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Abstract

There is some disagreement in the literature on whether or not large plant gains
are a problem when it comes to input-output controllability. In this paper, control-
lability requirements are derived for two kinds of input errors, namely restriced
(low) input resolution (e.g. caused by a sticky valve) and input disturbances. In
both cases, the controllability is limited if the plant gainis large at high frequen-
cies. Limited input resolution causes limit cycle behavior(oscillations) similar to
that found with relay feedback. The magnitude of the output variations depends on
the plant gain at high frequency, but is independent of the controller tuning. Pro-
vided frequent input (valve) movements are acceptable, onemay reduce the output
magnitude by forcing the system to oscillate at a higher frequency, for example by
introducing a faster local feedback (e.g. a valve positioner) or by pulse modulating
the input signal.

Keywords: High gain, input disturbance, valve resolution, quantizer, limit cy-
cle, controllability, PI-controller.

1 Introduction

The main goal of feedback control is to the keep the plant outputsy within specifica-
tions in spite of disturbances, errors and uncertainty. A fundamental question arises: Is
the process input-output controllable? There are many factors that need to be consid-
ered and one of them is the magnitude of the process gain. The gain depends on the
frequency and, for multivariable plants, also on the input direction. To quantify this,
the singular valuesσi(G(jω)) of the process transfer functionG(s) are considered. Of
particular interest are the maximum and minimum singular values, denoted̄σ(G) and
σ(G), respectively. In this paper, for simplicity, mainly SISO systems are considered,
whereσ̄(G(jω)) = σ(G(jω)) = |G(jω)|.

∗Author to whom correspondences should be addressed: Department of Chemical Engineering, Sem
Saelandsvei 4, NTNU Gloshaugen, 7491, Trondheim, Norway, Phone: +47-7359-4154, Fax: +47-7359-
4080, e-mail: skoge@chemeng.ntnu.no.

1



It is well accepted that small process gains may cause problems. For example,
the requirement for avoiding input saturation isσ(G) ≥ 1, that is, a minimum gain
of one is required1. This assumes that the desired output changes (setpoints) are of
magnitude1 and the allowed inputs are also of magnitude1, both expressed in terms
of the 2-norm.

It is less clear whether large process gains pose a problem. Skogestad and Postleth-
waite2 consider the condition number, defined asγ(G) = σ̄(G)/σ(G) and make the
following statement:A large condition number may be caused by a small value of
σ(G), which is generally undesirable. On the other hand, a large value ofσ̄(G) is not
necessarily a problem.

On the other hand, Moore3 claims that high sensitivity (high gains) can be a prob-
lem because of low input resolution in valves and actuators.He states:Valves and other
actuators all have a minimum resolution with respect to positioning. These limitations
restrict the fine adjustments often necessary for high gain processes to reach a steady
operation. If the fine adjustment necessary for steady stateis less than the resolution
of the valve, sustained oscillations are likely to occur. Consider, for example, a steam
valve with resolution of±1.0%. If a valve position of53.45% is necessary to meet the
target temperature, then the valve will, at best, settle to alimit cycle that hunts over
a range from about55% to 53%. If the process gain is10, the hunting of the valve
will cause a limit cycle in the control temperature of20%. In this paper, we confirm
that limit cycles are unavoidable under such conditions, but we find that it is the pro-
cess gain at the frequency of the limit cycles, and not at steady-state, that matters for
controllability.

McAvoy and Braatz4 argue along the same lines as Moore3 and state that for con-
trol purposes the magnitude of steady-state process gain (σ̄(G)) should not exceed
about50.

In this paper two main types of input errors are discussed. Wefirst consider the
input oscillations caused by restrictions of the input (valve) resolution. Later, in section
7, we consider input (load) disturbance which is not relatedto the valve resolution
problems. Most of the results are derived for first-order plus delay processes. When
possible, more general derivations are presented.

2 Restricted input resolution and limit cycles

As mentioned by Moore3 and proved below, feedback control with restricted (low)
input resolution results in limit cycles (hunting). A simple representation of restricted
(low) input resolution is to use a quantized input as depicted in Figure 1. The output
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Figure 1: Quantization of a smooth signal.

uq from the quantizer is
uq = q · round (u/q) , (1)
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whereq is the quantization step and theround function takes its argument to the nearest
integer. This may, for example, represent restricted valveresolution and to some extent
valve stiction and valve dead band5. An extreme case with only one quantization step
is an on-off valve.

Figure 2 shows a feedback system with a quantizer. HereG(s) is the plant transfer
function model,K(s) the controller,y the plant output with referencer, andu the
manipulated variable (for simplicity, the Laplace variables is often omitted). The low
input resolution results in a stepwise input “disturbance”of magnitudeq. and this
again results in oscillations in the plant outputy(t) of magnitudea. Note thata here is
defined as the “total” amplitude from the bottom to the top of the oscillations.
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Figure 2: Feedback control of process with restricted inputresolution (quantizer)

Theorem 1 For the feedback system with a quantizer in Figure 2 limit cycles are in-
evitable if there is integral action in the controller such that the output in average has
no steady-state offset.

