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Abstract

In this paper, we aim at obtaining insight into how a multivariable feedback controller works, with special attention to serial
processes. Serial processes are important in the process industry, and the structure of this process makes it simple to classify the
different elements of the multivariable controller.

In particular, we focus on the difference between the feedforward and feedback parts of the controller. Feedforward control may
improve the performance significantly, but is sensitive to uncertainty, especially at low frequencies. Feedback control is very effective
at lower frequencies where high feedback gains are allowed.

An example of neutralization of an acid in a series of three tanks is used to illustrate the ideas.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

Before designing and implementing a multivariable
controller, there are some questions that are important
to answer: What will the multivariable controller really
attempt to do? Will a multivariable controller signifi-
cantly improve the performance as compared to a sim-
pler scheme? How accurate a model is needed?

Conceptually, a multivariable controller uses the two
basic principles of ‘‘feedforward’’ action, based mainly
on the model (for example the off-diagonal decoupling
elements of the controllers), and feedback correction,
based mainly on the measurements. There is a funda-
mental difference between feedforward and feedback
controllers with respect to their sensitivity to uncer-
tainty. Feedforward control is sensitive to static uncer-
tainty, whereas feedback is not. On the other hand,
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aggressively tuned feedback controllers are very sensi-
tive to uncertainty in the high-frequency (crossover) fre-
quency region. Similar differences with respect to
uncertainty can be found for multivariable controllers.

A multivariable controller often yields significant
nominal improvements compared to local single-loop
control, and this is largely because of the ‘‘feedforward’’
action. With model error, the feedforward effect may in
fact lead to worse performance. The use of feedback
from downstream measurements depends less on the
model, as use of high feedback gains at low frequencies
removes the steady-state error. However, at higher fre-
quencies high feedback gains may lead to stability prob-
lems, and it is at these higher frequencies one may have
the largest benefit of the model-based ‘‘feedforward’’ ac-
tion of the multivariable controller.

In this paper, we discuss these issues for the impor-
tant class of serial processes, in which the states in one
process unit influence the states in the downstream unit,
but not the other way round. This structure is very com-
mon in the process industry, where the outlet flow of
one process enters into the next. One example, which
will be studied in Section 4, is neutralization performed
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in several tanks in series. Examples of processes that are
not serial are processes with some kind of recycle of
material or energy. Even for such processes, however,
parts of the process may be modelled as a serial process,
if the outlet variations of the last unit are dampened
through other process units before it is recycled.

Buckley [1] discusses control structure design for
serial processes and distinguishes between material bal-
ance control (control of inventory or pressure by flow
rate adjustments) and product quality control (control
of quality parameters such as concentration). Shinskey
[2] and McMillan [3] present methods for the design of
pH neutralization processes. Mixing tanks are used to
dampen disturbances, and they find that the total vol-
ume may be reduced by use of multiple stages with
one control loop for each tank. Another advantage with
multiple stages is that one may use successively smaller
and smaller control valves, leading to a more precise
manipulated variable in the last stage. McMillan and
Shinskey both recommend different sized tanks to avoid
equal resonance frequencies in the tanks, but this has la-
ter been questioned [4,5].

A discussion on the open-loop response of serial
processes is given by Marlin [6, p. 156]. Morud and Sko-
gestad [7] note that the poles and zeros of the transfer
function of a serial process are the poles and zeros of
the transfer functions of the individual units. Thus, the
overall response may be predicted directly from the indi-
vidual units, in contrast for example to processes with
recycle. Many series connections of processing units
are not really serial processes, as the response of each
unit also depends on the downstream unit (for example
if the outlet flow rate from a unit depends on the pres-
sure in the subsequent unit) [6,8,9]. Morud and Skoges-
tad denote the latter process structure cascades, whereas
Marlin uses the terms noninteracting and interacting ser-
ies, respectively, for the two structures.

In Section 2 we develop the model structure for serial
processes and discuss some of their properties. In Section
3 the control of serial processes is discussed, and the divi-
sion of the controller in feedforward, feedback and reset-
ting blocks is presented. One popular multivariable
controller is MPC, and to be able to use the theory for
linear systems, we summarize in Appendix A how to ex-
GðsÞ ¼

C1M1B1 0

C2M2A2;1M1B1 C2M2B2
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. ..
.

CnMn
Qn�1
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½An�rþ1;n�rMn�r�B1 CnMn
Qn�2

r¼1

½An�rþ1;n�rMn�r�B

266666664
press an unconstrained MPC combined with a state esti-
mator on state space and transfer function form, see
more details in [10]. The ideas of the paper are further
illustrated through an example with pH neutralization
in three stages (Section 4). The paper is concluded by a
short discussion (Section 5) and conclusion (Section 6).
2. Model structure of serial processes

We define a serial process by the following (also see
Fig. 1):

A serial process can be divided into a series of sub-
processes or units, where the states in each unit depend
on the states in the unit itself (xi), the states in the up-
stream unit (xi�1), and the exogenous variables (ui,di)
to the unit.

The model for unit no. i can then be expressed as

d

dt
xi ¼ fiðxi; xi�1; ui; diÞ ð1Þ

where xi and xi�1 are the state vectors for unit i and unit
i � 1, respectively, and the external input is divided into
a vector of manipulated inputs, ui, and disturbances, di.
We further define the outputs from a unit as a function
of the states of this unit

yi ¼ giðxiÞ ð2Þ
It is easy to also include direct throughput terms, i.e.,
define yi = gi(xi,xi�1,ui,di), but it makes the expressions
below slightly more complex.

