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Abstract
An important issue in control structure selection is plant ”stabilization”. By the term 
”stabilize” we here include both, modes that are mathematically unstable (modes with 
RHP poles) as well as ”drifting” modes that need to be kept within limits to avoid 
operational problems. By this definition, we can include states x  as variables that 
should be ”stabilized”, i.e., we want to avoid them to drift too far away from their 
desired (nominal) values. An advantage of this approach is that we are able to avoid 
problems resulting from nonlinear effects. Therefore, as the objective function can, 
usually, be considered as a combination of states, the control system obtained by this 
approach is not tied too closely to a particular primary control objective (which may 
change with time) because it allows the designer to change the control objective. This 
paper presents a way to reduce the effects of disturbances and measurement errors in the 
states and the results show the effectiveness of this approach. 
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1. Introduction 
In the regulatory control layer, the main objective is to ”stabilize” the plant. Here we put 
the word stabilize in quotes because we use it with the same meaning as used by 
Skogestad (2004): ”stabilization” includes both modes which are mathematically 
unstable (modes with RHP poles) as well as ”drifting” modes which need to be kept 
within limits to avoid operational problems. Doing this we are able to avoid problems 
resulted from, for example, nonlinear effects. By this definition, we include any states 
x  as variables that should be “stabilized”, i.e., we want to avoid them to drift too far 
away from their desired (nominal) values. An advantage of keeping all states close to 
their nominal values is that we are able to avoid problems resulting from nonlinear 
effects. Therefore, an important point in the control structure selection is the choice of 
the operational objectives (Skogestad, 2004). The problem is that the operational 
objectives may change with time, according to necessities, e.g. market, safety 
constraints, etc. Due to these changes, we don’t want to tie the control system too 
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closely to a particular primary control objective. As, usually, the objective function can 
be considered a combination of states, a good approach would be to define the objective 
function in this way ( 1y Wx ). This approach has the advantage of allowing the 
controller designer to easily change the control objective only changing the combination 
of the states. Another advantage is that the minimization of Wx  includes both 
stabilization of RHP-poles and disturbance rejection. In summary, the good of this 
paper is to discuss in more detail the approach introduced in Skogestad (2004) of 
selecting secondary controlled variables ( 2c y ) such that we minimize the effect of 
disturbances ( d ) on the weighted states ( 1y Wx ).

2. Perfect Indirect Control 
Consider that we have the following linear model: 

1 1 d1y G u G d  (1) 

y y y
dy G u G d n  (2) 

where sG  are steady-state models. 
By definition, indirect control is when we cannot control the primary outputs ( 1y ) and, 
instead, we aim at indirectly controlling 1y  by controlling the ”secondary” variables c
(Skogestad and Postlethwaite, 1996). If the number of measurements ( #y ) is equal or 
larger than the sum of the number of inputs ( #u ) and the number of disturbances ( #d ), 
it is possible to obtain a combination of these measurements ( c ) that ensures a perfect 
indirect control of the ”primary” controlled variables (in this case c  is used as 
”secondary” controlled variable). Then we have: 

c
d

y y y
d

G nG

c H y HG u HG d Hn  (3) 

where H  is the combination of measurements. Solving Equation 3 with respect to u :
-1 -1 -1 c

du G c G G d G n  (4) 

In Eq. 4 we will consider c 0  because we want to keep these variables constant. In 
this way, Eq. 4 becomes: 

-1 c -1
du G n G G d  (5) 

Substituting Eq. 5 into Eq. 1 gives: 

cd

1 1 c
1 d1 1 d 1

PP

y G G G G d G G n  (6) 

where the ”partial disturbance gain” dP  gives the effect of disturbances on 1y  with 
closed-loop (partial) control of the variables c , and cP  gives the effect on 1y  of 
changes in c  (e.g., due to setpoint changes in sc  or control error).  
As we want to reject perfectly the effect of the disturbance in the primary variables, we 
will select a set of controlled variables such that the matrix dP  is equal to zero. As was 



said before this objective can be reached if we have enough measurements y . The 
matrix cP  is a degree of freedom which can be arbitrarily specified ( c c0P P ) by the 
designer, for example, when cP I  we have a decoupled response from sc .
To find the linear combination of variables we will make some additional assumptions: 
1. 1# # #c y u ;
2. # # #y u d ;
3. The matrix c0P  is invertible. 
Then, we want to find a matrix H  that gives us dP 0  and c c0P P . Joining Eq. 3 and 
6 results in: 

y y -1
d c0 1 d1H G G P G G  (7) 

By assumption number 1 we have that the matrix y y
dG G  is square and, as the 

measurements are independent, the matrix is invertible, then, finally: 

-1y1

1-1 y y
c0 1 d1 d

G G

H P G G G G  (8) 

When c0P I  and using c  as secondary controlled variables, from Eq. 6 is easy to see 
that 1G G  and d d1G G .

