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Abstract: There is some disagreement in the literature on whether large plant gains are a
problem or not when it comes to input-output controllability. In this paper, the effect of
input errors is studied and controllability requirements are derived. The input disturbances
can be attenuated by the use of high gain feedback at frequencies where the gain is large,
but this may not be possible. The nonlinear effect of limited input resolution causes limit
cycle behavior similar to that found with relay feedback. The magnitude of these limit
cycles depends on the high-frequency process gain, but is independent of the controller
tuning and it can be reduced by pulse modulating the input signal, but this may cause
excessive input movement. Thus, large gains at frequencies corresponding to the closed-
loop bandwidth may cause control problems, but large steady-state gains are not by
themselves a problem.
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1. INTRODUCTION

The main goals of feedback control systems are to
stabilize the plant and suppress the effect of unmea-
sured disturbances on the output. Having this in mind,
a vital question arises: Is the process input-output
controllable? There are many factors that need to be
considered, and one of them is the magnitude of the
process gain. The gain depends on the frequency and,
for multivariable plants, also on the input direction.
To quantify this, the singular valuesσi(G(jω)) of
the process transfer functionG(s) are considered. Of
particular interest are the maximum and minimum
singular values, denoted̄σ(G) andσ(G), respectively.
In this paper, for simplicity, SISO systems where
σ̄(G(jω)) = σ(G(jω)) = |G(jω)| are mainly con-
sidered.
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It is well accepted that small process gains may cause
problems, for example, with input saturation. For ex-
ample, Morari (1983) states that, with unitary scaling
of the inputs and desired output changes of magnitude
one in terms of the 2-norm, the requirement for avoid-
ing input saturation isσ(G) ≥ 1, that is, a minimum
gain of one is required to have acceptable control.

It is less clear whether large process gains pose a
problem. Skogestad and Postlethwaite (1996) consider
the condition number, defined asγ(G) = σ̄(G)/σ(G)
and make the following conclusion:A large condition
number may be caused by a small value ofσ(G),
which is generally undesirable. On the other hand, a
large value of̄σ(G) is not necessarily a problem.

On the other hand, intuitively, a large process gain
may be troublesome, because the output becomes very
sensitive to the input changes. McAvoy and Braatz
(2003) argue along these lines and claim that for
control purposes the magnitude of steady-state process



gain (̄σ(G)) should not exceed about 50. If this is
correct then it would have important implications on
the design of many processes.

The objective of this work is to study this in more
detail. It is clear that the rule of McAvoy and Braatz
(2003) is reasonable if feedforward control is consid-
ered because there will always be some error when
implementing the input and without feedback this can-
not be corrected for. However, in terms of feedback
control, the rule cannot be generally true because for
some classes of processes, it is well known that large
process gains are not a problem. Consider, for exam-
ple, feedback control of liquid level (output) using
effluent flow (input). The steady-state gain is infinite
due to an integrating transfer function, but it is easily
controllable.

The effect of large system gains in the presence of
input errors to the process will be studied in this work.
Two main types of input errors are discussed: input
(load) disturbance and input inaccuracy caused by lim-
ited input (valve) resolution. Most of the results are
derived for first-order plus delay processes, otherwise,
when appropriated, more general derivations are pre-
sented.

2. INPUT LOAD DISTURBANCE

It is well known that “large disturbances” (i.e. processes
for which |Gd|d is large) cause control problems.
First, it causes problems for feedforward control
where the disturbance is measured. This follows be-
cause to compensate for the disturbance it is needed to
be very precise with the input change, and this is very
difficult in practice due to model error (e.g. see eq.
(5.70) in Skogestad and Postlethwaite (1996)). Thus,
large disturbances motivates the need for feedback
control, which is considered in this paper.
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Fig. 1. Block diagram of a feedback control system
with disturbance to the input to the plant.