Proof. At steady-state the average value of the outputy is equal to the referencer,
that isyss = r whereyss denotes the average (“steady-state”) value ofy(t) ast → ∞.
To achieve this the inputu must on average equal the following value

uss =
yss

G(0)
=

r

G(0)
, (2)

whereG(0) denotes the steady-state plant gain. Except for the specialcase thatuss

happens to exactly correspond to one of the quantizer levelsqi (which in practice with
measurement noise will not occur), the quantized inputuq must then cycle between at
least two of the quantizer levels.

Let us consider the most common case where the output cycles between the two
neighboring quantizer levels touss, here denotedq1 andq2. Let f and (1 − f ) denote
the fraction of time spent at each of the two levels. Then, at steady-state (ast → ∞)
uss = fq1 + (1 − f)q2 and we have the following expression for the fraction of time
u spends at levelq1:

f =
q2 − uss

q2 − q1
(3)

Note that the closeruss is to one of the quantizer levels, the longer the timeuq will
remain on it.

Example 1.As an example consider the system simulated in Figure 3 whereq1 = 0
andq2 = 0.03 (this may represent an on/off valve). The third order plant model is

G(s) =
100

(10s + 1)(s + 1)2
(4)
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and we use a PI-controller

K(s) = Kc

(τIs + 1

τIs

)

; Kc = 0.04, τI = 10 (5)

Note that the integral time is chosen so that we cancel the dominant pole inG(s) (IMC
tuning rule). The steady-state plant gain isG(0) = 100. Initially, the system is at
steady-state withuq = q1 = 0 andy = r = 0. We then make a step changer = 1.
The steady-state plant gain isG(0) = 100, so to achieveyss = 1 the required average
input isuss = 1/100 = 0.01 which is closer toq1 = 0 thanq2 = 0.03. The fraction of
timeuq remains atq1 = 0 is f = (0.03− 0.01)/0.03 = 0.67. As expected, this agrees
with the simulations.
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Figure 3: Simulation results for system in Example 1.

Example 2. A similar simulation example withq1 = 0 andq2 = 0.03 is shown in
Figure 3, but for a first-order with delay plant

G(s) =
ke−θs

(τs + 1)
, (6)

with k = 100, θ = 1 andτ = 10. We use the same PI-controller as in (5) withτI =
τ = 10 andKc = 0.04. The main difference compared to Example 1 is that the step
reference change is much smaller,r = 0.2, such that the input stays a much shorter time
at the upper quantizer level ofq2 = 0.03. The steady-state plant gain isk = G(0) =
100, so to achieveyss = 0.2 the required average input isuss = 0.2/100 = 0.002.
From (3), the fraction of timeuq remains atq1 = 0 is f = (0.03−0.002)/0.03 = 0.93.
Again, this agrees with the simulations.

For the simulated system in Figure 3 (Example 1), the magnitude of limit cycles
(oscillations) iny is a = 0.189 and the period isT = 6.72s. The oscillations iny(t)
are seen to be quite close to sinusoidal. For the simulated system in Figure 4 (Example
2), we havea = 0.3 andT = 16.07s. However, in this case the oscillations iny(t) are
far from sinusoidal.

We next want to derive analytic expressions fora andT . We first make the simpli-
fying assumption that the resulting limit cycles are sinusoidal and then study the more
general case.
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Figure 4: Simulation results for system in Example 2.

3 Describing function analysis of oscillations (assuming
sinusoids)

The quantizer (nonlinearity) that causes the limit cycles can be regarded as a relay with-
out hysteresis and is in the following treated as such. As an approximation, the ampli-
tude of the oscillations can then be found analytically froman harmonic linearization
or describing function analysis of the nonlinearity. This is analysis is exact if the re-
sulting limit cycle is sinusoidal. For the feedback system in Figure 2, the condition for
oscillation is given by7

N(au)L(jω) = −1, (7)

whereN(au) is the describing function of the nonlinearity (quantizer)which is as a
function of the amplitudeau of the oscillations inu(t)— at the quantizer input, and
L = GK is the loop transfer function (excluding the quantizer). For a relay without
hysteresis, the describing function is6

N(au) =
4q

πau
, (8)

andq is the relay amplitude (quantization step). Since according to (8),N(au) is a real
number, it follows from (7) thatω is actually the ultimate frequencyωL,180 and

N(au) =
1

|L(jωL,180)|
=

4q

πau
(9)
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The amplitude of the corresponding oscillations at the plant output area = au/|K(jωL,180)|
which leads to

a =
4q|G(jωL,180)|

π
(10)

T =
2π

ωL,180
(11)

whereT is the period of oscillation. This is exact if the limit cycles are sinusoidal.
Example 1 (continued). For the system given by (4) and (5),∠L(jωL,180) =

−π
2 − 2 arctan(1 · ωL,180) = −π which yieldsωL,180 = 1 [rad/s] and|G(jωL,180)| =

4.999. From a describing function analysis the period of oscillation is thenT =
2π

ωL,180
= 6.28s. and from (10)a = 4

π q|G(jωL,180)| = 0.191. This is in good agree-
ment with the simulation results (T = 6.72s,a = 0.189).

