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1 Appendix. Proof of Theorem 1 Revised

From Figure 2:

u(s) = K(s)[r(s) − y(s)], (1)

whereK(s) is given by eq 13,r(s) is a step change in reference (r(s) = r0
s ), and

y(s) = K(s)G(s)uq(s), whereG(s) is given by eq 12.
In the limit whent → ∞, the quantizer behaves exactly as the relay depicted in

Figure 10 and assuming thatq1 andq2 are arbitrary values, the first four terms ofuq

are:

uq(s) =
q2

s
+

q1 − q2

s
(e−t0s − e−(t0+t1)s + e−(t0+t1+t2)s) (2)

Consider a PI-controller. Substituting (2) into (1) and inverting it to the time do-
main, the following equation foru(t) is observed:

u(t) =
Kc

τI
{r0(t+ τI)− kq2[(τI − τ)(1 − e−(t−θ)/τ) + (t− θ)]−

k(q1 − q2)[(τI − τ)(1 − e−(t−t0−θ)/τ ) + (t− t0 − θ)] +

k(q1 − q2)[(τI − τ)(1 − e−(t−t0−t1−θ)/τ ) + (t− t0 − t1 − θ)]−

k(q1 − q2)[(τI − τ)(1 − e−(t−t0−t1−t2−θ)/τ) + (t− t0 − t1 − t2 − θ)]}(3)

∗Author to whom correspondences should be addressed: Department of Chemical Engineering, Sem
Saelandsvei 4, NTNU Gloshaugen, 7491, Trondheim, Norway, Phone: +47-7359-4154, Fax: +47-7359-
4080, e-mail: skoge@chemeng.ntnu.no.

1



Assuming, without loss of generality, thatt0 = 0,

u(t) =
Kc

τI
{r0(t+ τI)− kq1[(τI − τ)(1 − e−(t−θ)/τ) + (t− θ)] +

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−θ)/τ ) + (t− t1 − θ)]−

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−t2−θ)/τ ) + (t− t1 − t2 − θ)]} (4)

Now, for the intervalθ ≤ t < t1 + θ, u(t) is given by

u(t) =
Kc

τI
{r0(t+ τI)− kq1[(τI − τ)(1 − e−(t−θ)/τ) + (t− θ)]} (5)

For the intervalθ + t1 ≤ t < t1 + t2 + θ, u(t) is given by

u(t) =
Kc

τI
{r0(t+ τI)− kq1[(τI − τ)(1 − e−(t−θ)/τ) + (t− θ)] +

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−θ)/τ ) + (t− t1 − θ)]} (6)

Finally, for the intervalt ≥ t0 + t1 + t2 + θ, we have thatu(t) is

u(t) =
Kc

τI
{r0(t+ τI)− kq1[(τI − τ)(1 − e−(t−θ)/τ) + (t− θ)] +

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−θ)/τ ) + (t− t1 − θ)]−

k(q1 − q2)[(τI − τ)(1 − e−(t−t1−t2−θ)/τ ) + (t− t1 − t2 − θ)]} (7)

So far, no assumptions on the controller settings (Kc andτI ) have been made. The
expressions (5)-(7) drastically simplify if the integral time is selected asτI = τ , which
is an appropriate setting for many plants9.

Furthermore, for a relay without hysteresis its output (uq(t)) changes as its input
(u(t)) equals to zero and since the quantizer behaves as a relay when t → ∞, the
following equations give relations fort1 andt2.

For t = 0:

r0τI = −kq1θ (8)

For t = t1:

r0(t1 + τI) = kq1(t1 − θ)− k(q1 − q2)θ (9)

For t = t1 + t2:

r0(t1 + t2 + τI) = kq1(t1 + t2 − θ)− k(q1 − q2)(t2 − θ)− k(q1 − q2)θ (10)

Combining (8)-(10), the following expressions give the periodT of the oscillations:
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t1 =
k(q1 − q2)θ

kq1 − r0
(11)

t2 =
k(q1 − q2)θ

r0 − kq2
(12)

T = t1 + t2 (13)

On average, the input must equal the steady-state valueuss = yss

G(0) = r0
k (where

k = G(0)), and if this does not happen to exactly correspond to one of the quantizer
level, the quantized inputuq will cycle between the two neighboring quantizer levels,
q1 andq2. Let f and (1 − f ) denote the fraction of time spent at each level. Then, at
steady stateuss =

r0
k = fq1 + (1− f)q2 and from this expressionf is found to be

f =
r0 − kq2

k(q1 − q2)
(14)

From (14),

t1 =
θ

1− f
(15)

T = θ
( 1

1− f
+

1

f

)

,

which completes the proof.
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