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Abstract— Valve stiction is an important cause of performance
deterioration in control loops of industrial plants; owing to the
large number of loops in complex plants and different cause of
poor performance, it is important to be able to detect causes
and suggest actions to perform in automatic way. The paper
examines some recent techniques to detect the presence of valve
stiction as root causes of oscillations, by using qualitative shape
analysis formalism. Basic properties and main factors are put
into evidence by application on data generated by simulation,
while the reliability is checked by application on plant data
sets to account for sensitivity to noise, for the effect of set
point variations due to cascade or advanced control acting
on the upper level. The algorithm shows to be able to detect
stiction when it shows up with clear patterns (about 50% of
examined cases coming from about 200 data sets). This allows a
quicker detection and saving of computation time with respect
to more comprehensive techniques, thus suggesting on line
implementation of the technique.

Keywords: Process control, Stiction detection, Pattern
recognition, Shape analysis

I. I NTRODUCTION

In the last years Closed Loop Performance Monitoring
(CLPM) has attracted large interest in academic research and
in industrial applications, as the possibility of detecting the
onset of anomalies and determining causes of performance
deterioration in base control loops is certainly of vital impor-
tance for the success of advanced control layers (Multivari-
able, Optimization). The goal is to develop fully automatic
monitoring systems, able to analyze the large number of
data coming from control loops (hundreds in an industrial
process units) and to determine the cause of poor performance,
thus indicating to the operator counteractions to perform on
the plant. Performance deterioration can be due to different
factors, ranging from incorrect design or tuning of controllers,
to anomalies and failures of sensors, presence of friction in
actuators, external perturbations, deteriorations in the process
itself. It is evident that actions to perform on the plant are
different depending on the cause, hence the importance of
being able to distinguish them. Very often anomalies appear
as oscillations in the process variable and the challenge is

to trace back the origin: provenience (which loop?) and root
(which cause?). The definition of reliable indexes and their
applicability for the case of multivariable processes is certainly
an open issue (see [1] and [2] for an updated review).

Actuators (valves in the large majority of control loops
of industrial processes) are very often the most common
reason of generation of oscillations, as the presence of friction
distorts the relationship between the input (controller action)
and the output (manipulated variable) from linear to non
linear, thus originating limit cycles in the loop. This cause
of performance deterioration is certainly more frequent than
controller tuning, which is by far the most common issue
addressed. While many different approaches and procedures
for identification and controller retuning have been proposed
and commercialized in the last years (see [3]), only very
few techniques for the detection of stiction (as it is called
among experts) are operating industrially, many basic issues
still remain unresolved and are object of fervent research.

This paper is devoted to the diagnosis of stiction from
plant data illustrating some new techniques and putting into
evidence issues in the application on industrial data. Next
sections will deal with: recalling basic issues of valve stiction
and related models (section II), illustrating techniques for
automatic recognition of stiction and in particular a newer
one based on qualitative formalism analysis [4] (III), showing
basic characteristics by application on simulated data (IV),
checking its reliability on industrial data (V) and drawing some
conclusions and indicating next work (VI).

II. VALVE STICTION

Choudhury et al. [5] conduct a review of past and present
definitions of stiction. The review reveals a lack of a formal
and general definition of stiction and the mechanism(s) that
causes it. They therefore propose a new definition of stiction
which will be used in this paper.

Fig. 1 shows the movements of a typical sticky valve in
a feedback loop with the valve output (manipulated vari-
able (MV)) as a function of valve input (controller output
(OP)). The movement consists of four components: deadband,
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Fig. 1. Typical stiction pattern with definition of parametersS andJ used
in stiction model. Taken from [5].

stickband, slip-jump and the moving phase. When the valve
comes to rest or changes direction at point A the valve sticks.
After the control signal overcomes the deadband (AB) and the
stickband (BC) the valve position jumps to point D. This jump
is called a slip-jump. The valve may now move smoothly to
point E, or it may stick again due to low or zero velocity while
traveling in the same direction. In such a case, the magnitude
of the deadband is zero and only stickband is present. The
deadband and stickband represents the behavior of the valve
when it is not moving, though the input signal is varying. Slip-
jump represents the abrupt release of static energy when the
static friction is overcome. Once the valve slips, it will move
until it sticks again, under presence of dynamic friction that
is a lot lower than the static friction [5].

