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Abstract

The issue in this paper is to select the controlled variables c as combinations
of the measurements y. The objective is to obtain self-optimizing control, which is
when we can achieve near-optimal steady-state operation with constant setpoints
for the controlled variables, without the need to re-optimize when new disturbances
perturb the plant. For sufficiently small disturbances, the null space method yields
optimal controlled variables c = Hy that are linear combinations of measurements
y. The requirement is that we at least have as many measurements as there are
unconstrained degrees of freedom, including disturbances, and that the implemen-
tation error is neglected. The method is surprisingly simple. From a steady-state
model of the plant, the first step is to obtain the optimal sensitivity matrix F with
respect to the disturbances. The optimal matrix H satisfies HF = 0, so the next step
is to obtain H in the left null space of F. The method is used to obtain temperature
combinations for control of a Petlyuk distillation column.
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1 Introduction

Although not widely acknowledged by control theorists, controlling the right variables
is a key element in overcoming uncertainty in operation1;2. This applies also when
using advanced control (e.g. MPC) or real-time optimization (RTO). This paper focuses
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Figure 1: Block diagram of a feedback control structure including an optimizer layer.

on the interaction between the local optimization layer and the feedback control layer,
see Figure 1, and more specifically on the selection of the controlled variables c that
link these layers. Two sub-problems are important here:

1. Selection of the controlled variables c: This is a structural decision which is
made before implementing the control strategy.

2. Selection of setpoints cs: This is a parametric decision which can be done both
online and offline.

Here, we focus on the first, structural problem of finding the controlled variables and
we will assume constant nominal optimal setpoints. As seen from Figure 1, there are
two sources of uncertainty that will make a constant setpoint policy non-optimal:

1. Disturbances d: External unmeasured disturbances, including parameter varia-
tions.

2. Implementation error n: The sum of the effect of the measurement error for y
and the control error.

Single measurements or functions or combinations of the measurements may be used
as controlled variables c. The objective is to obtain self-optimizing control2, which
is when we can achieve near-optimal steady-state operation with constant setpoints for
the controlled variables, without the need to re-optimize when new disturbances perturb
the plant. Use of single measurements is simple and is the preferred choice if the loss
is sufficiently small. However, for some applications there may not exist any self-
optimizing single measurements, and one may consider measurement combinations.
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In this paper, we consider linear combinations, that is, c = Hy where H is a constant
matrix.

Ideas related to self-optimizing control have been presented repeatedly in the pro-
cess control history, but the first quantitative treatment was that of Morari et al. 1. Sko-
gestad2 defined the problem more carefully, linked it to previous work, and was the first
to include also the implementation error. He mainly considered the case where single
measurements are used as controlled variables, that is, H is a selection matrix where
each row has a single 1 and the rest 0’s. The loss with a constant setpoint policy for
expected disturbances and implementation errors was evaluated using a “brute-force”
approach. An important advantage of a brute-force evaluation is that one can also
identify controlled variables that may yield infeasability for certain disturbances or im-
plementation errors. This was also considered in more detail by Larsson et al. 3 for
the Tennessee-Eastman challenge problem and Govatsmark and Skogestad4 who sug-
gested to adjust the setpoints to achieve feasibility. However, the computational load of
the “brute-force” method can be very large, so local methods based on linearizing the
behavior around the steady-state are attractive. Skogestad2 introduced the approximate
maximum gain rule as a simple method for selecting controlled variables. In the multi-
variable case, the gain is the minimum singular value of the scaled steady-state transfer
matrix from u to c. A similar method was presented by Mahajanam et al.5. Halvorsen
et al. 6 considered the maximum gain method in more detail and also proposed an exact
local method which may be used to obtain the optimal measurement combination H.
However, this method is also less attractive computationally and in addition somewhat
difficult to use. Hori et al. 7 illustrate the ideas introduces in this paper on indirect con-
trol which can be formulated as a subproblem of the null space method presented in
this paper.

