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Abstract

The issue in this paper is to select the controlled variablas combinations
of the measuremenys The objective is to obtain self-optimizing control, which is
when we can achieve near-optimal steady-state operation with constpaings
for the controlled variables, without the need to re-optimize when new bestees
perturb the plant. For sticiently small disturbances, the null space method yields
optimal controlled variables = Hy that are linear combinations of measurements
y. The requirement is that we at least have as many measurementseaarthe
unconstrained degrees of freedom, including disturbances, antth¢hiatplemen-
tation error is neglected. The method is surprisingly simple. From a sttatly-
model of the plant, the first step is to obtain the optimal sensitivity mé&trivth
respect to the disturbances. The optimal médtrisatisfiedHF = 0, so the next step
is to obtainH in the left null space oF. The method is used to obtain temperature
combinations for control of a Petlyuk distillation column.
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1 Introduction

Although not widely acknowledged by control theorists, irolting the right variables
is a key element in overcoming uncertainty in operatitin This applies also when
using advanced control (e.g. MPC) or real-time optimiza{lRTO). This paper focuses
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Figure 1: Block diagram of a feedback control structureudaig an optimizer layer.

on the interaction between the local optimization layer tedfeedback control layer,
see Figure 1, and more specifically on the selection of th&ralted variablesc that
link these layers. Two sub-problems are important here:

1. Selection of the controlled variables This is a structural decision which is
made before implementing the control strategy.

2. Selection of setpoints;: This is a parametric decision which can be done both
online and dine.

Here, we focus on the first, structural problem of finding tbatmlled variables and
we will assume constant nominal optimal setpoints. As seam Figure 1, there are
two sources of uncertainty that will make a constant setgmticy non-optimal:

1. Disturbances d: External unmeasured disturbances, including paramaté&-v
tions.

2. Implementation error n: The sum of the #ect of the measurement error fpr
and the control error.

Single measurements or functions or combinations of thesareanents may be used
as controlled variables. The objective is to obtain self-optimizing contfplwhich

is when we can achieve near-optimal steady-state openatibrconstant setpoints for
the controlled variables, without the need to re-optimibewnew disturbances perturb
the plant. Use of single measurements is simple and is thHerped choice if the loss
is suficiently small. However, for some applications there may est any self-
optimizing single measurements, and one may consider mezasat combinations.



In this paper, we consider linear combinations, thatis, Hy whereH is a constant
matrix.

Ideas related to self-optimizing control have been preskrgpeatedly in the pro-
cess control history, but the first quantitative treatmeas #hat of Morari et at. Sko-
gestad defined the problem more carefully, linked it to previous ky@nd was the first
to include also the implementation error. He mainly consddhe case where single
measurements are used as controlled variables, thidtisa selection matrix where
each row has a single 1 and the rest 0's. The loss with a carsggoint policy for
expected disturbances and implementation errors wasatedlwsing a “brute-force”
approach. An important advantage of a brute-force evalnas that one can also
identify controlled variables that may yield infeasalifior certain disturbances or im-
plementation errors. This was also considered in more |dggaiarsson et af for
the Tennessee-Eastman challenge problem and GovatsnthBkagestatiwho sug-
gested to adjust the setpoints to achieve feasibility. Hewehe computational load of
the “brute-force” method can be very large, so local methzaised on linearizing the
behavior around the steady-state are attractive. Skatfastaoduced the approximate
maximum gain rule as a simple method for selecting contloliables. In the multi-
variable case, the gain is the minimum singular value of tiadesl steady-state transfer
matrix fromu to c. A similar method was presented by Mahajanam &t #alvorsen
et al® considered the maximum gain method in more detail and atsoosed an exact
local method which may be used to obtain the optimal measemecombinatiorH.
However, this method is also less attractive computatipald in addition somewhat
difficult to use. Hori et al.illustrate the ideas introduces in this paper on indirectco
trol which can be formulated as a subproblem of the null spaethod presented in
this paper.