First-order with delay process. Consider a first-order with delay plantG() con-
trolled by a PI-controller withtauI = τ ,

G(s) =
ke−θs

τs + 1
(12)

K(s) = Kc
τIs + 1

τIs
, τI = τ (13)

For this system we have∠L(jωL,180) = −π
2 − ωL,180θ = −π which givesωL,180 =

π
2

1
θ and|G(ωL,180)| = k/

√

(π
2

θ
τ )2 + 1. From the describing analysis in (10) and (11)

we then have

a =
4

π

qk
√

(π
2

τ
θ )2 + 1

: T = 4θ (14)

For small delays (θ/τ � 1) this givesa ≈ 8
π2 q k

τ θ, and we see that amplitude of the
oscillations increases proportionally withk′ = k/τ (intial slope of step response) and
θ. For large delays (θ/τ � 1), a ≈ 4

π qk, and we see that amplitude of the oscillations
increases proportionally withk (steady-state gain) and is independent ofθ. In all cases
a increases proportionally withq.

Example 2 (continued). With k = 100, θ = 1, τ = 10 andq = 0.03 (14) gives
T = 4s anda = 0.243. This should be compared with the actual value from the simu-
lations whicha areT = 16.1s anda = 0.296. Taking into account that the oscillations
in y(t) are far from sinusoidal, the value ofa in (14) obtained from the describing
function analysis is quite good (about20% too low). However, the periodT is a factor
of four too small.

From the two examples its seems that the amplitude ofa in (17) from the describing
function analysis is quite accurate, but that the actual period may be much larger. This
conclusion is confirmed by an exact analysis for a first-orderwith delay plant presented
next.

4 Exact analysis of oscillations for first-order plus de-
lay process

In this section, exact results for non-sinusoidal quantized responses are derived for a
first-order with delay plant controlled by a PI controller with τI = τ . The following
theorem is based on the work by Wanget al.10.
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Theorem 2 For a system given by (12) and (13) set up according to the configuration
of Figure 2 with quantizer levelq, the amplitude and period of the limit cycle oscilla-
tions are

a = kq
1 − e

−t1
τ + e

−T

τ − e
−(T−t1)

τ

1 − e
−T

τ

(15)

T = θ(
1

1 − f
+

1

f
), (16)

wheret1 = θ
1−f andf is calculated fromuss = fq1 + (1 − f)q2.

Proof: See the appendix.
Example 2 (continued). With f = 0.933, the amplitude and period of oscillation

calculated using (15) and (16) area = 0.2962 andT = 16.07s, respectively, which
matches exactly the observed results in Figure 4.

Note that the assumptionτI = τ is the reason whya andT are independent of the
controller settingsKc andτI .

In Figure 5 the amplitudea
kq from (15) is plotted as a function ofθτ for various

values off . For small delays (θ << τ ), a increases almost proportionallyθ/τ , but for
large values ofθ it levels off at a constant value ofa = kq Note thata depends only
weakly onf .

To compare, the dashed line in Figure 5 represents (14) from the describing function
analysis. The agreement is generally very good with a maximum difference of27% for
large values ofθ/τ .

On the other hand, note that the period of oscillation can be very different from
that found with the describing function analysis. From (16)the periodT increases
proportionally with the delayθ, which agress with the valueT = 4θ in (16) from
the describing function analysis. However, in the exact analysis,T also depends onf
and goes to infinity asf approaches0 or 1. From (16), the minimum valueT = 4θ
is obtained whenf = 0.5, and only this limiting value agrees with the describing
function analysis. This is not too surprising as the input ismost close to “sinusoidal”
whenf = 0.5.

5 Controllability requirements for systems with restricted
input resolution

Consider a feedback system with restricted input resolution (quantized input) as shown
in Figure 2. Assume there is integral action in the controller such that there are limit
cycles (Theorem 1). Letamax denote the maximum allowed amplitude of the limit
cycles (oscillations) iny. Then, from (10) the following approximate controllability
requirement applies:

|G(jωL,180)| <
π

4

amax

q
, (17)

Note that this condition depends on the plant only, and more specifically on the plant
gain at frequencyωL,180.

Remark 1. The controllability condition (17) is approximate becauseit is based
on a describing function analysis which is exact only for sinusoidal oscillations. Nev-
ertheless, the results in the previous section indicates that the gain from the describing
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function analysis is surpisingly accurate. For a first-order plus delay process, the max-
imum deviation was only27% (for large values ofθ/τ ). Thus, (17) is expected to
provide a tight controllability condition.

