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1 Appendix. Proof of Theorem 1 Revised
From Figure 2:

u(s) = K(s)[r(s) —y(s)], )

where K (s) is given by eq 137(s) is a step change in referencg{) = ), and
y(s) = K(s)G(s)uq(s), whereG(s) is given by eq 12.

In the limit whent — oo, the quantizer behaves exactly as the relay depicted in
Figure 10 and assuming that andg, are arbitrary values, the first four termsaf
are:

Uq(S) = % + g(e_tos — e_(t0+t1)5 + e—(t0+t1+t2)5) (2)

Consider a Pl-controller. Substituting (2) into (1) anderting it to the time do-
main, the following equation fox(t) is observed:

K. (-
u(t) = —Aro(t+71) = kax(rr = 7)(1 —e =0Ty + (¢ - 6)] -
T
k(g1 — g2)[(rr = 7)(1 — e 00Ty 4 (£ — 19 — 0)] +
k(g — @2)[(rr = 7)(1 = 7 U770y (b — 4y — 11 — 0)] —
k(g — @2)[(rr = 7)(1 = e7 om0/ (¢ — b9 — 1y — ta — O)(3)
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Assuming, without loss of generality, thiat= 0,

wt) = ZE{rolt+ ) — bl - 1)1 - e O 4 (- )] +

k(ar —a2)[(rr = 7)(1 — e 0T (8 — 81— 60)] —
k(ar —a2)[(rr = m)(1 —e 020/ 4 (b — 1y — 82— 0)]} (4)

Now, for the intervab <t < t; + 6, u(t) is given by

ut) = (4 )~ ka1 - L@ -0} ()

For the intervab + ¢t <t < ¢1 + t2 + 0, u(t) is given by

w(t) = ZErolt+ ) — kil — D)1 - e O (- )] +
e e R )| I >

Finally, for the intervak > to + t1 + t2 + 6, we have that(¢) is

w(t) = Zrolt+ ) — kallrr = D)1 = e O (- 0)] +

gy — q2)[(rp — 7)1 — e T =0/Ty 4 (¢ — 1y — 0)) —
k(g — q2)[(rr — 7)(1 —e” T m20/my L (t — ) — 5 — 0)]} (7)

So far, no assumptions on the controller settings &éndr;) have been made. The
expressions (5)-(7) drastically simplify if the integriahe is selected ag = 7, which
is an appropriate setting for many plafits

Furthermore, for a relay without hysteresis its outpuf({)) changes as its input
(u(t)) equals to zero and since the quantizer behaves as a relay twhe co, the
following equations give relations fog andts.

Fort = 0:
ror; = —kq10 (8)
Fort = t;:
ro(tr +71) = kqi(t1 — 0) — k(q1 — ¢2)0 9)
Fort = t1 + to:

ro(ty +ta+71) = kqi(ti +t2 — 0) — k(g1 — q2)(t2 — 0) — k(g1 — q2)0  (10)

Combining (8)-(10), the following expressions give theipefl” of the oscillations:



k?(fh - Q2)9

t1 = ———— 11

! kg1 —ro (1)
ro — kg2

T = ti+ts (13)

On average, the input must equal the steady-state value- é/gg‘) = 22 (where
k = G(0)), and if this does not happen to exactly correspond to onkefjtiantizer
level, the quantized input, will cycle between the two neighboring quantizer levels,
g1 andgq. Let f and (L — f) denote the fraction of time spent at each level. Then, at

steady state,s = 72 = fq1 + (1 — f)gz2 and from this expressiofiis found to be

ro — kg2

/= k(g1 — q2) a4
From (14),
ho= s (15)
1 1
r=190 (ﬁ + })7

which completes the proof.