Related work has been done by Sriniva&&8rt® on measurement-based optimiza-
tion to enforce the necessary condition of optimality unaecertainty. The ideas are
illustrated on batch processes. Francois ét alixtend these ideas and focus on steady-
state optimal systems, where a clear distinction is madedwsst enforcing active con-
straints and requiring the sensitivity of the objective ®ozero. Guay and Zhar§
present related ideas on measurement-based dynamic zgioni.

In this paper, the objective is to derive a simple method &ecing the optimal
measurement combination matkikfor the special case with no implementation error.
In fact, the method is so simple that the second author (Sitadethought it had to be
wrong when it was proposed by the first author (Alstad). Westastempted to keep the
mathematics as simple as possible. A more detailed congpanigh previous results
and extensions are presented in a forthcoming publicasiea &lsé°).

2 Problem formulation

We assume that the operational goal is to use the degreesenfdimai, to minimize
the costJy while satisfying equality and inequality constraints. Tloeiginal) con-
strained steady state optimization problem can, for a gilisturbancel be formulated
as:
min Jo(Xo, Uo, d) @)
Xo,Uo



subject to

f(Xo, Uo, d) =0
g(Xo, Up,d) < 0 2)
y = fy(XO’ UO’ d)

wherex € R™, up € R™ andd € R™ are the states, inputs and disturbances, re-
spectively.f is the set of equality constraints corresponding to the rhegeation,g
is the set of inequality constraints which limits the opienate.g. physical limits on
temperature measurements or flow constraintsyathé measurements.

We assume here that we control all active constraints (g3somA3 below). Thus,
we split the original input vectanp (degrees of freedom) into:

e U’: vector of degrees of freedom used for controlling the aationstraints.
e U : vector of remaining degrees of freedom (with dimensign

Remark. It does not actually matter how the original degrees of freedgare divided into the
new subsets of manipulated variables selected for controlling the actistramts (') and the
“unconstrained” inputsl, as long as the problem remains well posed. If all the inputs are used
for controlling the active constraints] = ug, then implementation is simple by the use of active
constraint contraf*15,

We assume that online information about the system beh&varailable through
measurementg. The issue in this paper is to find a setmgfcontrolled variableg =
h(y) associated with the “unconstrained” degrees of freedonn the measurement
vectory, we generally include also the input veciay, including the inputas’ that
have been selected to the control active constraints. Hemvve measurements of the
active constraints are not includedyn since they are constant and thus provide no
information about the operation.

With the active constraints controlled, we can considefdiewing unconstrained
reduced-space optimization problem where the scalar costibn J is to be mini-
mized with respect to thi, remaining degrees of freedom (inputs)

min J(u, d) 3)

Here the equality constraints, including the model equatend active constraints, are
implicitly included inJ, soJ is generally not a simple function aofandd.
The loss is defined as thefiirence between the actual cost and the optimafcost

L = J(c,d) — J(c'(d), d) ~ %(c - YT (c — c°PY (4)

where the second-order approximation holds for small dievia from the nominal
optimum. The selected controlled variables are assumee fadependent, and the
Hessian matrixJec is then nonsinguld With a constant setpoint policy, we have
C = Cs + n wheren is the implementation error. In this paper, we assume 0
(assumptiom\4 below) and assume that the setpoint is nominally optimat, c°P'(d*)



whered” is the nominal value of the disturbance. Thers c°PY(d*) and the loss for
small deviations from the nominal optimum is

1

L= 5(c*P(d) - )’ Joo () - (@) ©

This gives the following insight (which is not very surprig):

With independent controlled variablesand no implementation error, a constant set-
point policy is optimal it°P{(d) is independent dd, i.e. c°PY(d) — c°P{(d*) = 0.

