
system is illustrated in Figure 2 and consists of four gasoline feed streams with varying
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octane number and benzene concentration. The nominal data is given in Table 1. The
operational objective is to minimize the cost of the feed streams

min
u0

J =
i=4
∑

i=1

piṁi (17)

where pi and ṁi are the price and mass flowrate for stream i respectively, while satis-
fying the following constraints
• Produce ṁp = 1 kg/s of gasoline with
• minimum octane number of 98 (Co

p ≥ 98).
• the product stream should not contain more that 1 wt% benzene (Cb

p ≤ 1 wt%).
• the maximum flow rate for stream 4 is 0.4 kg/s, i.e. ṁ4 ≤ 0.4.

For the octane number we assume “linear mixing” on weight basis. The three mass
balances for total mass, benzene mass and octane are then all linear

∑

i

ṁi = ṁp

∑

i

Cb
i ṁi = ṁpCb

p

Here Co
i and Cb

i denote the octane and benzene concentrations for stream i, respectively.
The full set of manipulated variables are:

uT
0 = [ṁ1 ṁ2 ṁ3 ṁ4]

We assume that the available measurements are all the flows plus the octane and ben-
zene contents of the product:

yT
0 = [ṁ1 ṁ2 ṁ3 ṁ4 ṁp Co

p Cb
p]

ṁ1,

ṁp

ṁ2, Co
4

Co
3

Co
2

ṁ3,

ṁ4,

Co
p, Cb

p

Cb
1

Co
1
,

Figure 2: Illustration of the gasoline blending process, where four gasoline feeds are
blended to produce the product.
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Table 1: Nominal data for the gasoline blending example
Stream i Octane (Co

i ) Benzene (Cb
i ) [wt %] Price pi [Unit/kg]

1 99 2 1.85
2 105 0 2
3 95 0 1.20
4 99 0 (1 + ṁ4)

We consider a single disturbance, the octane of feed stream 3,

d = Co
3

The feed streams have different prices as shown in the last column of Table 1. For
streams (1 − 3) the prices are independent of the flow rate, while for stream 4 the price
depends on the flow rate. The latter is required in order to get an “interesting” problem
with unconstrained degrees of freedom. With a fixed price also for stream 4, we would
have linear problem, and from the theory of linear programming it would optimal to
use all degrees of freedom to satisfy active constraints, and there would be no need to
use the null space method.

The optimal solution for the nominal disturbance with an octane number of 95 is:

uopt
0

T
(d∗ = 95) =

[

0.000 0.196 0.544 0.260
]

(18)

The minimum cost is Jopt(d∗ = 95) = 1.3724. For a disturbance d = 97 (octane number
97 in stream 3) the optimal inputs are

uopt
0

T
(d = 97) =

[

0 0.075 0.725 0.20
]

(19)

with a cost of Jopt(d = 97) = 1.2600. We note that the following constraints are active
for all disturbances

ṁ1 = 0 Co
p = 98 ṁp = 1 (20)

With “active constraint control” this gives three controlled variables and we are left
with one unconstrained degree of freedom (nu = 1). To find the optimal measurement
combination to control using this unconstrained degree of freedom, we use the null
space method. Since measurements that are optimally constrained give no information,
we are left with the following ny = 4 measurements

yT = [ṁ2 ṁ3 ṁ4 Cb
p]

The minimum number of measurements for the null space method is nu + nd = 2, so
there exists an infinite number of combinations c = Hy with zero disturbance loss. The
simplest is to use only 2 of the 4 measurements. These should be selected such that
the influence of measurement error is minimized. We assume that the benzene mea-
surement of the product, Cb

p is unreliable, and that for some reason the measurement of
feed flow 3 is uncertain. We then want to use the following measurements

yT = [ṁ2 ṁ4]
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The optimal sensitivity at the nominal point is ∆yopt = F∆d and we get:
[

∆ṁopt
2

∆ṁopt
4

]

=

[

−0.0448
−0.0240

]

∆Co
3 (21)