Remark 2. The controller has some effect on the condition, becauseωL,180 is the
frequency where the sum of the phase lag in the controllerK and plantG is 180o.
However, for a well-tuned controller we typically haveωL,180 ≈ 1.57/θ, that is,ωL

depends only on on the effective delayθ in the plant. Specifically, this value applies for
a first (or second) order plant tuned with a SIMC PI(D)-controller8 (the value is exact
whenτ1 is smaller than about8θ where the SIMC-rule isτI = τ1, and also applies well
for the case whenτ1 is large and the SIMC-rule isτI = 8θ).

Remark 3. Persistent oscillations are generally undesirable. Therefore, the al-
lowedamax for oscillations is typically considerably much smaller (about 10%) than
the maximum allowed output deviation,ymax, i.e.,amax = 0.1ymax.

6 How to mitigate oscillations caused by restricted in-
put resolution

From the describing function analysis, the magnitudea of the output oscillations for
the system in Figure 2 is given by (14). The magntitude can be reduced, for example
by the following means:

(a) Change the valve so that the resolution is better (smaller quantization levelq).

(b) Redesign the process or the measurement devices to get a smaller effective delay
θ.

(c) Introduce fast, forced cycles at the input with a higher frequency than those gen-
erated “naturally”. For example, one may use high-frequency pulse modula-
tion or add a high-frequency “dither” signal (forced sinusoidal disturbance at the
plant input).

(d) “Valve positioner”: Use a measurement ofuq and add a local feedback at the in-
put to generate faster cycling, see Figure 6. This may be viewed as a combination
of cases (b) and (c).

The problem with approaches (b), (c) and (d) is that fast input cycling may be
undesirable, for example, because the valve cannot be movedso fast or because of
excessive wear.

Frequency (pulse) width modulation. Let us consider in more detail approaches
(c) and (d). A system with restricted (low) input resolutionand no (average) steady-
state offset is bound to cycle (Theorem 1) and the amplitudea of the oscillations is
given by the process gain at the frequency of oscillations, e.g. see (10). So far, we
have let the system cycle at its “natural” frequencyωL,180, as given by (11) and (16).
However, since the gain|G(jω)| for most processes is lower at high frequencies, an
attractive alternative is make the system cycle at a higher frequency.

One approach (d) is to use a valve position controller based on measuringuq, as
shown in Figure 6. Here, the controllerK sets the setpointus for the valve position
(input), and the “internal” valve position controller (KI)adjusts the inputu signal such
that the actual inputuq matches the desired inputus (at least on average). The valve
position controller (KI) should have integral action, or a sufficiently high proportional
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Figure 6: Frequency modulation generated using valve position controller KI.

gain, such that the internal loop cycles. The frequency of the cycling is determined
by the effective delay in the “internal” valve position loop, which generally is much
smaller than the delay in the overall outer loop. The resultsis the that the frequency
of the oscillations is much higher and the resulting amplitudea of the output is much
smaller. This agrees with the recommendations in the Indstrument Engineers’ Hand-
book11, where it is noted that a positioner can reduce the dead band of a valve/actuator
combination from as much as 5% to less than 0.5%.

However, one may not have a measurement of the actual inputuq, and a valve po-
sition controller is in fact not necessary to reduce the effect of low input resolution. A
more general approach (c) is to introduce forced pulsing by adding a frequency modu-
latorF at the output of the controller. One realization forF is an internal feedback loop
as depicted in Figure 7. This is similar to the valve positioner controller, except that
we need an internal quantizer because there is no measurement of uq. The modulator
forces the system to cycle at a higher frequency than the one that follows “naturally”.
For example, forced pulsing is commonly used for on/off valves in small-scale plants
where the valve may open or close every second and the controller sets the average
position.

Example 3. By use of a valve position controller as shown in Figure 6, the response
of the system in (12) and (13) is depicted in Figure 8. The valve dynamics is assumed
to be a delay of0.1, and the remaining process (G) has a delay of0.9. As it can be
seen, the output amplitude is drastically reduced at the expense of high-frequency input
oscillations.

P-control. Another potential approach to eliminate oscillations is to use a P-
controller (with a sufficiently low controller gain). However, in practice this approach
is not acceptable because it results in an unacceptable steady-state offset. Consider a
setpoint changer, for which the desired input to achieve no offset isuss = r

G(0) , see
(2). Assume thatr is such thatuss is in the middle between two quantization levels
for the input. Then, for any non-oscillating control system, including feedforward, we
have∆u = |uq − uss| ≥

q
2 and the resulting offset in the output is

|y − r| = |G(0)| · |uq − uss| ≥ |G(0)|
q

2
(18)

From this we conclude that the offset|y − r| will be large for a plant with a large
steady-state gain,|G(0)|, so P-control is in practice not recommended as a method to
mitigate oscillations

10



K G
y -

+r

Quantizer

ucq uqe

Process

F

Frequency
Modulator

Controller

KI GI
c -
+u

Internal
Quantizer

ucq

Pure delay
Process

u

Internal
Controller

K G
y -

+r

Quantizer

ucq uqe

Process

F

Frequency
Modulator

Controller

KI GI
c -
+u

Internal
Quantizer

ucq

Pure delay
Process

u

Internal
Controller

Figure 7: System with frequency modulation. The box shows one way of generating
high-frequency oscillations. Alternatively, a clock may be used to set the frequency
while the controller sets the pulse width.