3 Null space method

We consider the unconstrained optimization problem asxdweeq. (3), that is, we as-
sume “active constraint control” where all optimally caagted variables are assumed
to be kept constant at their optimal values. The goal is to ditidear measurement
combinationc = Hy to be kept at constant setpoiris HereH is a constanty x ny
matrix andy is a subset of the available measurements. We make the fofoas-
sumptions:

Al Steady-state: We consider only steady-state operation. The justificatio this
is that the economics of operation is primarily determingdhe steady-state.
Of course, this assumes that we have a control system in filatean quickly
bring the plant to its new steady-state.

A2 Disturbances. Only disturbances thatfi@ct the steady-state operation are in-
cluded.

A3 Active constraint control: We assume that the same active constraints remain
active for all values of the disturbances and that we cotitkede constraints.

A4 No implementation error: The implementation error is the sum of the control
error and the fect of the measurement error. The assumption of no steatky-st
control error is satisfied if we use a controller with intdgretion. It is a more
serious assumption to neglect the measurement error, sodtied implicitly
assumes that the measurements have been carefully selected

We then have the following result:

Theorem 1 Null space method. Assume that we have imdependent unconstrained
free variablesu, ng independent disturbances n, independent measuremegtsand
we want to obtain fi= n, independent controlled variableghat are linear combina-
tions of the measurements
c=Hy (6)
Let
ayopt

F=
adT




be the optimal sensitivity matrix evaluated with constactive constraints. If p >
Ny + Ng, it is possible to select the matrik in the left null space of, H € N(FT), such
that we get

HF=0

With this choice foH, keepingc constant at its nominal optimal value gives zero loss
for syficiently small disturbance changasl = d — d*.

Proof: We first prove that selecting such thatHF = 0 gives zero disturbance loss. For small
disturbances, the optimal change in the measurements to a change inttineadises can be

written

Y(d) - y*P(d) = F(d - ")

where
(’)y‘;p‘
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is the optimal sensitivity matrix evaluated at the nominal paifitrom eq. (6) the corresponding
optimal change in the controlled variablescP§'(d) — cop(d*) = H(y°PY(d) — y°P(d*) and by
inserting eq. (7) we get
c°PY(d) — c°P(d*) = HF(d — d*) 9)
From the insight stated at the end of the previous section, the constasihseigicy is optimal
if
c°PY(d) — c°P(d*) = 0 (10)
which gives the requirement
HF(d-d")=0 (11)
This needs to be satisfied for any/{ d*) so we must require that

HF =0 (12)

To satisfy this, we need to selddtsuch thaH € N'(FT), and we next need to prove under which
conditions this is possible. The rank of thex n, matrixH is n, (becausey, > n¢, n. = n, and
the controlled variables are independent). The rank ofiflang matrix F is ng (because, > ng
and the disturbances are assumed independent). The fundameatahttaf linear algebrf
says that the left null space Bf(N'(FT)) has ranky, —r wherer = ny is the rank ofF. To be able
to find aH of rankn, in the left null space o we must then requirey, —ny > n, or equivalently
n=n,+ng. 0O

Obtaining F. To obtain the optimal sensitivity matri%, one needs a nonlinear
steady-state model of the plant. Note that we do not nedbssaed an explicit repre-
sentation of the model equations, as we can fintlmerically. For example, we may
use one of the commercial steady-state process simuléerasperd™ or HysysM.

In theory, one may even obtak from experiments on a real operating plant, but it
seems unlikely that will be sficiently accurate.

Numerically, theny x ng matrix F may be obtained by perturbing the disturbartes
and re-solving the optimization problem in eq. (3) with tlet\a constraints constant:



1. At nominal conditionsd = d*), use the steady-state model to obtain the nom-
inal optimumy°P!(d*) and identify the active constraints (finding the nominal
optimum maynotbe an easy task, because the optimization problem is ggneral
non-convex).

2. For each of they disturbances: Make a small perturbatiol € di + Ady) and
resolve the optimization with the constant active constgato obtainy°PY{(d)
(this is generally an easy task, because it is only a smatugmtion to the
nominal solution).