On the basis of the four components defined above one can
define stiction in the following way:Stiction is a property of
an element such that its smooth movement in response to a
varying input is preceded by a sudden abrupt jump called the
slip-jump. Slip-jump is expressed as a percentage of the output
span. Its origin in a mechanical system is static friction which
exceeds the friction during smooth movement[5].

Choudhury et al. [5] shows how one can develop a physical
model of stiction based on first principles. A complete review
of models is reported in [6], certainly one of the most used is
the Karnopp model [7]. A common factor for these models
is that they require detailed knowledge about each valve,
since factors such as spring constant and diaphragm area vary
from valve to valve; in addition, other parameters (static and
dynamic friction factors, contact area etc.) are unknown and
subject to changes.

Due to the practical difficulties with using the first-
principles-based model, [5] developed a model that depends
only on the parametersS (stickband) andJ (slip-jump), as
defined graphically in figure 1. This data-driven model will
be used for simulations in this paper.

III. AUTOMATIC DETECTION OF STICTION

A. Techniques based on PV(OP) - brief review

A number of automatic stiction detection methods have been
proposed in the literature. A brief review of three popular
methods that use PV-OP data as a basis for stiction detection
follows.

The classic cross-correlation technique by Horch [8] is
popular due to its simple implementation [9]. It is based on
the cross-correlation between control input and process output.
Given a control loop that is oscillating, the Horch method
should be able to distinguish the two important causes “ex-
ternal oscillating disturbance” and “static friction (stiction),”
because for external oscillating disturbance the phase lag in
the cross-correlation is−π, while it is −π/2 for stiction.

Choudhury et al. [10] have proposed a method based on
High Order Statistics. It is observed that the first and second
order statics (mean, variance, autocorrelation, power spectrum
etc.) are only sufficient to describe linear systems. Non-linear
behavior must be detected using higher order statistic such as
“bi-spectrum” and “bi-coherence.” A stiction index is defined
by means of how much non-linear behavior is present.

A technique based on fitting the recorded oscillations with
three different signals: the output response of a first order plus
time delay system under relay control, a triangular wave, and a
sine wave is proposed in [9]. After evaluation of an error-norm
between the fitted data and the recorded signal, a phenomenon
is identified. Relay-control and triangular waves are associated
with the presence of stiction, whereas sine waves with external
perturbations. The error-norm gives rise to a stiction index.

Rossi and Scali [9] performed a comparison of the tech-
niques presented above. A major finding was that, according
to process and stiction parameters, every technique has an
uncertainty region where no decision can be taken in the
absence of further information about the process. A sequential
application of the three techniques is then suggested, starting
from the cross-correlation (shortest computation time), to the
relay based method (longer time).

B. Techniques based on qualitative description formalism

Fig. 1 shows a typical stiction pattern as seen by plotting
the valve position as a function of the valve input. For flow-
loops, of which there are a vast number in the chemical process
industries, one may assume that the flowrate is proportional to
the valve position. This assumption will be used throughout
this paper. Thus one expects to see a pattern as showed in
fig. 1 for flow loops with sticky valves in a (OP, PV)-plot.
Two loops from industrial data are shown in fig. 2, one with
and one without the presence of stiction. By using the eyes
humans can easily detect stiction in these loops, because of
our excellent pattern-detection abilities. To to able to detect
stiction automatically in a plot such as in fig. 1 is the main
idea behind the techniques based on qualitative description
formalism.

A common feature of methods found in literature is that they
try to describe the recorded signals using a set of fundamental
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Fig. 2. Stiction pattern (upper figure) and good loop (lower figure) from
plant data. In both figures 720 samples are plotted.

units, called primitives. A recorded signal is described using
the primitives, and after the primitives are found some proce-
dure is used to interpret/compare the primitives with known
phenomena, such as stiction.

An automated qualitative shape analysis (QSA) formalism
for detection and diagnosing different kinds of oscillations is
presented in [11]. They use 7 primitives and a neural network
to identify the primitives. The neural network is presented in
[12].

A more detailed description of how to develop a neural
network for use in pattern recognition in chemical process
industries is shown in [13].