Related work has been done by Srinivasan8,9, 10 on measurement-based optimiza-
tion to enforce the necessary condition of optimality under uncertainty. The ideas are
illustrated on batch processes. Francois et al. 11 extend these ideas and focus on steady-
state optimal systems, where a clear distinction is made between enforcing active con-
straints and requiring the sensitivity of the objective to be zero. Guay and Zhang12

present related ideas on measurement-based dynamic optimization.
In this paper, the objective is to derive a simple method for selecting the optimal

measurement combination matrix H for the special case with no implementation error.
In fact, the method is so simple that the second author (Skogestad) thought it had to be
wrong when it was proposed by the first author (Alstad). We have attempted to keep the
mathematics as simple as possible. A more detailed comparison with previous results
and extensions are presented in a forthcoming publication (see also13).

2 Problem formulation

We assume that the operational goal is to use the degrees of freedoms u0 to minimize
the cost J0 while satisfying equality and inequality constraints. The (original) con-
strained steady state optimization problem can, for a given disturbance d be formulated
as:

min
x0,u0

J0(x0, u0, d) (1)
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subject to

f(x0, u0, d) = 0

g(x0, u0, d) ≤ 0 (2)

y = fy(x0, u0, d)

where x ∈ Rnx , u0 ∈ Rnu0 and d ∈ Rnd are the states, inputs and disturbances, re-
spectively. f is the set of equality constraints corresponding to the model equation, g
is the set of inequality constraints which limits the operation, e.g. physical limits on
temperature measurements or flow constraints and y the measurements.

We assume here that we control all active constraints (assumption A3 below). Thus,
we split the original input vector u0 (degrees of freedom) into:

• u′: vector of degrees of freedom used for controlling the active constraints.

• u : vector of remaining degrees of freedom (with dimension nu).

Remark. It does not actually matter how the original degrees of freedom u0 are divided into the
new subsets of manipulated variables selected for controlling the active constraints (u′) and the
“unconstrained” inputs u, as long as the problem remains well posed. If all the inputs are used
for controlling the active constraints, u′ = u0, then implementation is simple by the use of active
constraint control 14;15.

We assume that online information about the system behavior is available through
measurements y. The issue in this paper is to find a set of nu controlled variables c =
h(y) associated with the “unconstrained” degrees of freedom u. In the measurement
vector y, we generally include also the input vector u0, including the inputs u′ that
have been selected to the control active constraints. However, the measurements of the
active constraints are not included in y, since they are constant and thus provide no
information about the operation.

With the active constraints controlled, we can consider the following unconstrained
reduced-space optimization problem where the scalar cost function J is to be mini-
mized with respect to the nu remaining degrees of freedom (inputs) u:

min
u

J(u, d) (3)

Here the equality constraints, including the model equations and active constraints, are
implicitly included in J, so J is generally not a simple function of u and d.

The loss is defined as the difference between the actual cost and the optimal cost6

L = J(c, d) − J(copt(d), d) ≈ 1
2

(c − copt)T Jcc(c − copt) (4)

where the second-order approximation holds for small deviations from the nominal
optimum. The selected controlled variables are assumed to be independent, and the
Hessian matrix Jcc is then nonsingular6. With a constant setpoint policy, we have
c = cs + n where n is the implementation error. In this paper, we assume n = 0
(assumption A4 below) and assume that the setpoint is nominally optimal, cs = copt(d∗)
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where d∗ is the nominal value of the disturbance. Then c = copt(d∗) and the loss for
small deviations from the nominal optimum is

L =
1
2

(
copt(d∗) − copt(d)

)T
Jcc

(
copt(d∗) − copt(d)

)
(5)

This gives the following insight (which is not very surprising):

With independent controlled variables c and no implementation error, a constant set-
point policy is optimal if copt(d) is independent of d, i.e. copt(d) − copt(d∗) = 0.

3 Null space method

We consider the unconstrained optimization problem as given by eq. (3), that is, we as-
sume “active constraint control” where all optimally constrained variables are assumed
to be kept constant at their optimal values. The goal is to find a linear measurement
combination c = Hy to be kept at constant setpoints cs. Here H is a constant nu × ny

matrix and y is a subset of the available measurements. We make the following as-
sumptions:

A1 Steady-state: We consider only steady-state operation. The justification for this
is that the economics of operation is primarily determined by the steady-state.
Of course, this assumes that we have a control system in place that can quickly
bring the plant to its new steady-state.