7 INPUT (LOAD) DISTURBANCE

Consider a plant model in deviation variables

y(s) = G(s)u(s) + Gd(s)d(s) (19)

whereG is the plant model,Gd the disturbance model,y the plant output,u the ma-
nipulated variable, andd the disturbance (for simplicity, the Laplace variables is often
omitted). Without control the effect of disturbances on theoutput isy = Gd(s)d, and
by “large” disturbances is meant that the product|Gdd| is large, such that the output
deviation|y| will be large unnless we applyc ontrol. In this section, input disturbances
are mainly considered, i.e.,Gd = G. This case is illustrated in Figure 9 whered = du

is the disturbance at the plant input.
Feedforward control. As mentioned in the introduction, a large plant gain, espe-

cially at steady state, is a problem with feedforward control. As an example, consider
a planty = G(u + d), whered = du is the input (load) disturbance. Clearly, if|G| is
large, then|u + d| needs to be small to avoid a large|y|. With feedforward controlu is
adjusted based on measuringd. First, an accurate measurement ofd is required and it
must be possible to adjustu such that|u − d| is small. The latter is not possible with
restricted input resolution. For example, returning to theexample of Moore3 from the
introduction;|u − d| = 2% and|G| = 10 gives|y| = 20%, all at steady state.

Feedback control. On the other hand, with feedback control, “large” disturbances
are not necessarily a problem, at least not at steady state. Consider a single distur-
banced. Without control the steady-state sinusoidal response from d to the output is
y(ω) = Gd(jω)d(ω), where phasor notation is used and|d(ω)| denotes the magnitude
of the disturbance at frequencyω. We assume that the magnitude is independent of
the frequency, i.e.|d(ω)| = d0 and assume that the control objective is that the output
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is less thanymax at any given frequency, i.e.,|y(ω)| < ymax. From this, one can im-
mediately draw the conclusion thatno control is needed if|Gd(jω)d0| < ymax at all
frequencies (in which case the plant is said to be “self-regulating”) . If |Gd(jω)d0| >
ymax at some frequency, then control is needed. With feedback control (u = −Ky) we
gety(s) = S(s)Gd(s)d(s), whereS = (I + GK)−1 is the sensitivity function. The
requirement|y(ω)| < ymax then becomes

|S(jω)| · |Gd(jω)||d(ω)| < ymax, ∀ω (20)

With integral action in the controller,|S| is zero at steady state, so in general it
does not matter if|Gd| is large at steady state (provided there is no problem with
input saturation, but this is mainly a design rather than a control issue). However,|S|
increases with frequency and crosses1 at the bandwidth frequencyωS , |S(jωS)| = 1.
At this frequency the requirement (20) gives the controllability requirement

|Gd(jωS)| <
ymax

|d(ωS)|
(21)

Input disturbance. However, the purpose of this paper is not to consider plants for
which |Gd| is large, but rather plants for which|G| is large (in practice, these are often
related because all plants have disturbances at the input tothe plant). To this effect, we
consider input (load) disturbancesdu for whichGd(s) = G(s) (see Figure 9). Hence,
(21) gives the following controllability bound on the allowed plant gain at frequency
ωS

|G(jωS)| <
ymax

|du(ωS)|
(22)

du

K G y
-

+r
u-e ++

du

K G y
-

+r
u-e ++

Figure 9: Block diagram of a feedback control system with disturbance at the input of
the plant.

This bound is independent of the controller, and thus provides a fundamental con-
trollability requirement. In most cases|G| is smaller at high frequency, so the bound
is easier to satisfy ifωS is increased. However, for stability reasons the value ofωS is
limited, and a typical upper bound isωS ≈ 0.5

θ , whereθ denotes the “effective delay”
around the feedback loop2.

Input disturbances are very common, but what is the expectedvalue of|du|? This
is difficult to answer, because input disturbances have manysources. For example,
in many cases the input is a valve which receives its power from a hydraulic system
(e.g. the brakes of a car) or from pressured air (many processcontrol applications). A
change (disturbance) in the power system will then cause an input disturbance. The
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value of|du| will vary depending on the application. If it is assumed thatthe system
has been scaled such that the largest expected inputu is of magnitude1, then it seems
reasonable that|du| is at least0.01, and that a typical value is0.1 or larger.