With feedback control “large disturbances” are not
necessarily a problem, but they pose limitations on the
minimum bandwidth. Consider a single disturbanced
and assume that the reference is constant, i.e.r = 0.
Without control the steady-state sinusoidal response
from d to the control error ise(ω) = Gd(jω)d(ω),
where phasor notation is used. Assume that the worst-
case disturbance at any frequency isd(t) = d0 sin ωt,

i.e. |d(ω)| = d0, and the control objective is that
the controller error is less thanemax at any each
frequency, i.e.,|e(ω)| < emax. From this, one can
immediately draw the conclusion thatno control is
needed if|Gd(jω)d0| < emax at all frequencies (in
which case the plant is said to be “self-regulating”).
If |Gd(jω)|d0 > emax at some frequency, then control
is needed (feedforward or feedback). In the following,
feedback control is considered, in which casee(s) =
S(s)Gd(s)d(s), whereS = (I + GK)−1 is the sen-
sitivity function. With |d(ω)| = d0, the requirement
|e(ω)| < emax then becomes

|S(jω)| · |Gd(jω)|d0 < emax ∀ω (1)

A plant with a small|Gd| is preferable since the need
for feedback control is then less, or alternatively, given
a feedback controller (and thus givenS), the effect of
disturbances on the output is small.

|S| is small at low frequencies, so in general it does
not matter if |Gd| is large at steady state. However,
|S| increases with frequency and crosses 1 at the
bandwidth frequencyωB . At this frequency, which is
often the worst,|S(jωB)| = 1 and must from (1)
require

|Gd(jωB)| < ymax/d0 (2)

Thus, an upper bound on the allowed disturbance
gain at the frequencyωB have been derived. In most
cases|Gd| becomes smaller at high frequency, so the
bound is easier to satisfy ifωB is increased. However,
for stability reasons the value ofωB is limited, and
ωB < ωB,max ≈ 1/θ, approximately (Skogestad and
Postlethwaite, 1996), whereθ denotes the “effective
delay” around the feedback loop. The bound (2) then
becomes

|Gd(jωB,max)| = |Gd(j1/θ)| < ymax/d0 (3)

This bound is independent of the controller, and thus
provides a fundamental controllability requirement.

However, the purpose of this paper is not to consider
plants for which|Gd| is large, but rather plants for
which |G| is large. In practice, these are related be-
cause all plants have disturbances at the input to the
plant. To this effect, consider input (load) disturbances
with Gd(s) = G(s)αd whereαd is a constant gain.
(3) then gives the following limit on the allowed plant
gain at frequencyωB

|G(jωB,max)| = |G(j1/θ)| < 1/αd · ymax/d0 (4)

Input disturbances are very common and have many
sources. For example, in many cases the input is a
valve which receives its power from a hydraulic sys-
tem (e.g. the brakes of a car) or from pressured air
(many process control applications). A change (dis-
turbance) in the power system will then cause an input
disturbance. The value ofαd will vary depending on
the application. If it is assumed that the system has
been scaled such that the largest expected input is of
magnitude 1, then it seems reasonable thatαd is at
least 0.01, and that a typical value is 0.1 or larger.



As an example consider the following plantG(s) =
ke−θs/(τs + 1); Gd(s) = αdG(s) where k =
|G(0)| is the steady-state gain of the plant. The high-
frequency asymptote is|G(jω|) ≈ k/τω = k′/ω,
wherek′ = k/τ is the initial slope of the step re-
sponse. (4) gives the controllability requirement

k/τ = k′ < 1/αd · 1/θ · ymax/d0 (5)

Thus, there exist an upper bound on the allowed value
of k′.

Comment. (5) seems to indicate that a plant with a
large steady-state gaink is fundamentally difficult to
control. However, this is usually not true, because a
large value ofk is usually accompanied by a large time
constantτ . For example, for an integrating process
G(s) = k′e−θs/s. Thus, there is an infinite steady-
state gain and also an infinite time constant.

3. LIMITED INPUT RESOLUTION

The implications of limited input resolution is studied
here. The main reason for this is that McAvoy and
Braatz (2003), based on a case study, claims that
this imposes limitations on the allowed steady-state
process gain.

3.1 Controllability requirement for sinusoid responses

Consider a simple SISO example where the plant is
given by

G(s) = 100/[(10s + 1)(s + 1)2] (6)

and the controller is

K(s) = Kc(τIs + 1)/τIs, (7)

which contains a dominant time constantτI = 10, that
cancels the pole inG(s), andKc = 0.04 is selected.

The block diagram of the feedback system is depicted
in Figure 2.
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Fig. 2. Feedback control configuration for the valve
inaccuracy problem.