3. LetAy°Pt = yoPY(d) — yoPi(d*) and obtairF numerically using (8).

Ganesh and Biegléf provide an @icient and rigorous strategy for findifigbased
on a reduced Hessian method. In addition, some processatoraihave built-in opti-
mizers from which the optimal sensitivity may be available.

The next step is to obtaid. Numerically,H may be obtained from a singular value
decomposition oF'. We haveHF = 0 or equivalenthyF"HT = 0. Thus, selectingl™
as the input singular vectors Bf corresponding to zero singular valuesihgives an
orthogonal basis.

Example 1 Consider a simple example with one unconstrained degreeefdém u,
n, = 1, and one disturbance d,gn= 1. The cost function to be minimized during
operation (for varying d) is

J(u,d) = (u—d)>?

Nominally d = 0. We have available two measurements

y1 =09u+0.1d
y.=05u-d

Since § = 2 = ny + ng and the two measurements are independent it is possibledto fin
a linear measurement combination

c=Hy=[h hy Bﬂ = hiys + hays

for which a constant setpoint gives zero disturbance losigast locally. We first need
to obtain the optimal sensitivity matrix Optimality is ensured Whe%& =2(u-d)=0
which gives 8P = d and PP = 0 Vd. The corresponding optimal outputs are

opt _

y, =d
yoP' = ~0.5d
and we seet = —0.5]. From the null space method the optimal matixmust
d ha&™ = [1 - 0.5]. From the null hod the optimal matti

satisfyHF = 0, or
hl fl + h2 f2 =0

hl + hz(—05) =0= hl = 05h2



The solution is non-unique. For example, selectipg:H. gives
c=05y; +Vy2

Keeping the controlled variable at its nominally optimal setpointsc= c°P{(d*) = 0,
gives zero disturbance loss, as is easily verified. Gengtalk loss will be zero only lo-
cally, i.e. for small changes in d, but for this example thstdonction is quadratic with
linear model equations, and the loss will be zero for any nitage of the disturbance
d.

4 Discussion

4.1 Measurement selection

One weakness of the null space method is that it does notdemtsie measurement
error, or more generally the implementation error. If weénaxtra measurements, that
is, ny > ny + ng, then we have extra degrees of freedom in seledtingat should be
used to reduce the sensitivity to measurement error. A sirapproach is to select a
subset of the “best” measurements such that wenget n, + ng, but which should
these measurements be? This is outside the scope of this pagdes treated in more
detail a forthcoming publication on the extended null spaethod (see alsg), but let
us provide some results. Let the linear model be
Ay = GYAu + GYAd = &Y [Au]

Ad (13)

wherey has been scaled with respect to the expected measuremamiatu andd
have been scaled such that they have simifi@ces on the cost. It can then be shown
that a reasonable approach is to maximize the minimum sangalue of the matrix
&Y = [Gy Gé from the combined inputs and disturbances to the selecteune-
ments. To understand why this is reasonable, we may imaging the measurements
to back-calculate the inputs and disturbances. For thewdben, = n, + ng, GY is
invertible and we get

[Aa| -ty (1)

In order to avoid sensitivity to measurement errory iwe want the norm of(ﬁy]'l
to be small which is equivalent to wanting a large minimunygsiar value,g(éy).
From (14) we also see why it is reasonable to reqojre- n, + ng in the null space
method, because this is the requirement for being able tuehi determine from the
measurements all independent variables (inputs and distaes).

4.2 Freedom in selecting H

Even for the casey = n, + ngy, there are an infinite number of matriddsthat satisfy
HF = 0. This stems from the freedom of selecting basis vectorgh®null spacé®.
Let Ho be one such matrix, i.ddoF = 0. For exampleH may consist of the one set



of basis vectors that span the null spacé&bf ThenH = CHy also satisfie$iF = 0
provided then. x n. matrix C is non-singular.