We linearize (1) and (2) around a working point,
introduce Ai,j = ofi/oxj; j = i, i � 1, Bi = ofi/oui,
Ci = ogi/oxi, and Ei = ofi/odi and let the variables repre-
sent deviations from this working point. Applying La-
place transformation, and recursively inserting for
variables from the upstream process unit, we obtain:

yðsÞ ¼ GðsÞuðsÞ þ GdðsÞdðsÞ ð3Þ
where we have defined the total output vector, y(s), as all
the outputs, u(s) as all the manipulated inputs, and d(s)
as all the disturbances. Defining

Mi ¼ ðsI � Ai;iÞ�1 ð4Þ
we get
0 � � � 0

0 � � � ..
.

. .
.

0

2 � � � � � � CnMnBn

377777775 ¼

G1;1 0 0 � � � 0

G2;1 G2;2 0 � � � ..
.

..

. ..
. . .

.
0

Gn;1 Gn;2 � � � � � � Gn;n

2666664
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Fig. 1. Serial process with exogenous variables ui (manipulated) and di
(disturbances) into unit i. The vector yi represents the outflow of unit i,
which continues into unit number i + 1.
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and

GdðsÞ ¼

Gd;1;1 0 0 � � � 0

Gd;2;1 Gd ;2;2 0 � � � ..
.

..

. ..
. . .

.
0

Gd;n;1 Gd ;n;2 � � � � � � Gd;n;n

2666664

3777775 ð6Þ

where n is the number of units. Gd is identical to G ex-
cept in Gd Bi is replaced by Ei (the disturbances to each
unit are assumed independent).

We see that G(s) and Gd(s) are both lower block trian-
gular. From (5) and (6), we can deduce the following
properties:

• The state vector of a process unit is not influenced by
control inputs and disturbances to downstream units.

• The influence from a control input or a disturbance
which enters an upstream unit, q, is dampened by
the transfer function

CiðsI � Ai;iÞ�1
Yi�q

r¼1

½Ai�rþ1;i�rðsI � Ai�r;i�rÞ�1�

before it reaches the output of unit i.
• The open loop stability of the total process is given by

the stability of each unit since the elements in G and
Gd consists of products of Mi�s.

• G(s) and Gd(s) are block diagonal at infinite frequency
(s ! 1).

Note that the nominal model of unit i can be ex-
pressed as
Gd,i-1
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~
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~
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~

Gd,i+1,i+1

Gi+1,i+1

yi

di+1

ui+1

Gd,i+1

~
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Fig. 2. Model structure for a serial process.
yi ¼ Gi;iui þ eGd;iyi�1 þ Gd;i;idi ð7Þ
where eGd;i is the transfer function from ‘‘disturbances’’
due to variations in the upstream unit, i � 1 to output yi:eGd;iðsÞ ¼def Gi;i�1G

�1
i�i;i�1 ð8Þ

This is illustrated in Fig. 2.
3. Control structures for serial processes

In the previous section, we introduced the concept of
serial processes and Eqs. (3)–(6) summarize the linea-
rized model. If we for simplicity assume that the set-
points are constant (yr = 0), and we want to control
all the outputs, the control inputs are given by

uðsÞ ¼ KðsÞyðsÞ ð9Þ

where K(s) is the controller. We divide the controller
K(s) into n · n blocks of the same size as the blocks in
G(s):

KðsÞ ¼

K11 K12 . . . K1n

K21 K22 . . . K2n

..

. ..
. . .

. ..
.

Kn1 Kn2 . . . Knn

266664
377775 ð10Þ

These controller blocks can be divided into three groups:
Blocks on the diagonal (Ki,i): These blocks use local

control, where inputs to a unit are used to control out-
puts of the same unit.

Blocks below the diagonal (Ki,j, i > j): Through these
blocks an output from an upstream unit directly affects
the input in a downstream unit. Since upstream units act
as disturbances to downstream units (see (7)), these con-
troller blocks may be viewed as ‘‘feedforward’’ elements.

Blocks above the diagonal (Ki,j, i < j): These blocks
represents feedback from the outputs of downstream
units. Intuitively, when the effective delay through the
units is large, these blocks seem ineffective since the local
feedback always will be quicker. There are, however,
several cases when it may prove useful:

1. We have no relevant control inputs downstream so
local control is impossible.

2. The downstream actuators are slow, so that it actu-
ally is more efficient to manipulate the upstream con-
trol inputs.

3. There are not enough degrees of freedom in the
downstream units.

4. The control inputs downstream are constrained, and
insufficient to compensate for the disturbances.

5. The downstream actuators are expensive to use.

In the latter two cases, the upstream manipulated
variable can be used to (slowly) drive the downstream
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ones to zero or to some other ideal resting value. This is
called input resetting and is normally used for systems
where we have more control variables than outputs
(e.g., [11, p. 418]).