A2 Disturbances: Only disturbances that affect the steady-state operation are in-
cluded.

A3 Active constraint control: We assume that the same active constraints remain
active for all values of the disturbances and that we control these constraints.

A4 No implementation error: The implementation error is the sum of the control
error and the effect of the measurement error. The assumption of no steady-state
control error is satisfied if we use a controller with integral action. It is a more
serious assumption to neglect the measurement error, so the method implicitly
assumes that the measurements have been carefully selected.

We then have the following result:

Theorem 1 Null space method. Assume that we have nu independent unconstrained
free variables u, nd independent disturbances d, ny independent measurements y, and
we want to obtain nc = nu independent controlled variables c that are linear combina-
tions of the measurements

c = Hy (6)

Let

F =
∂yopt

∂dT
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be the optimal sensitivity matrix evaluated with constant active constraints. If ny ≥
nu +nd, it is possible to select the matrix H in the left null space of F, H ∈ N(FT ), such
that we get

HF = 0

With this choice for H, keeping c constant at its nominal optimal value gives zero loss
for sufficiently small disturbance changes ∆d = d − d∗.

Proof: We first prove that selecting H such that HF = 0 gives zero disturbance loss. For small
disturbances, the optimal change in the measurements to a change in the disturbances can be
written

yopt(d) − yopt(d∗) = F(d − d∗) (7)

where

F =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂yopt
1
∂d1

. . .
∂yopt

1
∂dnd

. . .
∂yopt

ny

∂d1
. . .

∂yopt
ny

∂dnd

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(8)

is the optimal sensitivity matrix evaluated at the nominal point ∗. From eq. (6) the corresponding
optimal change in the controlled variables is copt(d) − copt(d∗) = H(yopt(d) − yopt(d∗) and by
inserting eq. (7) we get

copt(d) − copt(d∗) = HF(d − d∗) (9)

From the insight stated at the end of the previous section, the constant setpoint policy is optimal
if

copt(d) − copt(d∗) = 0 (10)

which gives the requirement
HF(d − d∗) = 0 (11)

This needs to be satisfied for any (d − d∗) so we must require that

HF = 0 (12)

To satisfy this, we need to select H such that H ∈ N(FT ), and we next need to prove under which
conditions this is possible. The rank of the nc × ny matrix H is nu (because ny ≥ nc, nc = nu and
the controlled variables are independent). The rank of the ny ×nd matrix F is nd (because ny ≥ nd

and the disturbances are assumed independent). The fundamental theorem of linear algebra16

says that the left null space of F (N(FT )) has rank ny− r where r = nd is the rank of F. To be able
to find a H of rank nu in the left null space of F we must then require, ny−nd ≥ nu or equivalently
ny ≥ nu + nd. �

Obtaining F. To obtain the optimal sensitivity matrix F, one needs a nonlinear
steady-state model of the plant. Note that we do not necessarily need an explicit repre-
sentation of the model equations, as we can find F numerically. For example, we may
use one of the commercial steady-state process simulators like AspenTM or HysysTM.
In theory, one may even obtain F from experiments on a real operating plant, but it
seems unlikely that will be sufficiently accurate.

Numerically, the ny×nd matrix F may be obtained by perturbing the disturbances d
and re-solving the optimization problem in eq. (3) with the active constraints constant:
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1. At nominal conditions (d = d∗), use the steady-state model to obtain the nom-
inal optimum yopt(d∗) and identify the active constraints (finding the nominal
optimum may not be an easy task, because the optimization problem is generally
non-convex).

2. For each of the nd disturbances: Make a small perturbation (dk = d∗K + ∆dk) and
resolve the optimization with the constant active constraints to obtain yopt(d)
(this is generally an easy task, because it is only a small perturbation to the
nominal solution).