3. Minimum State Deviation 
To keep the states close to their desired (nominal) values in the presence of disturbances 
and implementation error, we will define a matrix W , which represents a linear 
combination of the states. It can also be interpreted as the objective of the controller 
defined by the controller’s designer. Consider the following linear model: 

x x
dx G u G d  (9) 

Substituting Eq. 5 into Eq. 9: 

x
x
d

x x -1 x -1 c
d d

P
P

x G G G G d G G n  (10) 

Matrices xP  and x
dP  represent the effect of the disturbances and implementation errors 

in the states when we control combinations of variables. To avoid problems related to 
non-linearities, it is important that these matrices be as small as possible. Then, to 
minimize the effect of the disturbances ( d ) and the implementation errors ( cn ), we 
want to minimize the norms xP , x

dP , and x x
dP P . It is important to emphasize 

that we will not control the states x  directly but, instead, we will “control” them using 
indirect control as presented in section 2. When we have perfect indirect control and 
when c0P I , matrices G  and dG  become equal to 1G  and d1G , respectively. 
Defining the primary variables as linear combinations of the states ( 1y Wx ):



1 d1

x x
1 d

G G

y W x WG u WG d  (11) 

Eq. 10 then becomes: 

xx
d

-1 -1x x x x x x c
d d

PP

x G G WG WG d G WG n  (12) 

Important point to be discussed: what is the optimal choice of W  that minimizes the 

value of x
dP  in Eq. 12? Assuming that 

TxW G , results in: 

T T T-1 -1
x x x x x x x x x c
d dx G G G G G G d G G G n  (13) 

The matrix 
T T-1

x x x xG G G G  in Eq. 13 is called projection matrix (Strang, 1980). It 

means that the product 
T T-1

x x x x x
dG G G G G  is the closest point to x

dG , i.e., there isn’t 

any other matrix W  that can result in a smaller value of x
dP  than 

TxW G . Then we 

conclude that the choice of 
TxW G  gives us the minimum value of x

dP . This will be 
demonstrated in the example below. It is important to notice that this is not the only 
optimum choice because any matrix 

TxW RG  is an optimum solution, where R  is 

any non-singular square matrix with apropriated dimensions. The choice of 
TxW G  is 

optimum for any choice of c0P  non-singular, i.e., this result is not restricted to c0P I .
It is also important to notice that the matrix W  can be arbitrarily chosen by the 
designer according to the objective of the process. For example, he can choose to make 
a combination of only some states or use all of them. In summary, the main result in this 
paper can be summarized as follows: 
Theorem: Let x

dP  denote the steady-state transfer function from d  to x  with c Hy

kept constant. Then x
d 2

P  is minimized by selecting 
T †x y

1H G G G , where † indicates 

the pseudo-inverse.

4. Application to Distillation 
The proposed theory is applied to a distillation column with 82 states (41 compositions 
and 41 levels). As the levels don’t have steady state effect, we considered that the 
objective function is a combination of the compositions only. This example has, after 
stabilization, 2 remaining manipulated variables (reflux flow rate ( L ) and vapor boilup 
(V )), and 2 disturbances (feed flow rate ( F ) and fraction of liquid in the feed ( Fq )). 
Having 2 manipulated variables, we are able to control perfectly 2 combinations of the 
states. The measurements ( y ) are the flow rates ( L , V , D , and B ). In this example 
we compared the effect of the disturbances in the states using, as primary variables, 3 
different combinations of states (3 different matrices W ). The combinations used were: 



Combination 1: W  was selected in order to select the bottom and top compositions 
as primary variables. This is the most common choice in distillation studies. 
Combination 2: W  was selected as being the transpose of xG  (

TxW G ).

Combination 3: W  was calculated solving x x
d 2

min
W

P P .