A strong argument for using a neural network in the
identification of the primers is that usually recorded data is
too noisy to be represented by symbols using simpler schemes.
Yamashita [4] suggests a simpler identification scheme based
on calculation of the time-differentials of a signal. The main
motivation for the current work is to investigate if this method
is applicable to industrial data. Due to its transparency and
ease of programming this method is more preferable than the
complicated methods using neural networks. Since this method
is new, a detailed description follows.

C. The Yamashita stiction detection technique

The Yamashita stiction detection technique (Yam) [4] con-
sists of a simple identification scheme using the differentials of
the recorded signals and a representation of the signals using 3
primers. The identified series of primers are combined to form
a time-series of movements which is the basis for calculation
of a stiction index.

TABLE I

PRIMERS FOR AN(OP, MV) PLOT.

OP/MV D S I

I ID IS II
S SD SS SI

D DD DS DI

controller
output

valve 
position

(IS II)

(DS DD) (DS SD)

(IS SI)

Fig. 3. Qualitative shapes found in sticky valves. Adopted from [4].

For a given time series signal the simplest way to describe
the signal by symbols is to use the following three primers:
increasing (I), decreasing (D), and steady (S). The primers can
be identified using standard deviation of the differentials of the
recorded signals as a threshold for identification. In words, the
identification works like this:

1) Calculate the differentials of the given signals.
2) Normalize the differentials with the mean and standard

deviation.
3) Quantize each variable in three symbols using the fol-

lowing scheme (x is the recored signal anḋx is the
normalized differentials):

• If ẋ > 1, x is increasing (I)
• If ẋ < −1, x is decreasing (D)
• If −1 ≤ ẋ ≤ 1, x is steady (S)

By combining the symbols for the OP and MV signals we get
a symbolic representation of the development in an (OP, MV)
plot with time. The primers for the combined plot are shown
in table I. The sticky motions,IS and DS are framed. These
are the two primers when the controller is either increasing (I)
or decreasing (D) its output, while the valve position is steady
(S). Based on this a stiction indexρ1 can be defined:

ρ1 = (τIS + τDS) / (τtotal− τSS) . (1)

In (1) τIS is the total number of occurrences of the combined
primer “IS”, and so on. Note that the time when both the OP
and MV are steady at the same time is removed. The sticky
movement corresponds to 2 of 8 primers in table I, hence for a
random signalρ1 ≈ 0.25. If ρ1 > 0.25 there could be stiction
in the valve.

In applicationsρ1 is found to be not accurate enough to
identify stiction, often it is high even though there is not
stiction in the loop. This calls for an improved index. Fig.
3 shows the typical qualitative shapes found in sticky valves
in analogy with fig. 1. Based on this, a refined indexρ2 is
defined as

ρ2 = (τIS II + τIS SI + τDS DD + τDS SD) / (τtotal− τSS) . (2)



In (2) τIS II is the total number of IS samples in all the found
(IS II) movements in the observation window,τDS DD is the
total number of DS samples in the found (DS DD) movements,
and so on. For example, if we had a time series (5·IS, 3·II),
this counts as 5. We have thatρ2 ≤ ρ1, where the equality
holds when all the sticky motions in the valve corresponds to
the shapes shown in figure 3.

In the extreme case when the valve does not move, only
patterns IS, SS and DS will be found. This special case will
makeρ2 = 0, not 1. To avoid this a new indexρ3 is used, that
is calculated by subtracting all the sticky patterns that does
not match the patterns shown in fig. 3 fromρ1:

ρ3 = ρ1 −
( ∑

x∈W

τx

)
/ (τtotal− τSS) . (3)

The setW contains all the patterns that have nothing to do
with stiction. In symbols, these areW = {IS DD, IS DI, IS SD,
IS DS, DS DI, DS SI, DS ID, DS II, DS IS}. For example, if
the movement was (IS IS IS DD IS IS II), we should subtract
3/7 from the originalρ1, because the 3 first IS primers could
not be a part of a stiction pattern since they were followed
by a DD. Except for the special case when the valve does not
move,ρ3 = ρ2.

Let us now summarize method and implementation [4]:

1) Obtain a time series of the controller output and valve
position (or corresponding flowrate).

2) Calculate the time difference for each measurement
variable.

3) Normalize the difference values using the mean and
standard deviation.