In this Figure,r is the set point,y is the plant output,
u is the controller (K) output, andG is the plant. The
element called quantizer has been used to simulate
valve inaccuracy. The idea behind the quantizer is that
it mimics the lack of resolution in the input signal
by discretizing it using a constant stepq in order to
generate the signaluq.

The effect is thus to quantize a smooth signal into a
stair-step output. The output is computed using the
round-to-nearest method, which produces an output
that is symmetric about zero according to (8):

uq = q · round(u/q) , (8)

whereuq is the quantizer output,u is its input,q the
quantization step, and theround function takes its
argument to the nearest integer. The limited valve res-
olution results in stepwise input disturbances equals to
the quantization step,q.

For the example given by (6) and (7),q = 0.03 is
taking as the quantizer step. Figure 3 shows the re-
sponse for a step change in the reference of magnitude
1 (r0 = 1). From this figure, the magnitude and the
period of oscillations are measured to be 0.189 and
6.72s, respectively.

Limit cycles are inevitable if there is integral action
in the controller. This follows because on average
the input must equal the steady-state valueuss =
yss/G(0) = r/G(0), and if this does not happen
to exactly correspond to one of the quantizer level,
the quantized inputuq will cycle between the two
neighboring quantizer levels,q1 andq2. Let f and1−
f denote the fraction of time spend at each level. Then,
at steady stateuss = fq1 + (1− f)q2 and from thisf
can be found. It is noted that the closeruss is to one of
these values, the longer the timeuq must remain on it.
In the example,uss = yss/G(0) = 1/100 = 0.01,
which is closer toq1 = 0 than q2 = 0.03. The
fraction of timeuq remains onq1 = 0 is f = 1 −
0.01/0.3 = 0.67. As expected, this agrees with the
simulation.
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Fig. 3. Simulation results for the system given by (6)
and (7) forr0 = 1.

Moreover, when the limit cycle is established the
quantizer can be regarded exactly as a relay without
hysteresis and thus can be treated as such. The ampli-
tude of the oscillations can then be found analytically
by considering the harmonic linearization or describ-
ing function of the nonlinearity in the loop showed in
Figure 2.



For a relay without hysteresis, the describing function
is given by (see Slotine and Li (1991)):

N(a) = 4q/πa, (9)

wherea is the amplitude of the oscillations andq is
the relay amplitude (like the quantization step).

For the system depicted in Figure 2, the condition for
oscillation is simply given by

N(a)L(jω) = −1, (10)

whereL(jω) = G(jω)K(jω) is the open-loop trans-
fer function.

SinceN(a) ∈ R (see (9)), in (10),ω is the ultimate
frequency (ωL,180) andN(a) = Ku is the ultimate
gain. This givesKu|L(jω)| = 1 and

Ku = 4q/πa, (11)

Note that the gain atωL,180 is not the same as the gain
at ωB . Actually, ωB is where|L| ≈ 1 for well-design
control systems and the approximationωL,180 = ωB

is quite accurate.

As long asτI in (7) is sufficiently large, that is,1τI
is

much smaller thanωL,180, ωL,180 is independent on
both Kc andτI . Thus, it can be written that∠K =
−π

2 +arctan(ωL,180 ·τI) ≈ 0. Then,∠L = ∠G+∠K
gives ∠L = ∠G ⇒ ωL,180 = ωG,180. But from
frequency domain analysisKu = 1/|G(jωL,180)| and
from (11)

|G(jωL,180)| = πa/4q (12)

Let amax denote the maximum allowed amplitude of
the oscillations isy. Typically,amax will be consider-
ably smaller thanymax, e.g.amax = 0.1ymax. Then,
from (12) the following controllability requirement
applies

|G(jωL,180)| < πamax/4q, (13)

It gives an upper limit on plant gain at frequency
where∠L = −π.

For the system given by (6) and (7), it can written
that∠G = − arctan(10ωL,180)− 2 arctan(1ωL,180).
For largeωL,180, arctan(10ωL,180) = π

2 ⇒ ∠L =
∠G = −π

2 − 2 arctan(ωL,180). By setting∠L = −π,
ωL,180 = 1 and the period of oscillation is found to
be T = 2π

ωL,180
= 6.28. Moreover, from (12) and

|G(jωL,180)| = 4.89, a = 4
π q|G(jωL,180)| = 0.187.

Consequently, the results found by the harmonic lin-
earization approach match very accurately the simula-
tion results.