In analyzing the controller, it is useful to plot the gain
of the controller elements as a function of frequency. A
key point is to find out whether there is integral action in
the feedback part of the controller. Integral action re-
quires high gain at low frequencies, but it is not always
straightforward to interpret the gain plot of the control-
ler elements as seen later in the example. Instead, it is
proposed to consider the individual gains of the sensi-
tivity function, S(jx) = (I + L(jx))�1 where L(jx) =
G(jx)K(jx) is the loop transfer function. The usefulness
of S is seen from the following expression for the control
error

e ¼ �Syr þ SGdd ð11Þ
where e = y � yr, yr is the reference, d is the disturbance
and Gd is the (open loop) transfer function matrix from
the disturbance to the output. To have no steady-state
offset in an output we need that all elements in the cor-
responding row of S to be zero at steady state (x = 0).

3.1. Single loop controllers

3.1.1. Only diagonal blocks (local control)

Local control is by far the most common control
element,

Local control : ui ¼ Ki;iðsÞyi ð12Þ
With only local control and three units (n = 3), the loop
transfer function becomes

L ¼
G11 0 0

G21 G22 0

G31 G32 G33

264
375 K11 0 0

0 K22 0

0 0 K33

264
375

¼
G11K11 0 0

G21K11 G22K22 0

G31K11 G32K22 G33K33

264
375 ð13Þ

From this it follows that the stability of the closed-loop
system (S) is determined by the blocks on the diagonal
only. That is, we have closed-loop stability if and only
if each of the individual loops (I + Gi,iKi,i)

�1 are stable.

3.1.2. Only blocks below the diagonal (pure feedforward)
The use of measurements in upstream units in the

control of a unit is denoted feedforward control:

Feedforward ði > jÞ : ui ¼ KFF
i;j ðsÞyj ð14Þ

With ‘‘pure’’ feedforward control (only feedforward ele-
ments), the controller does not influence the stability of
the closed-loop system, S.

From (7) and (8) we find that perfect nominal control
is obtained by selecting
KFF
i;i�1 ¼ �G�1

i;i
eGd;i ð15Þ

KFF
i;i�2 ¼ � � � ¼ KFF

i;1 ¼ 0 ð16Þ

The reason for the zero in (16) is that the disturbance is
already eliminated by (15). If (15) cannot be realised, for
example if it is not causal, (15) must be modified:

KFF
i;i�1;� ¼ �G�1

i;i;�
eGd;i ð17Þ

where subscript minus indicates that negative delays and
other noncausal elements of the (total) controller has
been removed (this is a simplification of the H2 optimal
feedforward controller given by Scali and co-workers
[12,13]). As an example, let

Gi;i ¼
ke�hs

ssþ 1
; eGd;i ¼

kde�hd s

ssþ 1
ð18Þ

Then

KFF
i;i�1;� ¼ �ðkd=kÞe�ðhd�hÞs; hd > h

�ðkd=kÞ; hd 6 h

(
ð19Þ

When (15) cannot be realised, feedforward from units
i � 2, i � 3, . . . can be useful. For example, if it is causal,
the following feedforward controller from unit i � 2
eliminates the control error that remains after KFF

i;i�1;�:

KFF
i;i�2 ¼ �G�1

i;i;�ðI � Gi;iG
�1
i;i;�ÞeGd;i

ðI � Gi�1;i�1G
�1
i�1;i�1;�ÞeGd;i�1 ð20Þ

See Appendix B for a derivation of (20).
Feedforward control is generally sensitive to uncer-

tainty, and we will now consider its effect. The nominal
model is given by (7), and the actual model (with uncer-
tainty) is

y 0i ¼ G0
i;iui þ eG 0

d;iy
0
i�1 þ G0

d;i;idi ð21Þ

A pure feedforward controller from upstream units then
yields the following actual control error:

e0i ¼
def y0i � yri ¼ eG0

d;iy
0
i�1 þ

Xi�1

j¼1

G0
i;iK

FF
i;i�jy

0
i�j þ G0

d;i;idi � yri

ð22Þ
With ‘‘ideal’’ feedforward control based on the nominal
model, as given by (15) and (16), the actual control error
becomes

e0i ¼ ðeG0
d;i � G0

i;iG
�1
i;i
eGd ;iÞy 0i�1 þ G0

d;i;idi � yri

¼ ðI � G0
i;iG

�1
i;i
eGd;i

eG 0y
d;iÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}Ed;i

eG0
d;iy

0
i�1 þ G0

d;i;idi � yri

ð23Þ
where � denotes generalized inverse (e.g., [14, p. 76]),

and Ed,i is a relative model error in Gi;i
eGy

d;i. In particular,
for scalar blocks



A. Faanes, S. Skogestad / Journal of Process Control 15 (2005) 259–271 263
Ed;i ¼ 1�
G0

i;i=
eG 0

d;i

Gi;i=eGd;i

ð24Þ

Thus, model errors at any frequency directly influence
the actual control error. Upon comparing the response
with control in (23) with the response without control
(ui = 0 in (21)) we see that ‘‘feedforward’’ (decoupling)
control has a positive (dampening) effect on distur-
bances from upstream units at frequencies x where

kEd;iðxÞk < 1 ð25Þ
or in words, as long as the relative error in Gi;i

eGy
d;i is less

than 1 in magnitude. Here, we use an appropriate norm
dependent on the definition of performance.

External disturbances entering directly into the proc-
ess at unit i, di, are (of course) not dampened by feedfor-
ward control from upstream units, but if di is measured,
then separate feedforward controllers may be designed
for di. Feedforward control from the reference, yri, is
also necessary to avoid control error if yri 5 0 and no
feedback is applied.