Steady-state implications.Condition (22) provides a bound on the plant gain at
frequencyωS . The implications in terms of the steady-state are discussed next by
considering a first-order with delay plant,

G(s) = Gd(s) =
ke−θs

(τs + 1)
, (23)

wherek = |G(0)| is the steady-state gain of the plant. The high-frequency asymptote
is |G(jω)| ≈ k

τω = k′

ω , wherek′ = k
τ is the initial slope of the step response. With

ωS ≈ 0.5
θ , (22) gives the controllability requirement

k

τ
= k′ < 0.5

ymax

θ|du|
(24)

(24) may seem to indicate that a plant with a large steady-state gaink is fundamentally
difficult to control (see case 1 below). However, as discussed in case 2 this is not always
true because from (22) it is the gain at frequencyωS that should be small and a process
can have a large steady-state gain while having a small gain at high frequency.

Case 1. In some cases a large steady-state gaink implies a large gain at high
frequencies, resulting in not being able to satisfy the controllability requirement in (21).
A physical example is a pH-neutralization process as studied in chapter 5 in Skogestad
and Postlethwaite2. The component balance for the excess of acidy gives the model
τhsy(s) = 1

ε u(s) − y(s). whereτh is the residence time andu the neutralization flow.
This is on the form of (23) withk = 1/ε andτ = τh. The reason for the small value of
ε is that the desired concentration in the tank (y) can be in the order of106 smaller than
in the neutralization inflow. Because of the large high-frequency gain, this plant is not
controllable according to (22), and a design change is required, for example, where the
neutralization is done in several steps (tanks) rather thanin a single step.

Case 2. As an example of a case where a large steady-state gain does not imply
control problems, consider a near-integrating process:

G(s) =
k′

s + ε
e−θs (25)

This is on the form of (23) withk = k′

ε andτ = 1
ε . Thus, asε → 0, the steady-state

gainG(0) = k′

ε approaches infinity, but the high-frequencyslope of the gaink′ remains
finite as it is independent ofε, so (24) may not impose any controllability limitation.
A physical example is a liquid level whereε represents the self-regulating effect. The
mass balance may be written ass∆V (s) = ∆qin−∆qout, where the linearized outflow
is ∆qout = k′∆Z(s) + ε∆V (s) andZ is the valve position.ε → 0 for the case when
the outflow only depends weakly onV . With y = ∆V , u = ∆Z, andd = ∆qin, this
results in a model of the form in (25) and (23).

8 DISCUSSION

We have derived expressions for the amplitude and period of oscillations that result
with feedback control of a system with restricted input resolution (quantizer). Im-
portantly, the amplitude and period were found (under certain assumptions about the
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integral time) to be independent of the controller gain. However, note that the time
before cycling actually starts may be considerably longer than the periodT of the os-
cillations, and that this start-up time does depend on the controller gain. By detuning
the controller (reducing the controller gain) it generallytakes longer time for the os-
cillatings to start. This is confirmed by the simulations in Figure 3 in McAvoy and
Braatz4 where a detuned controller gives no oscillations with a simulation time of80
s. However, it is easily confirmed that oscillations do indeed develop if the simulation
time is extended to 95 s or more.

In this paper, we have considered the effect of input (valve)inaccuracy and input
load disturbances, with the corresponding controllability requirements

|G(jωL,180)| <
π

4

amax

q
(17)

|G(jωS)| <
ymax

|du(ωS)|
(22)

Which condition is the more restrictive? There is no generalanswer, but let us first
consider two reasons for why the latter (input disturbance)may be more restrictive.
First, the input disturbance|du| is normally larger than the quantization stepq. Sec-
ond, the bound for input load disturbance occurs at a lower frequencyωS where the
gain |G(jω)| is generally larger than at frequencyωL,180. Specially, assume that the
magnitude of the first order plus delay plant in the high-frequency range can be approx-
imated by|G(jω)| = k

τω . Then, taking the typical valuesωS = 0.5
θ andωL,180 = 1.5

θ ,
we get

|G(jωS)|

|G(jωL,180|
≈

ωL,180

ωS
≈ 3 (26)

This leads to the conclusion that the output deviation caused by an input disturbance
is likely to be larger than the sustained output varuations caused by restricted input
resolution. On the other hand, we are less likely to accept sustained oscillations (amax)
than short-time deviations (ymax), so one could argue thatamax is usually smaller than
ymax (a typical value may beamax = 0.2ymax). In summary, it is not clear which is
the more restrictive.

McAvoy and Braatz4 state that, for control purposes, the magnitude of the steady-
state process gain (k = σ(G(0))) should not exceed50. In this paper, we have derived
controllability conditions, (17) and (22), that limit the plant gain at frequenciesωL,180

andωS , respectively. These conditions have some implications for the steady-state
gain which in special cases may provide some justification for the rule-of-thumb of
McAvoy and Braatz4. Specifically, the expression (18) for steady-state offsetwith P-
control givesk ≤ 2|y−r|

q . For example, withq = 0.02 and|y − r|max = amax = 0.2
this requiresk < 20. Thus, P-control should only be used for plants with a small
steady-state gain. Furthermore, (22) may be rewritten as in(24) to getk < 0.5 ymaxτ

θ|du|
.