Actually, the degrees of freedom in selecti@dandH) are the same as the degrees
of freedom that are used in steady-state decoupling (otasinin control. The linear
model for the selected controlled variables can be written

Ac = HAy = HGYAu + HGJAd = GAU + GyAd (15)

and the degrees of freedom in the mat@ixmay be used tofiect G = HGY and
Gq = HGz. For example, it is possible to selddtsuch thatG = I, and we have a
decoupled steady-state response frotu c.

4.3 Disturbance elimination

The required number of measurements in the null space mathedn, + ng, may be
large if we have many disturbancey (arge). In practical applications, it is therefore
desirable to reduce the number of disturbances. Unfortlypdihere does not seems to
be any simple rigorous procedure for eliminating unimpart#isturbances, although
some approaches are discussed in Chapter 5 in Afstdtlis obvious that we may
eliminate disturbanced that satisfy both of the following conditions:

1. No steady-statefiect on the measurementsi¢ independent odi, i.e.,Gé =0),

and

2. No steady-statefiect on the optimal operation{* is independent of;).

It could be argued that we may eliminate all “unobservabistuitbances that satisfy
condition 1, because we have no way of detecting them andcttnuscting for them.
However, such disturbances mdjegt the optimal operation and result in large losses,
so an analysis based on neglecting them may be highly mispatob achieve accept-
able operation in such cases, we need to obtain additioredunements, for example,
of the disturbance itself. One example would be a price chasgs discussed in more
detail below. Also, we cannot eliminate all disturbance tieve no &ect on optimal
operation and thus satisfy condition 2. This is because igterdance may féect a
measurement, and controlling this measurement will thealré a loss.

In practice, with too few measurements, one may eliminateesdisturbances and
obtain the controlled variables = Hy using the null space method, but one should
afterwards analyze the loss with all disturbances includétternatively, one may
be able to obtain the optimal combination numerically udimg exact local method
of Halvorsen et af. or the extended null space method presented in a forthcoming
publication.

4.4 Physical interpretation

The proposed null space method yields controlled variaihlasare linear combina-
tions of the available measurements. A disadvantage igtitbgihysical interpretation
of what we control is usually lost. This is by no means a funéiatal limitation, since
in principle we can control any signal from the process ag las they are indepen-
dent. Thus, if all measurements are regarded as signalsptiwept of controlling a



combination of signals may be easier to grasp. If possiliie,aan choose to combine
measurements of one type, for instance only temperaturgs ife a distillation col-
umn) or only mass flows. In any case, we can scale variablésthat the resulting
measurements are dimensionless, which is common in peactic

45 Changein active constraints

A new set of optimal controlled variablebl] needs to be found for each set of active
constraints. If the active constraints change, this neete fdentified and some logic
is involved in order to switch to a new set of controlled vaks. Thus, for a process
with a small operating window, where the active constrashift with the disturbances,
other methods may be better suited for optimizing contrgl, eeal-time optimization
(RTO) combined with Model predictive control (MPC). Altextively, we could use the
ideas of Arkun and Stephanopout®é®n how to handle varying active constraints.

4.6 Non-observable disturbances and price changes

Self-optimizing control is based on using feedback to detisturbances and optimally
adjust the inputs so as to achieve near-optimal operatibns,Tone must require that
the disturbances are observable (visible) in the measunisiie One example of a
“disturbance” that is not visible in the measurements isqwi However, pricep; do
enter in the objective function, because typically 3 pix, and price changes will
change the optimal point of operation.