3.1.3. Lower block-triangular control

A lower (block) triangular controller will result if we
combine local feedback and feedforward from upstream
units,

Local control ði ¼ jÞ : ui ¼ Ki;iðsÞyi

Feedforwardði > jÞ : ui ¼ KFF
i;j ðsÞyj

The loop transfer function now becomes (n = 3):

L ¼
G11 0 0

G21 G22 0

G31 G32 G33

264
375 K11 0 0

KFF
21 K22 0

KFF
31 KFF

32 K33

264
375

¼
G11K11 0 0

G21K11 þ G22KFF
21 G22K22 0

G31K11 þ G32KFF
21 þ G33KFF

31 G32K22 þ G33KFF
32 G33K33

264
375

ð26Þ

The diagonal elements are feedback elements, where
most of the control benefits are achieved simply by using
sufficiently high gains, and an accurate process model is
not needed. The main problem is that too high gain may
give closed-loop instability.

As for the local feedback (diagonal) control structure,
the stability of the closed-loop system (S) is determined
only by the blocks on the diagonal, that is, we have
closed-loop stability if and only if each of the local loops
(I + Gi,iKi,i)

�1 are stable (e.g., [11]).
Note that we also obtain this control structure if

an inverse-based (decoupling) design method (K(s) =
k(s)G�1(s)) is used. An example of an inverse based con-
troller is IMC decoupling [15], KIMC = W1G

�1W2 where
W1 and W2 are (block) diagonal matrices (with blocks
corresponding to the blocks in G). For this controller
we obtain the following diagonal and sub-diagonal
blocks:

KIMC;i;i ¼ W 1i;iG
�1
i;i W 2i;i ð27Þ

KFF
IMC;i;i�1 ¼ �W 1i;iG

�1
i;i Gi;i�1G

�1
i�1;i�1W 2i�1;i�1

ð28Þ

whereWji,i
denotes block (i, i) of weight matrixWj (this is

the integrator). (27) and (28) can be verified by calculat-
ing that GG�1 = I. Since the stability is determined by
the diagonal blocks, and these are the scaled inverse of
the blocks of G, the weights can be selected independ-
ently for each unit, e.g., using the method of Rivera
et al. [16] (for scalar blocks). If G is not invertible,
e.g., due to right half plane zeros and delays, the not
invertible part of G is essentially factored out before
the inversion [15].

Using (8), we note that the sub-diagonal part of the
IMC controller, (28), is identical to the ideal feedfor-
ward controller (15), except for the weights. Integral ac-
tion in the feedback part of the controller (KIMC,i,i)
requires an integrator in either W1i,i or W2i,i. For exam-
ple, we may choose W 2i;i ¼ 1

sCLs
I where sCL is the desired

closed-loop time constant [16]. Thus, we see from (28)
that also the ‘‘feedforward’’ gain will be amplified at
low frequencies.

Let us now consider the effect of model uncertainty
for this case. The nominal model is given by (7) and
the actual model by (21). A lower triangular controller
yields the following actual control error:

e0i ¼
def y0i � yri ¼ S0

i
eG0

d;iy
0
i�1 þ

Xi�1

j¼1

G0
i;iKi;i�jy0i�j þ G0

d;i;idi � yri

 !
ð29Þ

where (e.g., [11])

S0
i ¼ ð1þ G0

i;iKi;iÞ�1 ¼ Sið1þ EiT iÞ�1 ð30Þ

Here Si and Ti are the nominal sensitivity and comple-
mentary sensitivity functions, respectively, and Ei is
the relative error in G (note that Ei in Section 2 denoted
something else).

Upon comparing the closed-loop response in (29)
with the open loop response in (21) we see the following:

1. Effective local feedback control (kSi(jx)k � 1) dam-
pens disturbances from the preceding unit (yi � 1),
external disturbances entering the process at unit i,
and also the effect of the model error (Ei) and errors
in the feedforward control.

2. For frequencies where feedback control is not effec-
tive, i.e., kSi(jx)k P 1 we may benefit from feedfor-
ward control. We can apply the results from Section
3.1.2, (15)–(25), except that (20) must be modified
due to the feedback control in unit i � 1:
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KFF
i;i�2 ¼ �G�1

i;i ðI � Gi;iG
�1
i;i;�ÞeGd;iðI � Gi�1;i�1Ki�1;i�1Þ�1

ðI � Gi�1;i�1G
�1
i�1;i�1;�ÞeGd;i�1 ð31Þ

3. As for the pure feedforward case, external distur-
bances entering directly at unit i, di, are not damp-
ened by the feedforward control from upstream
units, so they must be handled by the feedback con-
trol. If this is not sufficient, and provided di is meas-
ured, a separate feedforward controller may be
designed for di.

For serial processes with a lower block-triangular
controller, it is particularly simple to identify feedfor-
ward and feedback controller elements, but similar dif-
ferences between the elements occur for most
multivariable controllers. Such insights are important
for example when evaluating how the controller is af-
fected by model error.

A more general analysis of feedforward control under
the presence of uncertainty is given elsewhere [17] (or
[18, Chapter 6]).
3.2. Full controller

With a full controller, as in (10), and three units
(n = 3), the loop transfer function becomes

L ¼ GðsÞKðsÞ

¼
G11K11 G11K12 G11K13

G21K11 þ G22K21 G21K12 þ G22K22 G21K13 þ G22K23

G31K11 þ G32K21 þ G33K31 G31K12 þ G32K22 þ G33K32 G31K13 þ G32K23 þ G33K33

264
375

ð32Þ
In this case, the stability of the closed-loop system is af-
fected by all elements in the controller K (and in G).

