Innovation and Creativity

Control of a Fuel-Cell Powered DC Electric Vehicle Motor

Federico Zenith Sigurd Skogestad Department of Chemical Engineering Norwegian University of Science and Technology Trondheim

AIChE Annual Meeting, 2005

Outline

- 1) Control of Fuel Cells-Status
- 2) Dynamic Modelling of Fuel Cells
- 3) DC/DC Converters
 3.1) Switching-Rule Control
 3.2) Switching-Rule Control Simulation

4) DC Motors

- 4.1) Cascade Control Layout
- 4.2) Cascade Control Simulation

Currently Available Models and Control Strategies

- Many current models focus on the lab. Common assumptions:
 - Current is a manipulated variable, or
 - Voltage is a manipulated variable.
- This is not possible in an autonomous fuel cell system.
 These models are valid in their context, but have to be adapted for control.

Currently Available Models and Control Strategies

- Many current models focus on the lab. Common assumptions:
 - Current is a manipulated variable, or
 - Voltage is a manipulated variable.
- This is not possible in an autonomous fuel cell system.
 These models are valid in their context, but have to be adapted for control.
- Manipulated variables are sometimes badly chosen:
 - Controlling power with air compressor speed, through oxygen concentration
- The external circuit is often not given its importance

Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor

- The system is only "half"

- The system is only "half"
- The dynamics of oxygen concentration have been studied by Johansen (2003)
- Oxygen has a strong effect, but only at the mass-transport limit; it is non-linear and asymmetric

Power Response on Gas Flow Change, 150 °C

- The system is only "half"
- The dynamics of oxygen concentration have been studied by Johansen (2003)
- Oxygen has a strong effect, but only at the mass-transport limit; it is non-linear and asymmetric
- This approach will not be able to meet performance requirements for PEM fuel cells.

Power Response on Gas Flow Change, 150 °C

Manipulated Variables

- Types of manipulated variables:
 - Resistances and switches;

Manipulated Variables

- Types of manipulated variables:
 - Resistances and switches;
 - Rheostat or transistors (e.g. MOSFETS)

Manipulated Variables

- Types of manipulated variables:
 - Resistances and switches;
 - Rheostat or transistors (e.g. MOSFETS)
- More efficiently:
 - DC/DC converters (buck-boost)
 - Sliding-mode control
 - Pulse-width modulation (PWM)

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients

- A typical model used for a PEM/PBI fuel cell has cathode, internal resistance, reversible voltage
- Anodic overvoltage is assumed less important, and is discarded. This assumption is not valid with CO.
- Steady-state polarisation curve and instantaneous characteristic: path of transients
- Perfect power control of fuel cells is in theory always possible!

DC/DC Converters

- Convert power in the right voltage/current ratio
- Over 500 topologies
- Buck-boost converters are sufficient for us

DC/DC Converters

- Convert power in the right voltage/current ratio
- Over 500 topologies
- Buck-boost converters are sufficient for us

Controlling the Converter

- Switching rules based on measurements: I_L , V_C , V_W , I_a
- Calculations should be finished in at most 0.1 ms.

Simulation

- Features an inverse response for steps in reference
- External current I_a stepped from 20 to 180 A at time 0.02 s
- Overshoots can be reduced with higher computational speed-

DC Motors

- We manipulate the input voltage to control the armature current
- Permanent magnets (constant magnetic field)

DC Motors

- We manipulate the input voltage to control the armature current
- Permanent magnets (constant magnetic field)
- Main disturbance: the induced voltage e, proportional with speed, on the input

 $- G(s) = \frac{1}{L_a s + R_a}$

Cascade Control Layout

- Ia is proportional to the motor's output torque
- I_a is controlled by manipulating the converter's output voltage in a cascade control structure
- K(s) is a PI controller tuned with Skogestad's rules

Cascade Control Simulation

- Transients are over by 0.2 seconds
- Input is limited between 0 and 200 volt
- Slow: needs about 200 seconds to calculate this transient

 It is possible to *instantaneously step the power output* of a fuel cell across its whole nominal range under very general conditions

- It is possible to *instantaneously step the power output* of a fuel cell across its whole nominal range under very general conditions
- A set of switching rules can provide a good control strategy for a DC/DC converter connected with a fuel cell

- It is possible to *instantaneously step the power output* of a fuel cell across its whole nominal range under very general conditions
- A set of switching rules can provide a good control strategy for a DC/DC converter connected with a fuel cell
- Using the converter controller as an actuator, it is possible to control the torque output of an electric motor

- It is possible to *instantaneously step the power output* of a fuel cell across its whole nominal range under very general conditions
- A set of switching rules can provide a good control strategy for a DC/DC converter connected with a fuel cell
- Using the converter controller as an actuator, it is possible to control the torque output of an electric motor
- Simulation time is however slow. Pulse-width modulation seems to provide an improvement, allowing simulation of standard *driving cycles*.

www.ntnu.no

Acknowledgements

Support from Statoil and the Norwegian Research Council is gratefully acknowledged.

Norges forskningsråd

Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor

Acknowledgements

Support from Statoil and the Norwegian Research Council is gratefully acknowledged.

Norges forskningsråd

Thank you for your attention!

Federico Zenith, Sigurd Skogestad, Control of a Fuel-Cell Powered DC Electric Vehicle Motor