3. Let ∆yopt = yopt(d) − yopt(d∗) and obtain F numerically using (8).

Ganesh and Biegler17 provide an efficient and rigorous strategy for finding F based
on a reduced Hessian method. In addition, some process simulators have built-in opti-
mizers from which the optimal sensitivity F may be available.

The next step is to obtain H. Numerically, H may be obtained from a singular value
decomposition of FT . We have HF = 0 or equivalently FT HT = 0. Thus, selecting HT

as the input singular vectors of FT corresponding to zero singular values in FT gives an
orthogonal basis.

Example 1 Consider a simple example with one unconstrained degree of freedom u,
nu = 1, and one disturbance d, nd = 1. The cost function to be minimized during
operation (for varying d) is

J(u, d) = (u − d)2

Nominally d∗ = 0. We have available two measurements

y1 = 0.9u + 0.1d

y2 = 0.5u − d

Since ny = 2 = nu + nd and the two measurements are independent it is possible to find
a linear measurement combination

c = Hy =
[
h1 h2

] [y1

y2

]
= h1y1 + h2y2

for which a constant setpoint gives zero disturbance loss, at least locally. We first need
to obtain the optimal sensitivity matrix F. Optimality is ensured when ∂J

∂u = 2(u−d) = 0
which gives uopt = d and Jopt = 0 ∀d. The corresponding optimal outputs are

yopt
1 = d

yopt
2 = −0.5d

and we see that FT = [1 −0.5]. From the null space method the optimal matrix H must
satisfy HF = 0, or

h1 f1 + h2 f2 = 0

h1 + h2(−0.5) = 0⇒ h1 = 0.5h2
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The solution is non-unique. For example, selecting h2 = 1 gives

c = 0.5y1 + y2

Keeping the controlled variable c at its nominally optimal setpoint cs = copt(d∗) = 0,
gives zero disturbance loss, as is easily verified. Generally, the loss will be zero only lo-
cally, i.e. for small changes in d, but for this example the cost function is quadratic with
linear model equations, and the loss will be zero for any magnitude of the disturbance
d.

4 Discussion

4.1 Measurement selection

One weakness of the null space method is that it does not consider the measurement
error, or more generally the implementation error. If we have extra measurements, that
is, ny > nu + nd, then we have extra degrees of freedom in selecting H that should be
used to reduce the sensitivity to measurement error. A simple approach is to select a
subset of the “best” measurements such that we get ny = nu + nd, but which should
these measurements be? This is outside the scope of this paper, and is treated in more
detail a forthcoming publication on the extended null space method (see also13), but let
us provide some results. Let the linear model be

∆y = Gy∆u +Gy
d∆d = G̃y

[
∆u
∆d

]
(13)

where y has been scaled with respect to the expected measurement error, and u and d
have been scaled such that they have similar effects on the cost. It can then be shown
that a reasonable approach is to maximize the minimum singular value of the matrix
G̃y =

[
Gy Gy

d

]
from the combined inputs and disturbances to the selected measure-

ments. To understand why this is reasonable, we may imagine using the measurements
to back-calculate the inputs and disturbances. For the case with ny = nu + nd, G̃y is
invertible and we get [

∆u
∆d

]
= [G̃y]-1∆y (14)

In order to avoid sensitivity to measurement errors in y we want the norm of [G̃y]-1

to be small which is equivalent to wanting a large minimum singular value, σ(G̃y).
From (14) we also see why it is reasonable to require ny ≥ nu + nd in the null space
method, because this is the requirement for being able to uniquely determine from the
measurements all independent variables (inputs and disturbances).

4.2 Freedom in selecting H

Even for the case ny = nu + nd, there are an infinite number of matrices H that satisfy
HF = 0. This stems from the freedom of selecting basis vectors for the null space16.
Let H0 be one such matrix, i.e. H0F = 0. For example, H0 may consist of the one set
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of basis vectors that span the null space of FT . Then H = CH0 also satisfies HF = 0
provided the nc × nc matrix C is non-singular.