As illustrated in the case study in Section 4, also in
this case the controller blocks below the diagonal have
properties similar to feedforward control.
3.3. Final control only in last unit (input resetting)

In many serial processes, the output from the last unit
is the most important for the overall plant economics,
and the inputs in the upstream units are extra degrees
of freedom. These are normally used for local distur-
bance rejection by controlling the outputs in upstream
units. The inputs towards the end of the process can
then be reset to some ideal resting value by adjusting
the upstream unit set-points.

We may then use the following control elements:

Local control ði ¼ jÞ ui ¼ Ki;iðsÞ½yri � yi�

Feedforward ði > jÞ ui ¼ KFF
i;j ðsÞyj

Input resetting ði < jÞ yri ¼ KIR
i;j ðsÞ½urj � uj�
The controller can usually be tuned in a rather simple
sequential manner. The feedforward elements are nor-
mally the fastest acting and should normally be designed
first. The local feedback controllers can be tuned almost
independently. Finally, the slow input resetting is added,
which will not affect the closed-loop stability if it is suf-
ficiently slow.
4. Case study: pH neutralization

4.1. Introduction

Neutralization of strong acids or bases is often per-
formed in several steps (tanks). The reason for this is
mainly that with a single tank, the pH control is not
quick enough to compensate for disturbances [19].
McMillan [3] uses an analogy from golf: the difficulty
of controlling the pH in one tank is compared to getting
a hole in one. Using several tanks, and smaller valves for
addition of reagent for each tank, is similar to reaching
the hole with a series of shorter and shorter strokes.

In the present example, we want to compare different
control structures for neutralization of a strong acid in
three tanks (see Fig. 3). This is clearly a serial process.
The aim of the control is to keep the outlet pH from
the last tank constant despite changes in inlet pH and in-
let flow rate. For each tank, the pH can be measured, and
the reagent (here base) can be added. Fig. 3 shows the
process with only local control in each tank (K diagonal).

4.2. Model

To study this process we use the models derived in a
previous paper [5]. In each tank we consider the excess
H+ concentration, defined as c ¼ cHþ � cOH� . This gives
a bilinear model, which is linearized around a steady-
state working point, so that the methods from linear
control theory can be used. We get two states in each
process unit (tank), namely the excess concentration, c,
and the level. The disturbances (mainly feed changes)
enter in tank 1. We here assume that there is a delay
of 5s for the effect of a change in inlet acid or base flow
rate or inlet acid concentration to reach the outflow con-
centration of the tank, e.g., due to incomplete mixing,
and a further delay of 5 s until the change can be meas-
ured. In the discrete linear state space model, these de-
lays are represented as extra states (poles in the
origin). We assume no further delay in the pipes between
the tanks. The levels are assumed to be controlled by the
outflows using P controllers such that the time constant
for the level is about 1/10 of the residence time (i.e.,
q = 0.01(V � Vs), where Vs is the volume set-point).

The volumes of the tanks are chosen as 13.6m3,
which are the smallest possible volumes according to
the discussion in [19]. The concentrations are scaled such
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that a variation of c = ±1pH corresponds to a scaled
value of ±1. The control inputs and the disturbances
are also scaled appropriately. The linear model is used
for multivariable controller design, whereas the simula-
tions are performed on the nonlinear model.

4.3. Model uncertainty

The model presented in the previous section was the
nominal model, which will be used in the controller de-
sign. If the model gives an exact representation of the ac-
tual process, we say it is perfect. Due to simplifications
in the modelling or process variations, there is often a
discrepancy between the model and the actual process.
Often the model is idealized, i.e., it is simplified, to ease
the modelling work, the identification of parameters,
and the controller design.

In this example, we use linearized models in the MPC
design. In the design of (SISO) feedforward controllers,
a further simplification is that outlet flow variations are
neglected. The latter gives a steady-state model error,
but dynamically the error is small due to the slow level
control. What we here consider as the ‘‘actual plant’’,
is the full nonlinear model, possibly with the following
errors:

• Offset of 0.2 (in scaled value) in control input u3 (last
tank).

• pH measurement error of �1 in second tank.
4.4. Single loop controllers

The conventional way of controlling this process is
to use local PID-control of the pH in each tank. Fig.
4(a) shows the pH-response in each tank when the acid
concentration in the inflow is decreased from 10mol/l
to 5mol/l. As expected since the tank volumes are se-
lected at their minimum [19], this control system is
barely able to give acceptable control, pH = 7 ± 1 in
last tank, even though the PID-controllers are tightly
tuned.

We now want to study the use of feedforward control

from upstream units. As before, we let the pH in the first
tank be controlled with local PID control (the same tun-
ing as before), since we do not measure inlet distur-
bances to tank 1, and feedback is therefore the only
possibility. We let the pH in the second and third tanks
be controlled with feedforward control only, namely
with feedforward from y1 to u2 and from y2 to u3. With
‘‘ideal’’ feedforward control based on the nominal mod-
el, we then find KFF

21 and KFF
32 from (17). The net delay is

increased to obtain a causal controller with zero or pos-
itive delay in the controller. The two feedforward con-
trollers will react 5s too late due to the measurement
delays in y1 and y2, and thereby introduce a transient
output error. To avoid this, the last feedforward con-
troller, KFF

31 , from y1 to u3, can be used to eliminate this
error as given in (20).