From the null space method, we select H such that HF = 0 or equivalently H = N(FT ).
The null space of FT may be obtained numerically from a singular value decomposi-
tion of FT . We have FT HT = 0, so selecting HT as the input singular vectors of FT

corresponding to zero singular values gives an orthogonal basis. The input singular
vector of FT corresponding to the zero singular value is [−0.472 0.882]T , so we get

H = N(FT ) = [−0.472 0.882] (22)

The matrix H is non-unique. We choose to scale H by a constant factor such that the
second element is 1, resulting in the following optimal fourth controlled variable (ns
stands for null space)

cns = Hy = −0.53ṁ2 + ṁ4 (23)

To compare, we also consider the cases where one of the three unconstrained feed
flows (ṁ2, ṁ3 or ṁ4) is selected as the fourth unconstrained controlled variable (that
is, it is kept constant, whereas the other two feed flows must vary to satisfy the active
constraints). The losses for a disturbance d = Co

3,0 from 95 to 97 octane are shown

Table 2: Loss for the different control structures for a disturbance in Co
3 from 95 to 97

CS # c1 c2 c3 c4 Setpoint (c4,s) L L[%]
1 ṁ1 Co

p ṁp cns = −0.53ṁ2 + ṁ4 0.1550 0 0
2 ṁ1 Co

p ṁp ṁ4 0.2600 0.0036 0.2857
3 ṁ1 Co

p ṁp ṁ3 0.5440 0.0582 4.6224
4 ṁ1 Co

p ṁp ṁ2 0.1960 infeasible infeasible

for the four structures in Table 2. The loss for the null space candidate (cns) is zero
and shows perfect self-optimizing properties. Candidate ṁ4 also has small loss, and
is also a good candidate for self-optimizing control. Candidate ṁ3 shows a loss of
approximately 5% while ṁ2 gives infeasible operation. Thus, the best candidate for
self-optimizing control is cns.

One possible implementation of the control structure is shown in Figure 3. This is
shown for illustration as the pairing of variables does not influence the steady-state.

Note that the self-optimizing controlled variable is a combined measurements of
two inputs. The correction in the input when the disturbance enters, is done implicitly
through the control of the active constraints. That is, when the octane number of stream
3 (Co

3) increases, this is measured in the product stream (the octane number of the
product stream increases) which in turn, depending on the control structure, may lead
to a reduction in the flowrate for stream 2. When reducing the flow of stream 2, the
flow of stream 3 needs to be increased, since the total flowrate is now less than 1. At
the same time, the flow rate of stream 4 is adjusted so that cns is kept at the nominal
setpoint.

We only considered one disturbance, but since there are four available uncon-
strained measurements (three feed flows plus the product benzene contents) we may
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MIXER
ṁp
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Figure 3: Possible implementation with cns = −0.53m2 + m4 as the self-optimizing
controlled variable.

combine these into a controlled variable and in theory get zero loss with a constant set-
point for up to three independent disturbances. We could, for example, handle octane
number variations in two additional feed streams.

In general, the linear variable combination c = Hy obtained with the null space
method is optimal only locally, that is, for small disturbances. For this particular ex-
ample, however, it happens that the model equations are linear and the cost function
is quadratic, so a linear variable combination is optimal as long as the optimal active
constraints remain do not change.

In this example, the prices were assumed constant. If the prices change, then we
may easily correct for this by changing the setpoint for cns; see Skogestad 18 where
a similar example is discussed. However, this assumes that the active constraints re-
main constant. For larger price changes, the optimal constraints may change, and we
would also need to change the controlled variable, cns. This may be done off-line by
performing an analysis similar to the one given above for each region. However, the im-
plementation of this requires logic, so most likely an online optimizing strategy based
on solving the optimization problem at each time step will be preferred in practice.

6 Conclusions
This paper has introduced the null space method for selecting controlled variables c.
We consider a constant setpoint policy, where the controlled variables are kept at con-
stant setpoints cs. We propose to select self-optimizing controlled variables as linear
combinations c = Hy of a subset of the available measurements y. With no implemen-
tation error, it is optimal to select H such that HF = 0, where F = (dyopt/ddT ) is the
optimal sensitivity with respect to disturbance d. The method has been illustrated on
a simple gasoline blending example where we find that the null space method yields a
controlled variable that has zero loss.
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