Actually, the degrees of freedom in selecting C (and H) are the same as the degrees
of freedom that are used in steady-state decoupling (or similar) in control. The linear
model for the selected controlled variables can be written

∆c = H∆y = HGy∆u +HGy
d∆d = G∆u +Gd∆d (15)

and the degrees of freedom in the matrix C may be used to affect G = HGy and
Gd = HGy

d. For example, it is possible to select H such that G = I, and we have a
decoupled steady-state response from u to c.

4.3 Disturbance elimination

The required number of measurements in the null space method, ny ≥ nu + nd, may be
large if we have many disturbances (nd large). In practical applications, it is therefore
desirable to reduce the number of disturbances. Unfortunately, there does not seems to
be any simple rigorous procedure for eliminating unimportant disturbances, although
some approaches are discussed in Chapter 5 in Alstad 13. It is obvious that we may
eliminate disturbances di that satisfy both of the following conditions:

1. No steady-state effect on the measurements (y is independent of di, i.e., Gy
di
= 0),

and
2. No steady-state effect on the optimal operation (uopt is independent of di).

It could be argued that we may eliminate all “unobservable” disturbances that satisfy
condition 1, because we have no way of detecting them and thus correcting for them.
However, such disturbances may affect the optimal operation and result in large losses,
so an analysis based on neglecting them may be highly misleading. To achieve accept-
able operation in such cases, we need to obtain additional measurements, for example,
of the disturbance itself. One example would be a price change as is discussed in more
detail below. Also, we cannot eliminate all disturbance that have no effect on optimal
operation and thus satisfy condition 2. This is because the disturbance may effect a
measurement, and controlling this measurement will then result in a loss.

In practice, with too few measurements, one may eliminate some disturbances and
obtain the controlled variables c = Hy using the null space method, but one should
afterwards analyze the loss with all disturbances included. Alternatively, one may
be able to obtain the optimal combination numerically using the exact local method
of Halvorsen et al. 6 or the extended null space method presented in a forthcoming
publication.

4.4 Physical interpretation

The proposed null space method yields controlled variables that are linear combina-
tions of the available measurements. A disadvantage is that the physical interpretation
of what we control is usually lost. This is by no means a fundamental limitation, since
in principle we can control any signal from the process as long as they are indepen-
dent. Thus, if all measurements are regarded as signals, the concept of controlling a
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combination of signals may be easier to grasp. If possible, one can choose to combine
measurements of one type, for instance only temperatures (e.g. in a distillation col-
umn) or only mass flows. In any case, we can scale variables such that the resulting
measurements are dimensionless, which is common in practice.

4.5 Change in active constraints

A new set of optimal controlled variables (H) needs to be found for each set of active
constraints. If the active constraints change, this needs to be identified and some logic
is involved in order to switch to a new set of controlled variables. Thus, for a process
with a small operating window, where the active constraints shift with the disturbances,
other methods may be better suited for optimizing control, e.g. real-time optimization
(RTO) combined with Model predictive control (MPC). Alternatively, we could use the
ideas of Arkun and Stephanopoulos15 on how to handle varying active constraints.

4.6 Non-observable disturbances and price changes

Self-optimizing control is based on using feedback to detect disturbances and optimally
adjust the inputs so as to achieve near-optimal operation. Thus, one must require that
the disturbances are observable (visible) in the measurements y. One example of a
“disturbance” that is not visible in the measurements is prices. However, prices pi do
enter in the objective function, because typically J =

∑
i pixi, and price changes will

change the optimal point of operation.
To handle price changes (or more generally disturbances that are not observable in

the measurements y), one must assume that the price (disturbances) is known (mea-
sured). Price changes can then be handled in two ways:

1. Adjust the setpoints in a feedforward manner. Then, for a price change ∆p we
have that

cs = cs(p∗) +HFp∆p (16)

where Fp =
(

dyopt

dpT

)
is the optimal sensitivity from the prices to the measurements.

2. Include the prices as extra measurements in y and use the regular procedure of
selecting self-optimizing control variables as above.

The first approach is probably the simplest and most transparent18.