For each combination we obtained the best combination of measurements (matrix H )
using Eq. 8. Then matrices xP  and x

dP  were calculated. The values of the 2-norm xP ,

x
dP , and x x

dP P  are presented in Table 1.  

Table 1.  Values of xP , x
dP , and x x

dP P  for all 4 

combinations.

xP x
dP x x

dP P

1 48.8289 2.5182 48.8817 
3 0.0252 1.0886 1.0886 
4 0.2560 1.0886 1.0886 

Although the choice of the top and bottom compositions as primary variables 
(combination 1) is able to control perfectly these two variables (the closed-loop gains 
relating the disturbances to the bottom and top compositions are zero), the gains of the 
states in the middle of the column are very large (above 0.7) (see Table 2). And also this 
choice doesn’t give good rejection of the implementation error (see matrix xP  in Table 
2). As expected (session 3), the results presented in Table 1 confirm that the use of 

TxW G  is an optimum choice (it has the same value of x x
dP P  as obtained by 

optimization). 
As we can see in Table 2, combinations 2 and 3 (obtained by minimization) are 
equivalent in relation to matrix x

dP  (are exactly the same in both cases). But when we 

analyze only xP , we see that the use of 
TxW G  gives us a better result. The reason is 

that, in the minimization, we are only interested in the norm x x
dP P  and, in this 

case, the norm of the matrix x
dP  is much more important than the matrix xP . This can 

be easily seen when we analyze Table 1 more carefully. Although the value of xP , for 

combination 3, is quite large (0.2560), the value of x x
dP P  is almost the same as 

the value of x
dP  (it is important to emphasize that although the values of x

dP  and 

x x
dP P  presented in Table 1 for combinations 2 and 3 are the same, in reality the 

values of x x
dP P  are slightly larger than x

dP , the difference does not appear due 

to truncation). As we can see in Table 2, the choice of 
TxW G  doesn’t give perfect 

control for the top and bottom compositions, but it reduces the sensitivity of the states in 



the middle of the column (about 0.4) to variations in the disturbances. This point is 
important to avoid the effects of non-linearities in the process. 

Table 2.  Values of the matrices xP  and x
dP  for the four combinations. 

Combination 1 Combination 2 Combination 3 
xP x

dP xP x
dP xP x

dP

  1.00    0
  1.49  0.00
            
12.13   2.21
12.50   2.72
12.43   3.23
            
  6.51  4.93
  4.85  5.02
  4.82  6.63
              
 0.01   1.41
           1.00

0.0     0
0.0  0.00
       
0.0  0.32
0.0  0.40
0.0  0.47
        
0.0  0.72
0.0  0.74
0.0  0.73
       
0.0  0.00
0.0  0.00

 0.001  0.001
 0.001  0.001
               
 0.005  0.005
 0.005  0.005
 0.004  0.004
               
 0.001  0.001
 0.000  0.000
-0.001 -0.001
              
-0.001 -0.001
-0.000 -0.000

0.0  -0.032
0.0  -0.047
          
0.0  -0.134
0.0  -0.088
0.0  -0.028
          
0.0   0.351
0.0   0.413
0.0   0.354
          
0.0  -0.048
0.0  -0.034

0.007 -0.002
0.010 -0.003

               
0.081 -0.008
0.082 -0.005
0.081 -0.002

               
0.036  0.020
0.024  0.024
0.021  0.035

               
-0.003  0.009
-0.002  0.007

0.0 -0.032
0.0  -0.047
          
0.0  -0.133
0.0  -0.088
0.0  -0.028
          
0.0   0.351
0.0   0.413
0.0   0.354
          
0.0  -0.048
0.0  -0.034

5. Conclusions 
In this paper we showed that it is possible to control perfectly (having perfect 
disturbance rejection and minimizing the implementation error effects) any combination 
of the states if we have enough measurements available. Therefore, it is shown the 
importance of the use of the combination of states as primary variables. Although the 
choice of the top and bottom compositions of a distillation column is good to reject 
perfectly the disturbances, it fails in the rejection of the implementation error and also it 
doesn’t give a good control of the states in the middle of the column. The choice of 

TxW G  proved to be the best choice if the objective is to keep the states as close as 
possible to their desired (nominal) values. It rejects very well both disturbances and 
implementation errors, although it doesn’t give perfect control of the top and bottom 
compositions. 
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