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In many cases the prices and market conditions are such that real-time optimization of the 
plant is the same as maximizing plant throughput. I this case optimal operation is the same 
as maintaining maximum flow through the bottleneck of the plant. Any back-off at the 
bottleneck is the same as lost production that can never be recovered. 

One solution to this problem is to use real-time optimization (RTO) and identify the bottleneck 
based on a detailed steady-state model of the plant. However, the formulation of such a 
model is expensive and time consuming and the on-line solution is difficult.  

Actually, a nonlinear model is not necessary in this simple case because the objective is to 
identify the active "bottleneck" constraint. Therefore, a simpler solution is to use a 
"coordinator MPC" based on a linear model with constraints. Here there are two possibilities. 
The first is to use a coordinator MPC that duplicates all the models and constraints in the the 
local MPCs for each unit. However, a duplication is undesirable, Therefore, we suggest a 
more decoupled solution strategy based on using estimates of available capacity in each unit 
in the plant. We assume that local MPC have already been implemented on each unit, and 
we then add a few lines of code in each local MPC application, so that it provides an estimate 
of the extra capacity available in the unit. This estimate is then send as a estimate to the 
coordinator MPC.  

More precisely, the steady state part of the local MPC on unit k provides an estimate of the 
remaining (extra) capacity in the unit  

Rk = Jk,max - Jk  

Here Jk is the current throughput (feed) in unit k. The maximum feed rate Jk,max is obtained 
by solving a simple LP optimization problem withing the local MPC. The constraints in the LP 
problem are the same as in the existing steady state solver in the local MPC - only the 
objective function is different.  

The LP calculation in each local MPC returns to the coordinator the remaining capacity Rk in 
each unit. The optimization at the coordinator level is to maximize the weighted overall feed 
rate:  

max J subject to Rk > 0; Rk = G * MV  

where J is a weighted sum of the feed rates to the plant. The manipulated variables (MVs) at 
the coordinator level are typically the external feed rates and crossovers in the plant. G 
represents the steady-state and dynamic influence from each MV to Rk.  

The coordinator task is to maximize the plant throughput within feasible operation. 
Maximizing flow rate can be realized with a standard MPC quadratic objective function by 
using a total plant feed as a CV with a high (not reachable) set point with lower priority than 
the capacity constraints. Other solutions are possible, but this "trick" was found to work well 
in practice.  

Implementation  

The coordinator MPC approach has been tested with good results on a detailed dynamic 
simulator of the Karsto Gas Processing plant on the south western coast of Norway, The 
model includes two fractionation trains, T-100 and T-300, which both have a deethanizer, 
depropanizer, debutanizer and a butane splitter. In addition T-300 has two stabilizers in 
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parallel. There are two separate train feeds, a liquid stream from a dew point control unit 
(DPCU) that is divided between the two trains, and a crossover. The five streams are MVs in 
the coordinator MPC. The local MPCs and the coordinator are implemented in Statoils 
SEPTIC MPC software. Work is underway to implement the coordinator MPC on the real 
plant.  

Discussion  

1. To estimate the remaining capacity in the distillation columns, we have so far used the 
column pressure drop as an indicator. However, preliminary testings shows that this is not a 
always a good measure. Thus a more detailed column capacity model may be need in some 
cases.  

2) All flow changes (MV and Rk) should be expressed as relative (%) changes. In this case, 
most of the the steady-state gains in the model G are equal to 1, independent of overall feed 
composition.  

3) From an economic point of view, the flow should always be maximum at the bottleneck. 
However, the flow through the bottleneck unit may not be available as a dynamic MV, and in 
this case a dynamic back-off (and loss in production) is unavoidable. The magnitude of the 
back-off depends on the expected size of the disturbances and the dynamic performance of 
the underlying control system. The use of back-off reduces the value of J, but makes the 
coordinator more robust. To reduce the back-off, one may introduce the level setpoints (e.g. 
condenser and reboiler levels) in all units as additional (dynamic) MVs for the coordinator 
MPC. The economic benefit of this strategy may be substantial, and would not be possible to 
realize with a standard steady-state real-time optimizer (RTO).  
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