4.7 Local optimality and other limitations

The proposed nullspace method is optimal only locally. It is globally optimal in cases
where the sensitivity matrix F does not depend on the operating point, for example,
for a system with a quadratic cost objective and linear model equations. Nevertheless,
based on several case studies this does not seem to be an important limitation in most
practical cases. More serious limitations are that 1) implementation errors are not
explicitly handled (except through the selection of which measurements to use), 2) the
nominal operating point is assumed to be optimal (i.e., the optimal setpoints for c need
to be obtained), and 3) the optimal active constraints are assumed not to change.
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4.8 Controllability

All derivations here are based on steady-state models, and we must later check that the
candidate structure has acceptable controllability. If not, we may go back and look for
other measurements to use in the combination.

5 Petlyuk distillation case study

5.1 Introduction

The Petlyuk distillation column is an appealing alternative for the separation of ternary
mixtures. Compared with the traditional configuration of two columns in series, typical
savings in the order of 30% are reported in both energy and capital costs19. However,
the savings in energy may be difficult to achieve in practice, and the goal here is to
suggest simple control policies. We are looking for a self-optimizing control structure
which, despite of external disturbances and measurements errors, gives near-optimal
operation with constant setpoints.

The Petlyuk column has six sections and may be implemented as a “divided wall”
column as illustrated in Figure 2. The boilup and reflux streams are split at the “divid-
ing wall” with split fractions RV = V2/V6 and RL = L1/L3, respectively. With a given
feed and pressure, the Petlyuk column has five steady-state degrees of freedom. For
example, these may be selected as

uT =
[
L V S RL RV

]
(17)

corresponding to the reflux, boilup, side-stream flow, liquid split and vapor split, re-
spectively.

Assume that the feed consists of three key components A, B and C with mole frac-
tions zT = [zA zB zC] with mole flow rate F and liquid fraction q The light component
A dominates in the distillate stream (D), component B dominates in the side-stream
(S ) while the heavy component C dominates in the bottom stream (B). We consider a
case study with a relative volatility of 3 between the key components and 8 theoreti-
cal stages in each of the six sections. Details are given in Chapter 8 in Alstad13. We
assume that the operational objective is to minimize the energy usage, J = V , while
maintaining the following three product specifications (“active constraints”):

1. Distillate purity (xA,D)
2. Bottom purity (xC,B)
3. Side-stream purity (xB,S )

where xi, j is mole fraction of component “i” in stream “j”. Minimizing the energy (V)
with respect to the remaining two degrees of freedom gives an unconstrained nominal
optimum with

u0
opt(d∗)T

= [L∗ V∗ S ∗ R∗L R∗V ] =
[
0.7618 0.5811 0.3227 0.3792 0.5123

]
(18)

The minimum boilup (Vmin) with an infinite number of stages is V∞min = 0.5438, so
the nominal optimal boilup of 0.5811 is approximately 6% higher than the theoretical
minimum.
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Figure 2: The Petlyuk Distillation column implemented in a single column shell (“the
divided wall column”).
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Since the objective is to minimize the boilup, which also is an input, one may
mistakenly believe that one can use an open-loop approach, where the optimal value
for the boilup is calculated and implemented in the column, V = Vopt. However,
Halvorsen and Skogestad 20 point out that such an approach is impossible (or at least
very difficult):

1. Operation is infeasible for V < Vopt, so we need to ensure that V ≥ Vopt.
2. The optimal value of V varies with respect to disturbances and may be hard to

find, requiring a detailed model and a direct measurement of the disturbances (or
a very accurate estimate) in order to be viable. This is unrealistic in most cases.

3. Measurement or estimation of V may be difficult to achieve (measuring vapor
flow), thus it may be sensitive to measurement error when trying to implement
the optimal V .

Thus, the approach here is to use self-optimizing control. As candidate measurements
(y) we include all flow ratios as well as the temperature on all stages. This gives about
60 measurements. The main component compositions in each product stream are also
measured, but since they are active constraints (and thus are constant) they are not
useful for self-optimizing control and are not included in y.