To handle price changes (or more generally disturbancéstlanot observable in
the measurementg, one must assume that the price (disturbances) is knowa-(me
sured). Price changes can then be handled in two ways:

1. Adjust the setpoints in a feedforward manner. Then, forigeghangeAp we

have that
Cs = Cs(p*) + HFpAp (16)

whereF, = (%VTTP[) is the optimal sensitivity from the prices to the measuresen

2. Include the prices as extra measurementgsand use the regular procedure of
selecting self-optimizing control variables as above.
The first approach is probably the simplest and most trapsp&r

4.7 Local optimality and other limitations

The proposed nullspace method is optimal only locally. gl@bally optimal in cases
where the sensitivity matrik does not depend on the operating point, for example,
for a system with a quadratic cost objective and linear medahtions. Nevertheless,
based on several case studies this does not seem to be amantpionitation in most
practical cases. More serious limitations are that 1) immgletation errors are not
explicitly handled (except through the selection of whickasurements to use), 2) the
nominal operating point is assumed to be optimal (i.e., pteral setpoints foc need

to be obtained), and 3) the optimal active constraints aerasd not to change.
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4.8 Controllability

All derivations here are based on steady-state models, amduwst later check that the
candidate structure has acceptable controllability. tf n@ may go back and look for
other measurements to use in the combination.

5 Petlyuk distillation case study

5.1 Introduction

The Petlyuk distillation column is an appealing alternafior the separation of ternary
mixtures. Compared with the traditional configuration obtwolumns in series, typical
savings in the order of 30% are reportecsthenergy and capital costs However,
the savings in energy may bdfifiult to achieve in practice, and the goal here is to sug-
gest simple control policies. We are looking for a “selfiopzing” control structure
which, despite of external disturbances and measuremenis egives near-optimal
operation with constant setpoints.

The Petlyuk column has six sections and may be implementaddisided wall”
column as illustrated in Figure 2. The boilup and reflux streare split at the dividing
wall with split fractionsR, = V,/Vs andR. = L;/Lgs, respectively. With a given
feed and pressure, the Petlyuk column has five steady-stgtees of freedom. For
example, these may be selected as

uy=[L VS R R] (17)

corresponding to the reflux, boilup, side-stream flow, kigsplit and vapor split, re-
spectively.

Assume that the feed consists of three key compongrisandC with mole frac-
tionsz" = [za zg zc] with mole flow rateF and liquid fractiong. The light component
A dominates in the distillate strear®), componentB dominates in the side-stream
(S) while the heavy compone@ dominates in the bottom streatB)( We consider a
case study with a relative volatility of 3 between the key poments and 8 theoretical
stages in each of the six sections. Key data are given in Tahial further details are
found in Chapter 8 in Alstat?.

We assume that the operational objective is to use the fiveeds@f freedom to
minimize the energy usagd, = V, while maintaining the following three product
specifications (“active constraints”):

1. Distillate purity &ap)

2. Bottom purity kcg)

3. Side-stream purityxg s)
wherex; ; is mole fraction of component “i” in stream “j”. Minimizinghe energy V)
with respect to the remaining two degrees of freedogn< 2 gives an unconstrained
nominal optimum with

ue®P(d")" =[L" V" S* R Rj] =[0.7618 05811 03227 03792 05123

11
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Figure 2: The Petlyuk distillation column implemented inragée shell (“divided wall
column”).
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Table 1: Data for the Petlyuk simulation case

Physical data

Relative volatilities
# stages section
Boiling point A, B andC [K]

o’ =[931]
Nr =8

T] = [299.3 34215 3993]

Feed
Flow F =1
Composition 2T =[1/31/31/3]
Liquid fraction q=0477
Product compositions
Distillate xg;D =097
Side-stream x§ s =097
o' _
Bottom Xcg = 0.97
Disturbances
Feed flow F=F"+01
Feed composition 0 =2,+01
z5=75+01
Liquid fraction q=q+0.1
Product specification Xg,[) = XOA,:D +0.01
Qg =xlg+001
g = x4 001

M easurement/implementation errors

Temperatures
Flows
RL, Ry

13

.8 K (absolute)
25% (relative)
0.025 absolute



The minimum boilup ¥min) with an infinite number of stages V4 = 0.5438, so
the nominal optimal boilup of 0.5811 is approximately 6%t@gthan the theoretical
minimum.