Fig. 4(b) shows the nominal response (thick lines),
and we can see that perfect control is achieved in tank
3. However, when applied to a more realistic nonlinear
model, which incorporates flow rate changes (dotted
lines), we find that the feedforward controller fails.

We now combine the local PID-control in all the tanks
with feedforward control of tanks 2 and 3 (controllers
KFF

21 , K
FF
31 and KFF

32 ). In KFF
31 it is now necessary to take

into account the feedback loop of tank 2 and use Eq.
(31). Again, with a perfect model the effect of the distur-
bance is eliminated. Simulation on the more realistic
model reveals as expected an improvement compared
to the pure feedback and pure feedforward structures.
The feedforward controllers reduce the transient errors,
whereas the PID controllers remove the steady-state er-
rors, as illustrated in Fig. 4(c).

In Fig. 5(a) we plot the magnitude of the controller
gains (dotted lines). The presence of integral action is
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recognized from the high gains at low frequencies in the
diagonal elements. The sub-diagonal control elements
KFF

21 and KFF
32 are constant, whereas KFF

31 only has an ef-
fect at high frequencies where KFF

32 is no longer effective.
Note that with a larger model error, the positive effect

of the feedforward controller may be reduced, and the
feedforward action may even amplify the disturbances.

4.5. Multivariable control

4.5.1. Original 3 · 3 MPC controller

Fig. 4(d) shows the response with a 3 · 3 MPC con-
troller [20]; see also Appendix A. To obtain the current
state at each time step for the controller, a state estimator
is used. The estimated states in this ‘‘original’’ MPC-con-
troller also include the two (unmeasured) disturbances,
inlet flow rate and inlet excess concentration, modelled
as integrated white noise (we will discuss this choice
later). The controller design is based on a discretized
model, whereas in the simulation only the controller is
discrete. Even if this is a feedback controller, we see that
the disturbance response is similar to that of combined
local feedback and feedforward control in Fig. 4(c).

4.5.2. ‘‘Feedforward’’ part of MPC-controller

From the lower plots in Fig. 4(a) and (d), we can see
clearly that MPC has a ‘‘feedforward’’ effect. To study
this ‘‘feedforward’’ effect separately, we design a MPC-
controller that uses the pH measurement in the first tank
only, but adjust the reactant flow rates to all three tanks.
The response becomes for the nominal case similar to
the simulation with the full MPC-controller in Fig.
4(d). If, however, a model error is introduced, e.g., by
simulation with the nonlinear model, a steady-state er-
ror occurs for outlet pH. The reason for this is the lack
of feedback control in the last two tanks.

The individual gains of the 3 · 3 MPC-controller are
shown as a function of frequency in Fig. 5(a) (solid lines).
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disturbance: control input u3 has offset of 0.2 (at time 0). (b) Measurement er
Recall that the diagonal control elements are the local
controllers in each tank, whereas the elements below
the diagonal represent the ‘‘feedforward’’ elements.
From these plots, we get an idea of how the multivariable
controller works. For example, we see that the control in-
put to tank 1 (row 1) is primarily determined by local
feedback, whereas in tanks 2 and 3 (rows 2 and 3) it
seems that ‘‘feedforward’’ from the previous tank is more
important. In tanks 2 and 3 the control actions are smal-
ler, which is also confirmed in the simulation (Fig. 4(d)).
The local feedback control elements on the diagonal
compare well with the PID controllers (dashed lines), ex-
cept that the gain is reduced for tanks 2 and 3, but this
depends on the tuning of the MPC. At high frequencies,
the MPC ‘‘feedforward’’ elements are similar to the man-
ually designed feedforward controllers.

4.5.3. Integral action in original 3 · 3 MPC controller

As mentioned in Section 3, it is not straight-forward
to interpret the steady state behaviour from the gain
plots of the controller elements when all the elements
have large gains at low frequencies. This is shown by
considering the controller gain elements for the MPC
controller in Fig. 5(a). All elements have large gains at
low frequencies, so it seems we have integral action in
all outputs. However, from Fig. 5(b) we see that only
the first row in S has all elements small at low frequen-
cies. Thus, only output 1 has integral action. We should
therefore expect steady-state offset in tank 3. However,
the nominal simulations in Fig. 4(d) show no offset.
The reason is that the integral effect in the first tank re-
moves the concentration effect, and the ‘‘feedforward’’
control gives the correct compensation for the flow rate
disturbance. However, if some unmodelled disturbance
or model error is introduced (e.g., a constant offset in
u3 or a measurement error in tank 2), then we get stea-
dy-state offset. This indeed is shown in Fig. 6. The local
PID controllers give no such steady-state offset.
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in tank 3 drifts away when we have model error. (a) Unmodelled
ror: at time 10 s a pH measurement error of �1 is introduced in tank 2.
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4.5.4. Modified 3 · 3 MPC-controller with integral action