4) Quantize each variable in three symbols.
5) Describe qualitative movements in (x, y) plots by com-

bining symbolic values of each variable.
6) Skip SS patterns for the symbolic sequence.
7) Evaluate the indexρ1 by counting IS and DS periods in

the patterns found.
8) Find specific patterns and count stuck periods. Then

evaluate the indexρ3.

The method can easily be implemented in any suitable pro-
gramming language.

IV. APPLICATION ON SIMULATED DATA

Before testing the method on plant data it was desirable to
use it on simulations to understand how it performs in various
cases. For a possible industrial implementation it is important
to get an understanding for how noise, external disturbances
and set point changes affect the performance of the method.

In the simulated data we have the MV data available, and in
this section the MV data were used as a basis for calculation
of the indices, rather than the PV. From fig. 4 one observes
that PV is MV filtered by the process.

Before using the Yam method, three degrees of freedom
needs to be specified:

• Length of time window
• Threshold in symbolic representation

Fig. 4. Simple feedback scheme with definition of variables.

• Sampling time

Except for practical problems there is no upper limit for the
time window. In this section there were always at least 3 cycles
of oscillations. For the threshold the standard deviation of the
time differentials was used, as recommended by Yamashita.
The effects of altering the sampling time will be investigated
in this section by altering the sampling time in the presence
of noise in the recorded data.

Yamashita [4] writes that some prefilter can be used if the
raw signals are very noisy. This was not used here, as keeping
the method as clear and simple as possible was one of the
motivations for applying the Yam method.

For the process, a first order plus delay modelg(s) =
ke−θs/(τs + 1) was used. In the present simulations the
slip-jump parameterJ = 1, and the process time-constant
τ = 10 for all cases studied. For the controller a SIMC-tuned
PI controller [14] was used, with control equationc(s) =
Kc (1 + 1/(τ1s)) and parametersKc = (1/k)(τ/(τc + θ)),
τI = min {τ, 4(τc + θ)} and finally τc = θ. Here θ is
the process delay,k is the process gain,Kc the controller
gain, τI the integral time, andτc a tuning parameter with its
recommended setting, equal to the effective delay [14].

A. Noise-free data

As a first attempt the method was applied on noise-free
data generated by the Choudhury model. Rossi and Scali [9]
computed stiction indices for the cross-correlation technique
[8], bi-coherence [10] and relay [9]. In order to compare with
their results, a similar test was ran with the Yam method. An
investigation of the area0.1 ≤ θ/τ ≤ 3.0, 0.1 ≤ S/(2J) ≤ 7
gave ρ3 values all grater than0.9 À 0.25. (Stiction was
present in all the cases). These results are encouraging, be-
cause no uncertainty region is observed (would imply that
ρ3 → 0.25). Note that we here use MV rather than PV, so
the Yamashita method has more information available than
the methods tested in [9].

In this section the sampling time was set to 0.2 time-units,
which may be too low for practical purposes. The next section
includes a discussion on the effects of altering the sampling
time.

B. Adding noise

Noise was added to the measurements of MV and OP to
investigate the performance with noise present. The method
should be sensitive to noise as we use the derivative for finding
the symbolic representations. In this section the amount of
noise that makes the method inefficient was attempted to be
identified.



TABLE II

RESULTS ALTERING THE FILTER CONSTANTτF AND THE SAMPLING TIME

Ts . THE UPPER TABLE SHOWS SIMULATIONS WITH A STICKY VALVE,

WHEREAS THE LOWER TABLE SHOWS SIMULATIONS WITHOUT STICTION.

THE NUMBERS ARE THE VALUES OFρ3 (ρ1).

τF /τ , stiction present
0.1 1

0.1 0.10 (0.40) 0.13 (0.68)
Ts/τ 1 0.08 (0.39) 0.46 (0.77)

10 0.19 (0.31) 0.37 (0.43)

τF /τ , stiction not present
0.1 1

0.1 0.10 (0.40) 0.12 (0.40)
Ts/τ 1 0.08 (0.39) 0.08 (0.39)

10 0.03 (0.53) 0.13 (0.47)

The “band-limited white noise”-block in Simulink was used
to simulate the presence of measurement noise. The noise
was filtered with a first order filter1/(τF s + 1). The noise
power was tuned to be about equal for the OP and MV
measurements. This resulted in a noise to signal ratio of about
0.1 to 0.2 for both signals. Then simulations were conducted
altering the filter time constantτF and the sample timeTs,
keeping the noise power block unchanged. Results of running
the Yam method on the simulated data are shown in table II.
To investigate the robustness of the method the indices were
also calculated for loops without the presence of stiction.