If we select|ymax| = 1, |du| = 0.1, andτ
θ = 10 (similar to that used in the simulation

in McAvoy and Braatz4) then we derive a boundk < 50. However, note that the
bounds (18) and (24) do not imply that large steady-state gains are always a problem
for control. First, (24) is derived for a first-order with delay model wherek and τ
are assumed independent, whereas they often are coupled, e.g. see (25). Second, (18)
applies to P-control and the implication is that integral action needs to be added for
control of such processes.
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In the introduction, we referred to a case by Moore3 which seems to prove that
a large steady-state gain (i.e. large gain at zero frequency) gives large output varia-
tions (poor control) when we have restricted valve resolution. However, in practice the
system will not cycle at a low frequency, but at a higher frequency (ωL,180) where the
process gain is smaller and the resulting output variables are therefore smaller. We may
also introduce forced cycling or use valve position controlto further reduce the output
variation.

9 CONCLUSION

In this paper, controllability requirements are derived for two kinds of input errors,
namely (1) restricted input resolution (e.g. cased by valveinaccuracy) and (2) input
disturbances.

(1) Limited input resolution with integral feedback control (no steady-state offset)
causes limit cycle behavior (oscillations) (Theorem 1). The magnitude of the oscil-
lations can be reduced by pulse modulating the input signal or using valve position
control, but this assumes that frequent input movements areacceptable. The controlla-
bility requirement derived from an approximate describingfunction analysis, assuming
no forced oscillations, is

|G(jωL,180)| <
π

4

amax

q
, (17)

whereL = GK and, typically,ωL,180 ≈ 1.5
θ (θ is the effective delay in the loop).amax

is the allowed magnitude for the resulting sustained outputoscillations (limit cycles).
This expression agrees well (within 27%) with an exact nonlinear analysis for a first-
order plus delay process. With forced oscillations (pulse modulating the input signal),
we can select the frequencyω to be much higher than the “natural” cycling frequency
ωL,180 and the controllability limitations are generally less restrictive.

(2) For input (load) disturbances of magnitude|du|, the controllability requirement
is

|G(jωS)| <
ymax

|du(ωS)|
, (22)

whereymax is the allowed magnitude of the resulting short-term outputdeviation, and
and typicallyωS ≈ 0.5

θ .
In summary, large gains at frequencies around the closed-loop bandwidth (ωS, ωL,180)

may cause problems with feedback control. There is no controllability condition that
involves the steady-state gaink = |G(0)| only, so a large steady-state gain is not by
itself a problem for feedback control.

10 APPENDIX - Proof of Theorem 1

Consider the first-order plus delay process in (12). Now, assume this process is excited
by a periodic and persistent input (it is applied sincet > 0) of the form given by Figure
10. It represents the signal generated from a relay without hysteresis in whichq1 and
q2 are the limit values,t1 is the time interval whereuq remains inq1, andT = t1 + t2
is the period of oscillation. This signal can be representedin Laplace domain as a
series of steps delayed in time. Assume now, without loss of generality thatq2 = 0 and
q1 = q. The resulting transformed signal is given by
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uq(s) =
q

s
(1 − e−t1s + e−Ts − e−(t1+T )s + e−2Ts − e−(t1+2T )s + · · · ) (27)

Time

uq

q1

q2

t1 Tt2t0
Time

uq

q1

q2

t1 Tt2t0

Figure 10: Input to be applied to the system in (15).

When this signal is applied to the process in (12), oscillations result in the output.
The set of maximum (or minimum) values of these oscillationsare such thatt =

{t|t = t1 + mT + θ, ∀m ∈ N} and the minimum (or maximum) values are found in
the sett = {t|t = mT + θ, ∀m ∈ N}.

The maximum (or minimum) atθ + T < t ≤ θ + t1 + T is

y(s) =
k

τs + 1
e−θs q

s
(1 − e−t1s + e−Ts), (28)

which inverted to the time domain gives

y(t) = kq(1 − e−(t−θ−T )/τ + e−(t−θ−t1)/τ + e−(t−θ)/τ ) (29)

The maximum (or minimum) is thus:

y(t1 + T + θ) = kq(1 − e−t1/τ + e−T/τ − e−(t1+T )/τ ) (30)

Hence, the maximum (or minimum) amplitudeyext1 can be extended to

yext1 = kq(1 − e−t1/τ + e−T/τ − e−(t1+T )/τ + e−2T/τ − · · · ), (31)

which can be written as

yext1 = kq[(1 − e−t1/τ )(1 + e−T/τ + e−2T/τ + e−3T/τ + · · · )] (32)

The infinite sum in (32) is given by

lim
n→∞

n
∑

j=0

(e−T/τ )j =
1

1 − e−T/τ
, (33)

where the fact that(e−T/τ )n converges to zero asn goes to infinity is used.
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Accordingly,

yext1 = kq

(

1 − e−t1/τ

1 − e−T/τ

)