In the ‘‘original’’ estimator used above, we only esti-
mated the inlet disturbances to tank 1. We now redesign
the controller by estimating one disturbance in each tank:
The concentration disturbance to the first tank and dis-
turbances in the manipulated variables in tanks 2 and 3
(u2 and u3). The resulting controller gains are shown in
Fig. 7(a). With this design the gain in jS(jx)jis low at
low frequencies for all tanks (Fig. 7(b)), and the simula-
tions in this case give no steady-state offset, also when er-
rors like in Fig. 6 are present. This agrees with the result
[21,10] that the number of disturbance estimates in the
controller must equal the number of measurements.
0
1
2
3 pH in tank 1

2

4
pH in tank 2

6

8 pH in tank 3

0 50 100 150 200 250
-1

0

1

time [s]

Control inputs u, scaled

(a) (

Fig. 8. MPC with integral action and input resetting. (a) Simul

10
-3

10
3

u
1

K
11

K
11

K
11

10
-3

10
3

u
2

K
21

K
21

K
21

10
-5

10
0

10
-3

10
3

u
3

y
1

K
31

K
31

K
31

K
12

K
12

K
22

K
22

K
22

10
-5

10
0

y
2

K
32

K
32

K
32

K
13

K
13

K
23

K
23

10
-5

10
0

y
3

K
33

K
33

K
33

10
-

10

e 1

10

10

e 2

10

10

e 3

(a) (b)

Fig. 7. Modified 3 · 3 MPC with integral action. (a) Controller gains for th
manually designed feedforward elements (dashed). (b) Gains of the sensitivi
4.6. MPC with input resetting

In the simulations above, we fixed the pH-set-points
in all three tanks. Actually, we are only interested in
the pH in the last tank, so that giving set-points for
tanks 1 and 2 is not necessary. Since we have three con-
trol inputs, this leaves two extra degrees of freedom,
which, as described in Section 3.3, may be used for input
resetting. The MPC controller is easily modified to
accommodate this. Fig. 8 illustrates how it performs
for a unit step in the disturbance (Fig. 8(a)) and the con-
troller gains (Fig. 8(b)). At steady state, all the required
change in base addition is done in the first tank. Since
10
-3

10
3

u
1

K
11

10
-3

10
3

u
2

K
21

10
-5

10
0

10
-3

10
3

u
3

y
1

K
31

K
12

K
22

10
-5

10
0

y
2

K
32

K
13

K
23

10
-5

10
0

y
3

K
33

b)

ation. Step disturbance at time 10 s. (b) Controller gains.

3

1

-3

1

10
-4

10
0

-3

1

r
1

10
-4

10
0

r
2

10
-4

10
0

r
3

e modified 3 · 3 MPC (solid). Also shown: Local PID controllers and
ty function.



A. Faanes, S. Skogestad / Journal of Process Control 15 (2005) 259–271 269
we do not measure the actual base addition, there is no
compensation for offset in the control input.
5. Discussion

There are several ways to avoid steady-state offset
with MPC controllers. The most common method is
to estimate the bias in the outputs, i.e., the difference be-
tween the predicted and the measured outputs, and com-
pensate for this bias. However, performance is often
improved by estimating input biases, or disturbances
[20,22–24,21]. In this paper, we have followed this ap-
proach. We ended up with estimating the concentration
disturbance into first tank and input biases for tanks 2
and 3 (three input biases gives similar results). Our con-
troller handles well both input disturbances (see Fig.
4(d)) and output disturbances or measurement errors.

We have also tried to estimate output biases, but this
gave a very slow settling in response to inlet distur-
bances. The reason is the long time constants in our
process, which give the output bias estimates a ramp
form [23]. The controller then faces a problem similar
to following a ramp trajectory.

In a previous paper [5], we found that the minimum
volume in each tank is limited by the delays in each
tank. In the present paper, we found that with a full
multivariable controller, these limitations are theoreti-
cally no longer valid provided we have a sufficiently
accurate process model. The reason for this is that the
multivariable controller does not have to wait for the
measurement in last tank before it takes action (due to
the ‘‘feedforward’’ effect). To be able to achieve a nom-
inally perfect ‘‘feedforward’’ control effect, the delay
from at least one control input to the output must be
shorter or equal to the delay from a measurement in
the disturbance to the output. Equally important, the ef-
fect of model uncertainty must not be too large. If this is
satisfied, then one may design smaller tanks compared
to the sizes given in [5] or reduce the instrumentation.
6. Conclusions

An analysis of the control of a serial process has re-
vealed some interesting properties of multivariable
controllers

1. The multivariable controller may rely strongly on
feedforward control and thus be sensitive to model
errors, including at steady state if there is no integral
action in the feedback part of the controller. The lack
of integral feedback action may be difficult to see
from nominal simulations, but it may be identified
by plotting the gains of the sensitivity function as a
function of frequency.
2. Note that high controller gains at low frequencies
does not guaranty integral action in the presence of
uncertainty (see Fig. 5).

3. To avoid the above problem of lacking integral
action, one may use an observer-based feedback cor-
rection with disturbances at as many plant inputs as
there are measurements.

4. If some feedforward controller blocks make the per-
formance poorer with model error present, these
blocks may be removed by modifying the process
model (e.g., by removing parts of the model).

In this study, we considered model predictive control
(MPC), but very similar results have also been obtained
for a multivariable H1-controller [25].
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Appendix A. State space MPC used in case study

Here, we briefly describe the MPC controller of
Muske and Rawlings [20] under the assumption that
the constraints are not active. For details see [10].