The most important observations are:
• The frequency-content of the noise is significant. Adding

much high-frequency noise makes the method unable to
detect stiction. This is evident by looking at the column
in table II with τF /τ = 0.1. The results for simulations
with and without stiction are about equal.

• The sampling time is important. Lowering the sampling
time makes the method inefficient, as the calculation of
the differentials will be too dominated by the noise. Set-
ting the sampling time very high is also disadvantageous,
so there must be an optimum where we avoid sampling
too much noise but still observe the stiction induced limit
cycle. From these data, setting the sample time equal to
the dominant time constant seems to be a good default
setting. Theoretically the sampling time should be in the
frequency domain of the limit cycle and not of the noise.

• For the cases studied with no stiction in the loop,ρ1

is always too high, whereasρ3 correctly rejects stiction
in all cases. This implies that we should useρ3 as the
determining index, notρ1.

From these observations one can conclude that the method
is sensitive to noise, and there exists an optimal sampling time.

C. Varying set-points

An inner PID controller in a conventional cascade is an
example of a controller where the set point can be subject
to frequent changes. A loop with severe stiction and subject
to rapid set point changes found in plant data is shown in
figure 5. Another typical example is a PID controller receiving
commands from an advanced process control system (APC).
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Fig. 5. Loop affected by both stiction and set point changes. From plant
data. 720 samples are plotted.
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Fig. 6. Indicesρ1 and ρ3 as a function of set point-change frequency,
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A reasonable time-scale separation between the control layers
in a hierarchical structure should be about 5 or more in terms
of closed loop response time [14]. When the frequency of set
point changes increases from low frequencies to higher, the
indices are expected to decrease, because the controller needs
to work more to follow the command signal, and hence the
stiction pattern will be less clear.

Fig. 6 shows the calculated indices while varying the
frequency of set point change for a loop with parameters
{S, J, k, τ, θ} = {6, 1, 1, 10, 10}. A SIMC-tuned controller
with an assumed closed-loop bandwidth ofωB ≈ 0.5/θ [14]
was used. For a well designed cascade we expect set point
changes at a frequency lower than(1/10)(1/θ), which will be
the assumed bandwidth of the outer controller. (Proof: Let the
inner and outer loops have expected closed loop response times
τc1 andτc2 respectively. Assume that both of them are SIMC-
tuned controllers. We then have that the assumed bandwidth
for the outer controller isωouter

B = 1
2

1
θ2

eff
= 1

2
1

τc2
= 1

2
1

5τc1
=

1
2

1
θ1

eff
= 1

10
1
θ . θ1

eff andθ2
eff are the effective delays in the inner

and outer loops.) So, in the case study we expect set point-
changes with maximum frequency of about(1/10)(1/θ) =
(1/10)(1/10) = 0.01 radians/second. By looking at the fig.
6 one observes that the indices are relatively high up to this
expected frequency, where a decrease in the indices follow
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Fig. 7. Loops found to be sticky by the Yam method and the PCU.

for higher frequencies. The stiction parameters were the same
in all the cases, but the presence of high-frequency set point
changes makes the indices decrease.

This analysis shows that for well-tuned cascades, linearly
changing set points within the bandwidth should not be able
to deteriorate the performance of the Yam method significantly.
If the loop is affected by higher frequency set point changes
than what it was designed for (or sustained changes around
the bandwidth frequency) the Yam method may not be able to
detect a possible presence of stiction.

An advanced process control system (APC) can give com-
mands to the layer below in a step-wise fashion. For fast loops,
such as flow loops, these steps may propagate to steps in the
OP and MV. A simulation was conducted to investigate this
effect. If was evident that introducing steps in the input made
the steps dominate the differentials of the recored signals.
In words, the signals were only increasing (I) or decreasing
(D) when the steps occurred. To understand the significance
of this observation to industrial usage, investigation of plant
data are necessary. The sharp steps introduce problems, but if
they occur rarely or filtered it may still be possible to use the
method.