Since the objective is to minimize the boilup, which also iisiaput, one may
mistakenly believe that one can use an open-loop approdutrevihe optimal value
for the boilup is calculated and implemented in the coluivnz V°P. However,
Halvorsen and Skogestad point out that such an approach is impossible (or at least
very difficult):

1. Operation is infeasible for < VP!, so we need to ensure that> VOP.,

2. The optimal value o¥/ varies with respect to disturbances and may be hard to

find, requiring a detailed model and a direct measuremetieadlisturbances (or
a very accurate estimate) in order to be viable. This is uist&ain most cases.
3. Measurement or estimation ¥f may be dfficult to achieve (measuring vapor
flow), thus it may be sensitive to measurement error whengryo implement
the optimalV.
Thus, the approach here is to use self-optimizing contrelcandidate measurements
(y) we include all flows (ratioed to the feed) as well as the temrmoee on all stages.
This gives about 60 measurements. The main component citiops$n each product
stream are also measured, but since they are active contstfand thus are constant)
they are not useful for self-optimizing control and are mafuded iny.

Alternative 1. Two degrees of freedom. We first consider using the two available
unconstrained degrees of freedom to control (and fix) twosmesnent combinations.
The two degrees of freedom could for exampleRpeand Ry (but the specific choice
does not actually matter). The assumed disturbance vecttirdse are found to be the
most important disturbances from the one listed in Table 1).

dg;if:[z/'\ B q nXB,s] (18)

where the subscrigtf denotes that the are two degrees of freedom. The last entry
represents the compositiorifget for the sidestream product. The feedifates not
included because we have choosen to use only intensiveblesiavhen forming the
controlled variables (with a constant columffieency, a feedrate change is automati-
cally compensated for at steady state by fixing intensiviales).

To use the nullspace method, we need from Theorem 1 to conmjireny =
2+ 4 = 6 measurements. To select the best sub-set of 6 out of the @da@andidate
measurements, we use the measurement selction approatibrmadrin the discussion
section. This results in the following six temperature noeasents

Vi =[T37 Tin Taz Tas Ta Tg] (19)

The location of the selected measurements is shown in Figufdote that the ma-
jority of measurements are located in the bottom part of tlanon while only two
measurements are located above the feed point. The sépsiiatrix F was obtained
numerically by perturbing each of the four disturbances wauptimizing. The null
space method in Theorem 1 gives the optimal madrisorresponding to the following

14



F,zq

B, rp

Figure 3: Physical location of the best subset of measurenfienalternative 1.

measurement combinations (controlled variables):

Cidf1 = —O.472Tg7 + 0.312T11 + 0.1131—43 - 0.457T25 + 0561T4 — 03781—9 (20)
Caf2 = 0.185T37 + 0.376T11 — 0.667T43 — 0.524T 25 — 0.154T4 + 0.285T¢ (22)

Alternative 2: Onedegree of freedom. We have until now assumed that the vapor
split Ry is a degree of freedom during operation (available for maaipon), but most
likely this is not possible in practice. It is therefore irgsting to consider the case
whereRy is fixed. In fixingRy, we add the implementation error of controlliRg to
the disturbance vector and get

d?)—df = [ZA Z3 q Ngg nRv] (22)

The corresponding minimum number of measurements needttbfoullspace method
isn, +ng = 1+ 5= 6. The following subset of measurements was obtained

Yoaf = [T37 Two Taz Tz Ts T12] (23)

which is very similar to the tdf-case. The optimal measurgneembination from the
nullspace method is

Codt = —0.388T37 — 0.658T10 + 0.192T43 — 0.0471T,7 + 0.448Ts + 0.421T1,  (24)

L oss evaluation using non-linear model. The two above control structures are com-
pared with two alternative control structures, see Tabksl®@rnative 3 in Table 2 is an
control structure proposed by Halvorsen and Skoge&téchr, = (T4 — Tag) + (T12 —
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Table 2: Alternative control structures

At. | o C2 c3 C4 cs |
1 | xap Xes XcB | Cy; Cqy; | Null space method, usRy andR.
2 XAD XBs XcB | Rv Codf | Null space method, fiRy
3 XAD XBS XcB Ry DTs | Fix DTs andRy
4 | xap x8s XB | Rv R. | Constant split®y andR_

Tase), is a measure of the temperature gradient over the dividadf), while alternative
4 is the “open loop” approach.