Two degrees of freedom. We first consider using the two available unconstrained
degrees of freedom to control (and fix) two measurement combinations. The two de-
grees of freedom could for example be RL and RV (but the specific choice does not
actually matter). The assumed disturbance vector is

dT
td f =

[
zA zB q nxB,S

]
(19)

where the subscript tdf denotes that the are two degrees of freedom. The last entry
represents the composition offset for the sidestream product. The feedrate F is not in-
cluded because we choose to use only intensive variables when forming the controlled
variables (with a constant column efficiency, a feedrate change is automatically com-
pensated for at steady state by fixing intensive variables.)

To use the nullspace method, we need from Theorem 1 to combine nu + nd =

2 + 4 = 6 measurements. To select the best sub-set of 6 out of the about 60 candidate
measurements, we use the measurement selction approach mentioned in the discussion
section. This results in the following six temperature measurements

yT
td f =

[
T37 T11 T43 T25 T4 T9

]
(20)

The location of the selected measurements is shown in Figure 3. Note that the ma-
jority of measurements are located in the bottom part of the column while only two
measurements are located above the feed point. The sensitivity matrix F was obtained
numerically by perturbing each of the four disturbances and resolving the optimization
problem. The null space method in Theorem 1 gives the optimal matrix H correspond-
ing to the following measurement combinations:

ctd f ,1 = −0.472T37 + 0.312T11 + 0.113T43 − 0.457T25 + 0.561T4 − 0.378T9 (21)

ctd f ,2 = 0.185T37 + 0.376T11 − 0.667T43 − 0.524T25 − 0.154T4 + 0.285T9 (22)

One degree of freedom. We have until now assumed that the vapor split RV is a
degree of freedom during operation (available for manipulation), but most likely this is
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Figure 3: Physical location of the best subset of measurements for the two degrees of
freedom case.

not possible in practice. It is therefore interesting to consider the case where RV is fixed.
In fixing RV , we add the implementation error of controlling RV to the disturbance
vector and get

dT
od f =

[
zA zB q nxB,S nRV

]
(23)

The corresponding minimum number of measurements needed for the nullspace method
is nu + nd = 1 + 5 = 6. The following subset of measurements was obtained

yT
od f =

[
T37 T10 T43 T27 T5 T12

]
(24)

which is very similar to the tdf-case. The optimal measurement combination from the
nullspace method is

cod f = −0.388T37 − 0.658T10 + 0.192T43 − 0.0471T27 + 0.448T5 + 0.421T12 (25)

Detailed analysis. In Chapter 8 of Alstad13 a detailed analysis of the nonlinear losses
is included for disturbances and implementation errors of realistic magnitude. The con-
clusion is that the self-optimizing properties are excellent for both alternatives. When
fixing both measurement combinations in ctd f , the loss in energy usage (V) is less than
0.02% for the disturbances considered above and about 0.2% for a disturbance in bot-
tom composition (which was not considered when deriving ctd f ). When fixing RV and
cod f , the loss is about 10 times higher for the disturbances considered above, but it is
still only about 0.2% and thus insignificant from a practical point of view. Since the
loss is so small, the second strategy of fixing RV and cod f is clearly preferred for practi-
cal implementations. Alstad13 also provide nonlinear closed-loop dynamic simulations
which confirm the practical implementation of this strategy.
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6 Conclusion

This paper has introduced the null space method for selecting controlled variables c.
We consider a constant setpoint policy, where the controlled variables are kept at con-
stant setpoints cs. We propose to select self-optimizing controlled variables as linear
combinations c = Hy of a subset of the available measurements y. With no implemen-
tation error, it is locally optimal to select H such that HF = 0, where F = (dyopt/ddT )
is the optimal sensitivity with respect to disturbance d. However, ignoring the imple-
mentation error is a serious shortcoming for some applications. To partly compensate
for this, it is important to use measurement y that are independent and not sensitive to
measurement error. Another shortcoming is that a new set of controlled variables (for
the unconstrained degrees of freedom) needs to be found for each possible set of active
constraints. The global properties of the proposed variable combination c = Hy needs
to evaluated by computing the loss for expected disturbances and implementation er-
rors using the nonlinear model, and a controllability analysis should also be performed
before implementation. The method has been illustrated on a Petlyuk distillation ex-
ample where we find that the null space method yields controlled variables with very
small losses.
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