D. First conclusions about the technique

For the noise-free case the technique performs well. As
noise is introduced, performance decreases. The sampling
time may affect the performance of the method. Setting the
sampling time too low (or too high) introduces problems for
stiction detection. For cascaded loops, simulations shows that
as long there is a time-scale separation of 5 or more between
the layers, the method should still be able to detection the
presence of stiction in the inner loop.

The real test of the method will be plant data, then one
will know if the noise level is too high for application of the
method or not.

V. APPLICATION TO PLANT DATA

A total set of 216 industrial PID loops, of which 167 were
flow loops, were available for analysis.

All the loops analyzed were compared with a program called
Plant Check-Up (PCU), a prototype for stiction detection in
industrial use. The architecture of PCU is shown in [15]. For
stiction detection it uses the cross-correlation method [8], the
bi-coherence method [10] and the relay technique [9].

TABLE III

PCU REPORT FOR THE8 LOOPS WHEREYAM REPORTED STICTION(SEE

FIG. 7).

Verdict by PCU Number of loops
Good performance 1
No dominant frequency 7

A. Results

In the industrial data set of 167 flow loops the Yam method
reported stiction in 32 of the loops, while running the PCU on
the same data resulted in 55 loops reported as sticky. This is
illustrated in fig. 7, where one also observes that 8 loops were
found to be sticky by the Yam method but not by the PCU.

Table III shows the report from PCU these 8 loops. When
the PCU reports “No dominant frequency” it can not find
a dominant frequency of the signals and it does not initiate
the stiction detection module. The relay technique requires
this frequency. By running only the bi-coherence method,
which does not require a dominant frequency, all of these 7
loops were reported to be sticky, therefore these loops can be
considered sticky.

For the loop reported to be performing good, data for more
weeks were available. For other weeks, the loop was reported
to be under presence of stiction by the PCU, therefore this
loop is a limit case.

Of the remaining168− 33 = 135 loops for which the Yam
method did not report stiction, 31 were found to be sticky by
the PCU. If the PCU is regarded as being correct, one can
say that the Yam method detects stiction in about half of the
cases where PCU detects stiction. The PCU is more advanced,
as it has 3 methods implemented for stiction analysis, so it is
expected that not all cases can be detected by the simple Yam
method.

A visual inspection of the data can be performed on a
computer by displaying the recored data in a (OP, MV) plot
that evolves with time. Using this tool, it was evident that for
the cases where the Yam method reported stiction the expected
pattern as shown in fig. 1 was shown.

Several phenomena were observed for the 31 loops where
only PCU found stiction (see fig. 7). For some of the loops
the signals were distorted by noise and no clear patterns were
observed. For other loops clear patterns could be observed,
but their properties were not of the typical stiction pattern
type (see fig. 1). Often the patterns were similar to an ellipse
with no clear parts where the OP was increasing or decreasing
with steady MV. A physical explanation of a pattern found in
two of the loops is given in section V-E, last point.

B. Sampling time

Application of the method on simulated data showed that
there were both lower and upper limits on sample time. The
lower is due to sensitivity to noise. For all the loops the
sample time was originally 10 seconds. Letx be a vector of
observations with sample timeTs. A naive way to simulate a



TABLE IV

EFFECTS OF ALTERING THE SAMPLING TIME.

Ts/T
original
s Loops withρ3 > 0, 25
1 32
3 38
6 34

TABLE V

LOOPS REPORTED TO BE STICKY WHILE CHANGING THE LENGTH OF THE

OBSERVATION WINDOW

Maximum number of samples ρ3 > 0.25
total length available 32

2000 30
1000 28
500 29
100 30

sample time of2 · Ts is to use every second point inx as a
basis for calculation of the indices.

Table IV shows the result of increasing the sample time
by a factor 3 and 6. One observes that the method is a bit
sensitive to alterations of the sample time, considering that
the number of loops detected changes. However, by inspection
of the loops reported to be sticky after altering the sample
time, both visually and with the PCU, the conclusion was the
same for the sample timesTs/T original

s ∈ {1, 3, 6}. When the
Yamashita method reports stiction, a visual inspection of the
(OP, MV) plot shows clear signs of stiction. The loops that
were changed from not being sticky to sticky by increasing the
sample time, due to their increase inρ3 to above 0.25 from
below, had the same stiction-pattern properties as the original
33 loops.