It has been assumed here that the resulting oscillations
are sinusoidal, but this may not be true. Two questions
arise: is (9) an upper bound? Is (13) always true?
The answer for those questions isyes, provided the
response is a sinusoid-type one.

3.2 Controllability requirement for first-order plus
time delay processes in time domain

In this section, nonsinusoid-type responses for a first-
order with delay plant controlled by a PI controller is
discussed.

Another example is considered where

G(s) = ke−θs/(τs + 1) (14)

K(s) = Kc(τIs + 1)/τIs, (15)

with k = 100, θ = 1, τ = 10, Kc = 0.05, andτI = 8.

The loop is set up according to Figure 2. The simula-
tion results forq = 0.01 and a step change of 0.23 in
the reference (r0 = 0.23) are given in Figure 4.
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Fig. 4. Simulation results for the system given by (14)
and (15).

The amplitude and period of the limit cycle ofy can
be predicted for first-order plus delay processes as it
is shown later. For this particular example they are
measured to be 0.1 and 5.64s, respectively. It can be
seen that the output of the quantizer,uq, oscillates
between 0 and 0.01. The steady-state value isuss =
0.23/100 = 0.0023, which means that it staysf =
0.23 (23%) of the time (1.30s) at 0 and 77% (4.34s) at
0.01.

Now, an exact analysis of the steady-state response,
without using describing functions, is performed. The
outputy can be represented by a sum of pulsed input
responses. The resulting amplitude can be shown to be
given by

a = kq
1− e−t1/τ + e−T/τ − e−(T−t1)/τ

1− e−T/τ
, (16)

wheret1 = θ/(1 − f), t2 = θ/f, T = t1 + t2 =
θ[1/(1− f) + 1/f ].

For the system given by (14) and (15) the amplitude
and period of oscillation are given bya = 0.01 and
T = 5.64s, respectively which match exactly the
observed results.

In general, the minimum value forT and the maxi-
mum amplitudea occurs when the set point change,



r0, is such thatf = 0.5, andt1 = t2 = T
2 . In this case,

T = 4θ anda = kq[(1− e−2θ/τ )2/(1− e−4θ/τ )].

In the case wheref = 0.5, the results also compare
well with the describing function analysis based on
sinusoids. For this plant, assumingτI ≈ τ , ∠L =
−ωθ − π/2, and ωL,180 = π/2θ and the corre-
sponding period isT = 2π/ωL,180 = 4θ anda =

kq
√

16
π2

4(θ/τ)2

π2+4(θ/τ)2 , which for 0 < θ/τ ≤ 1 agrees
quite exactly with the previous expression fora.

Remark 1.Equation 16 is derived taking into account
the approximationτ = τI which applies for well-
tuned controllers (see Skogestad (2003)). Thus the am-
plitude and period of the limit cycle are independent
on the controller parameters.

Again, it is required thata < amax. Then, the con-
trollability requirement for first-order plus time delay
processes is

G(0) <
amax

q
(1− e−T/τ )[1− e−t1/τ +

e−T/τ − e−(T−t1)/τ ]−1 (17)

By taking the system described by (6) and (7) and
using the configuration of Figure 2 withq = 1
(representing an on/off valve, the worst case), the
simulation results for the outputy are depicted in
Figure 5.
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Fig. 5. Simulation results for the system given by (6)
and (7) forq = 1.

From the figure, it is clear that the oscillations are
not sinusoid-type. A deeper analysis by computing
the power spectrum of the limit cycle confirms this
hypothesis. In Figure 6, there is a second peak of about
50 at 4 rad/s which shows the data inconsistency, i. e.,
the limit cycles cannot be properly fitted to a sinusoid-
type curve. By using the harmonic linearization ap-
proach an amplitude ofa = 6.23 and a period of
T = 6.28s are found which are very different from
the measured results,a = 1.82 and T = 26.48s.
Consequently, this approach cannot be used to assess
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Fig. 6. Power spectrum of the limit cycle of the system
described by (6) and (7) forq = 1.

controllability. The idea now is to reduce the model to
a first-order plus time delay and apply the results of
this section.

The reduced model of (6) and (7) based on Skogestad
(2003) paper, with some adjustments on the process
gain, is given by

g(s) = 13e−1.5s/(10.5s + 1) (18)

The amplitude and the period of oscillation are calcu-
lated to bea = 1.82 and T = 21.13, respectively,
which give good accurate approximations to the sim-
ulated results.