(34)

The minimum (or maximum) atθ + t1 + T < t ≤ θ + 2T , yext2, is found by
following the same development used to deriveyext1, i.e.

yext2 = kq

[

e−T/τ (1 − e−t1/τ )

1 − e−T/τ

]

, (35)

The amplitude is calculated bya = yext1 − yext2 or

a = kq

(

1 − e−t1/τ + e−T/τ − e−(T−t1)/τ

1 − e−T/τ

)

(36)

The formula in (36) depends ont1 andT which must be determined.
From Figure 2:

u(s) = K(s)[r(s) − y(s)], (37)

whereK(s) is given by (13),r(s) is a step change in reference (r(s) = r0

s ), and
y(s) = K(s)G(s)uq(s), whereG(s) is given by (12).

In the limit whent → ∞, the quantizer behaves exactly as the relay depicted in
Figure 10 and assuming thatq1 andq2 are arbitrary values, the first three terms ofuq

are:

uq(s) =
q2

s
+

q1 − q2

s
(e−t1s − e−(t1+t2)s), (38)

where the fact thatT = t1 + t2 is used.
Consider a PI-controller. Taking (38) into (37) and inverting it to time domain, the

following equation foru(t) in the intervalθ ≤ t < t0 + θ is found:

u(t) =
Kc

τI
{r0(t + τI) − kq2[(τI − τ)(1 − e−(t−θ)/τ ) + t − θ]} (39)

For the intervalθ + t0 ≤ t < t0 + t1 + θ, u(t) is given by

u(t) =
Kc

τI
{r0(t + τI) − kq2[(τI − τ)(1 − e−(t−θ)/τ ) + t − θ] −

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−θ)/τ ) + t − t1 − θ]} (40)

Likewise, for the intervalθ + t0 + t1 ≤ t < t0 + t1 + t2 + θ,

u(t) =
Kc

τI
{r0(t + τI) − kq2[(τI − τ)(1 − e−(t−θ)/τ ) + t − θ] −

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−θ)/τ ) + t − t1 − θ] +

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−t2−θ)/τ) + t − t1 − t2 − θ]} (41)
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So far, no assumptions on the controller settings (Kc andτI ) have been made. The
expressions (39)-(41) drastically simplify if the integral time is selected asτI = τ ,
which is an appropriate setting for many plants9.

Furthermore, for a relay without hysteresis its output (uq(t)) changes as its input
(u(t)) equals to zero and since the quantizer behaves as a relay when t → ∞, the
following equations give relations fort1 andt2.

For t = t0:

r0(t0 + τI) = kq2(t0 − θ) (42)

For t = t0 + t1:

r0(t0 + t1 + τI) = kq2(t0 + t1 − θ) − k(q1 − q2)(t0 − θ) (43)

For t = t0 + t1 + t2:

r0(t0 + t1 + t2 + τI) = kq2(t0 + t1 + t2 − θ) − k(q1 − q2)(t0 + t2 − θ) +

k(q1 − q2)(t0 − θ) (44)

Combining (42)-(44) the following expressions give the period T of the oscilla-
tions:

t1 =
k(q1 − q2)θ

kq1 − r0
(45)

t2 =
k(q1 − q2)θ

r0 − kq2
(46)

T = t1 + t2 (47)

On average, the input must equal the steady-state valueuss = yss

G(0) = r0

k (where
k = G(0)), and if this does not happen to exactly correspond to one of the quantizer
level, the quantized inputuq will cycle between the two neighboring quantizer levels,
q1 andq2. Let f and (1 − f ) denote the fraction of time spent at each level. Then, at
steady stateuss = r0

k = fq1 + (1 − f)q2 and from this expressionf is found to be

f =
r0 − kq2

k(q1 − q2)
(48)

From (48),

t1 =
θ

1 − f
(49)

T = θ
( 1

1 − f
+

1

f

)

,

which completes the proof.
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11 LIST OF CAPTIONS

- Figure 1: Quantization of a smooth signal.

- Figure 2: Feedback control of process with restricted input resolution (quan-
tizer).

- Figure 3: Simulation results for system in Example 1.

- Figure 4: Simulation results for system in Example 2.

- Figure 5: Amplitudea in (15) plotted againstθτ for first order plus delay pro-
cesses. The lower figure is a close-up of the upper figure for small values of
θ
τ .

- Figure 6: Frequency modulation generated using valve position controller KI.
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- Figure 7: System with frequency modulation. The box shows one way of gener-
ating high-frequency oscillations. Alternatively, for anon/off valve a clock may
be used to set the frequency while the controller sets the pulse width.

- Figure 8: Effect of using valve position control for the system in Example 2.

- Figure 9: Block diagram of a feedback control system with disturbance at the
input of the plant.

- Figure 10: Input to be applied to the system in (15).
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