The nonlinear losses for the alternative control strucfwedifferent realistic mag-
nitude of the disturbances and measurement errors are igivietble 3.

The conclusion is that the self-optimizing properties amgedient for both alterna-
tives 1 and 2. When fixing two measurement combinations imrglteve 1, the loss in
energy usage\) is less than 0.02% for the disturbances considered abavelaout
0.2% for a disturbance in bottom composition (which was motsidered when deriv-
ing cgt). The losses with respect to implementation errors arevaspsmall. When
fixing Ry andcyq+ (alternative 2), the loss is about 10 times higher for theudignces
considered above, but it is still only about 0.2% and thuggmicant from a practical
point of view. Since the loss is so small, the strategy of ¥y andcyqs is clearly
preferred for practical implementations. The loss for thieeotwo control structures
are higher, with a maximum disturbance loss of 11 % for attéve 3 and 95 % for
alternative 4. Alstaéf also considered alternatives wh&gand a single temperature
was fixed. The best was to fix a temperature just below thetséden with a maximum
disturbance loss of about 1.4 %.

In Alstad'® nonlinear closed-loop dynamic simulations are shown. wiianfirm
the practical implementation of this strategy.

Table 3: Percentage losk)(for all disturbances. ¢” denotes negative perturbation,
“+” denotes positive perturbation from the nominal value)e Tdst two columnsl(,)
give maximum loss and average loss for the implementatiarser

Loss [%]
Alt. | F-  F4 Zp- Za4 Z5_ 23, a- ds
1 00 00 0.0171 00207 0.0166 00111 0.0001 00000
2 00 00 0.0037 01340 | 0.2247 01666 | 0.1876 01084
3 0.0 00 50840 118810 | 0.3469 08295 | 10441 11740
4 0.0 00 | 467037 63019 | 951660 98256 | 324629 60578
Loss [%]
Alt | Ko, X0 | X,  Xs | s,  XBs. Ly n’
1 0.0025 00095 | 0.0639 02082 | 0.0002 Q0007 | 0.0213 Q0117
2 0.0040 00110 | 0.0060 Q0174 | 0.0004 Q0004 | 0.0847 00206
3 0.0074 00207 | 0.0033 00034 | 0.0025 Q0075 | 0.2108 Q0475
4 0.0262 00253 | 0.0245 00311 | 0.2579 10198 | 9.3142 36254
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6 Conclusion

This paper has introduced the null space method for setectintrolled variables.
We consider a constant setpoint policy, where the conttaligiables are kept at con-
stant setpointss. We propose to select self-optimizing controlled variatds linear
combination = Hy of a subset of the available measuremgntd/ith no implemen-
tation error, it is locally optimal to seleét such thaHF = 0, whereF = (dy°P'/dd")

is the optimal sensitivity with respect to disturbartteHowever, ignoring the imple-
mentation error is a serious shortcoming for some apptinati To partly compensate
for this, it is important to use measuremgrthat are independent and not sensitive to
measurement error. Another shortcoming is that a new sairdfaled variables (for
the unconstrained degrees of freedom) needs to be founddébrpossible set of active
constraints. The global properties of the proposed vagiabimbinatiorc = Hy needs
to evaluated by computing the loss for expected disturtsaaod implementation er-
rors using the nonlinear model, and a controllability aselghould also be performed
before implementation. The method has been illustrated Batlyuk distillation ex-
ample where we find that the null space method yields coettalariables with very
small losses.
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