3.3 How to avoid oscillations

The oscillations in the output of the system showed in
Figure 2 can be avoided by the following ways:

a. Change the valve so that the resolution is en-
hanced (small quantization step);

b. Redesign the process in order to change the val-
ues of k,τ , andθ;

c. Take away the integral action leaving solely a P-
controller;

d. Introduce forced cycles at the input with a higher
frequency than those generated “naturally”. For
example, one may use high-frequency pulse
modulation or add high-frequency sinusoids.

The use of a P-controller can eliminate oscillations as
long as steady-state offset can be afforded. In order
to make the offset as small as possible, bounds on the
controller gain,Kc, are found to be (again, for the sake
of compactness, the derivation of those bounds are not
to be shown here):

nmaxq

r0 − nmaxqG(0)
≤ Kc <

(nmax + 0.5)q
r0 − nmaxqG(0)

,(19)

where
nmax = br0/qG(0)c. (20)

An attractive alternative, at least from a theoretical
point of view, is to introduce high-frequency cycling at
the input. The problem is that the fast cycling may be
difficult to handle in practice, for example, because the
valve cannot be moved so fast or because of excessive
wear. One approach is to introduce a pulse modulator



in the controller before the quantizer. By applying this
method, the response of the system given by (14) and
(15) is depicted in Figure 7. As it can be seen, the
amplitude is drastically reduced.
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Fig. 7. Simulation results for the system given by (14)
and (15) using a modulator (r0 = 0.23).

4. DISCUSSION

McAvoy and Braatz (2003) claim that an upper limit
for σ̄(G) should be imposed. It is suggested that a
reasonable limit is 50 because essentially all control
systems are eventually implemented with analogue
devices which typically have an accuracy on the or-
der of 0.5%. Actually this is true only at bandwidth
frequency whereas no such limit exist at steady-state.
Furthermore, it is also claimed that it is impossible
in practice to get the fine manipulation of the control
valves that is required for control because these valves
would be limited to move in a very small region. Actu-
ally this is only true for feed forward systems without
pulsing. There will be no problem with feedback, but
some cycling must be accepted.

McAvoy and Braatz (2003) claim that the cycling can
be avoided by detuning the controller, but this is not
generally true, unless one is willing to remove the
integral action and accept an offset. The simulation
used by McAvoy and Braatz (2003) to illustrate this
claim is misleading, because oscilations do start if the
simulation time is increased.

An important distinction between input load distur-
bance and valve inaccuracy is that, in general, in the
latter a high bandwidth has no effect on the controlla-
bility of the system since the controller parameter do
not affect the limit cycle as showed for first-order plus
delay processes.

As shown, two basic approaches to assess controllabil-
ity are discussed in this paper. But in order to make use
of one or the other, the resulting limit cycle has to be
characterized. If the process is a first-order plus time
delay the controllability requirement is directly given
by (17). Otherwise, simulations must be performed in

order to determine if the limit cycle is sinusoid-type,
for example, by performing a spectral power analysis.
If the limit cycle is proved to be sinusoid-type, (13)
is used as the controllability requirement. Finally, if
the limit cycle fails to be sinusoid-type it should be
reduced to a first-order plus time delay and (17) be
used.

5. CONCLUSION

Processes with large gains are a major problem when
input load disturbance and valve inaccuracy problems
arise. For input load disturbance, high gain implies
the need of a high bandwidth which cannot always be
achieved in practice.

When dealing with valve inaccuracy problems a dif-
ferent approach has to be used since, in general, the
controller parameters do not affect the bandwidth. For
sinusoid-type limit cycles, the simple approach using
harmonic linearization approximation are derived to
assess controllability. As for first-order plus time delay
processes, on the one hand, more complicated expres-
sions are needed to assess controllability but on the
other hand, the results are exact. A general approach
to deal with valve inaccuracy is proposed.

In order to avoid oscillations due to valve inaccuracy
using control techniques, bounds on the controller
gain for P-controllers are derived in order to keep
the offset as small as possible. However, the pulse
modulation approach yields much better results since
the remaining oscillations are of very low amplitude.

Furthermore, pragmatic ideas on how to cope with
processes with large gains are demystified in this
paper.
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