The MPC controller uses an estimate of the current
states of the process and a state space model to predict
future responses to control input movements. By letting
the control input change each time step over a certain
horizon, and thereafter be held constant, the optimal se-
quence of control inputs is calculated. The criterion for
the optimization is

min
uNk

X1
j¼0

ðyTkþjQykþj þ uTkþjRukþj þ DuTkþjSDukþjÞ ðA:1Þ

where uNk is the vector of N future control inputs, the
first at sample number k, yk is the output vector at sam-
ple k, uk is the control input at sample k, Duk is the
change in uk since last time step and Q, R and S are
weight matrices. Note that in the criterion we assume
that the set-point for the output, yr = 0. Nonzero set-
points are handled by a steady-state solver. Only the first
control input is applied, since at next time step the whole
sequence is recalculated, starting from the states actually
obtained at that moment.

Without active constraints the MPC can be repre-
sented as state feedback control, i.e., the control input
uk at time step no. k can be expressed by

uk ¼ Kxk þ Kuuk�1 ðA:2Þ

where xk is the state vector at step k and K and Ku are
constant matrices, independent of time provided the
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model is time invariant. The dependence of the control
input at the previous step, uk�1, comes from the weight
on change in u in the optimization criterion.

Since all the states are not measured, we estimate
them for example with a Kalman filter. For the MPC
algorithm we use a discretized model with time step 1
second and use a zero order hold method for the discre-
tization since the inputs are held constant between the
time steps. In the discretized model, time delays are rep-
resented exactly, as long as they are multiples of the time
step.

In [10] we derive a state space formulation for the
controller and the estimator:

xKkþ1 ¼ AxKk þ Bymk þ Eyr ðA:3Þ

uk ¼ CxKk þ Dymk þ Fyr ðA:4Þ

where uk is the control input at sample number k, xKk is
the controller/estimator state vector, ymk is the measure-
ment vector and yr the reference, which may be seen
as a disturbance to the controller. A, B, C, D, E and F

are constant matrices.
For frequency analysis of the controller, we may con-

vert this discrete controller into a continuous one using
d2c in Matlab (Tustin method), and Laplace transform
yields:

uðsÞ ¼ KðsÞymðsÞ þ KrðsÞyrðsÞ ðA:5Þ
We have chosen weights in the MPC optimization crite-
rion (A.1) as Q = diag(100,1,1), R = I and S = 0. For
the estimator, the co-variance matrices are Qw = I (proc-
ess noise) and Rv = I (measurement noise).
Appendix B. Derivation of Eqs. (20) and (31)

With pure feedforward control, we get the following
control error

ei ¼ eGd;iyi�1 þ Gi;iKFF
i;i�1yi�1 þ Gi;iKFF

i;i�2yi�2

¼ ðI � Gi;iG
�1
i;i;�ÞeGd;iyi�1 þ Gi;iKFF

i;i�2yi�2 ðB:1Þ

where we have inserted feedforward from unit i � 1
from (17). With a combination of feedback and feedfor-
ward control, we get (with (17))

ei ¼ ðI � Gi�1;i�1Ki�1;i�1Þ�1ðI � Gi;iG
�1
i;i;�ÞeGd;iyi�1

þ Gi;iKFF
i;i�2yi�2 ðB:2Þ

In both cases, ‘‘ideal’’ feedforward requires ei = 0 for all
yi�1 and yi�2:

ðI � Gi;iG
�1
i;i;�ÞeGd;iyi�1 þ Gi;iKFF

i;i�2yi�2 ¼ 0 ðB:3Þ

We consider first pure feedforward, Ki,i = Ki�1,i�1 = 0,
and find the transfer function from yi�2 to yi�1:
yi�1 ¼ ðeGd;i�1 þ Gi�1;i�1KFF
i�1;i�2Þyi�2 ðB:4Þ

KFF
i�1;i�2 ¼ �G�1

i�1;i�1;�
eGd;i�1 yields

yi�1 ¼ ðI � Gi�1;i�1G
�1
i�1;i�1;�ÞeGd;i�1yi�2 ðB:5Þ

and upon inserting (B.5) into (B.3) we obtain

Gi;iKFF
i;i�2 þ ðI � Gi;iG

�1
i;i;�ÞeGd;iðI � Gi�1;i�1G

�1
i�1;i�1;�ÞeGd;i�1

¼ 0

leading to (20).
Second, we find the transfer function from yi�2 to

yi�1 for a combination of local feedback and
feedforward,

yi�1 ¼ Gi�1;i�1Ki�1;i�1yi�1

þ ðeGd;i�1 þ Gi�1;i�1KFF
i�1;i�2Þyi�2 ðB:6Þ

where KFF
i�1;i�2 ¼ �G�1

i�1;i�1;�
eGd;i�1. Then

yi�1 ¼ ðI � Gi�1;i�1Ki�1;i�1Þ�1

ðI � Gi�1;i�1G
�1
i�1;i�1;�ÞeGd;i�1yi�2 ðB:7Þ

and by inserting this into (B.3) it follows

Gi;iKFF
i;i�2 þ ðI � Gi;iG

�1
i;i;�ÞeGd;iðI � Gi�1;i�1Ki�1;i�1Þ�1

ðI � Gi�1;i�1G
�1
i�1;i�1;�ÞeGd;i�1 ¼ 0 ðB:8Þ

which gives (31).
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