C. Minimum observation window

It is interesting to quantify the sufficient length of the
observation window, as this is an important practical issue
when using the method in applications. The typical length of
observation for the plant data was about 6000 samples with
an interval of 10 seconds, corresponding to an observation
window of 17 hours.

From table V one sees that there is not much differences in
the results by lowering the allowed samples from unrestricted
down to 500 or 100. With a sample time of 10 seconds we
could consider sampling 720 samples, corresponding to an
observation window of 2 hours.

D. Noise level in the data

By eye-inspection the noise level in the data seemed to
be changing form loop to loop and sometimes also from day
to day. For the loops where the method detected stiction the
noise level was so low that a clear stiction pattern was evident.
For most of the cases where the Yam method failed to detect
stiction, it was evident that the stiction pattern was distorted
by a high noise level.

A simple quantification of noise is to divide the apparent
amplitude of the noise by the amplitude of the underlaying
signal. Doing this, for the loops where the Yam method detects

stiction, a typical noise level was about 0.1. This level of noise
typically a bit smaller than the noise-level used for simulation.
(See table II).

E. Other phenomena observed in the plant data

• A lot of the loops for which stiction was detected had
varying set points. The frequency observed for set point
changes was typically 0.02 radians/second or lower. Fig.
6 shows how the sensitivity for detection varies with set
point changes. It is difficult to draw direct parallels to
this figure from the plant data under investigation, but it
seems as if the cascaded loops in the current data had
a frequency of set point-changes low enough to enable
usage of the Yam method.
For PID loops receiving commands from APC there is
still work to do. For the time of writing it is uncertain
if the presence of steps for the APC affects the method
significantly or not. Until further research is conducted
it is recommended to avoid analysis of data were the set
point changes non-linearly with a high frequency.

• When applying the method on industrial data it was
observed that saturation of the valve can be wrongly
regarded as stiction by the method. To avoid this some
saturation detection in the implementation should be in-
cluded. With the simple implementation presented in [4]
there is not need for the ranges of controller or flowrate.
This must be included in the saturation-handling.

• For two of the loops where stiction was not detected
by the Yam method another kind of stiction pattern was
observed. Here the maximum change in controller output
was not when the valve was stuck, but when it was
jumping after being stuck. Consider the time-derivative
of the output of a typical PI controller:∂u(t)/∂t =
Kc

(
∂e(t)/∂t + τ−1

I e(t)
)
, where Kc is the controller

gain,τI is the integral time, ande(t) is the control error.
For the two loops,|∂e(t)/∂t| when the valve is jumping
was larger thanτ−1

I |e(t)| when the valve is stuck. In the
symbolic representation of the OP this can lead to OP
being increasing or decreasingwhen the valve is jumping
and steadywhen the valve is stuck. Hence the method
will not work in this case.

VI. CONCLUSIONS

The objective of the paper was to investigate the reliability
of the recently proposed Yam technique [4] for automatic
recognition of stiction patterns in oscillations recorded in
industrial data.

A first limitation is that the technique is based on values of
the controlled variable (OP) and manipulated variable (MV),
which are available only in the case of intelligent valves or
for the special case of flow loops; anyway from the analyzed
set of more than 200 industrial data sets, these last constitute
a relevant number, amounting to about (167/216 ≈) 3/4 of
actual control loops.

From the investigation of several points of interest in the
light of industrial applications, the following conclusions can



be drawn:
• The method is based on derivatives and uses the standard

deviation as threshold for the symbolic identification of
stiction pattern: some sensitivity to the level of noise is
shown in simulation. The low level of noise encountered
in most of industrial registrations makes this drawback
less relevant.

• The observation window can be limited to few periods
of oscillations and, for sampling timeTs = 10 seconds,
a default of 2 hours can be suggested.

From the comparison of results on industrial data with a
package which performs a sequential application of stiction
detection methods, it can be concluded that stiction is recog-
nized in about 50% of cases. Therefore the Yam technique can
be suggested for a fast identification of sticky loops with clear
patterns, leaving more difficult loops for a deeper analysis,
with two advantages: a quick detection of the onset of stiction
and a save of computation time. This characteristics, together
with the ease of implementation of the algorithm with any
simple language, makes the technique suitable for on line
implementation.
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