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Abstract. The topic of this paper is how to implement optimal decisions in an uncertain world. A study of how this is
done in practical systems - from the nationwide optimization of the economy by the Central Bank to the optimal use
of reseources in a single cell - shows that a common approach is to use feedback strategies where selected controlled
variables are kept at constant values. For example, in order to optimize the wealth of a country (overall objective),
the Central Bank may to attempt to keep the inflation constant (selected controlled variable). by adjusting the interest
rate (independent input variable). The underlying idea is the the system behavior is indirectly optimized by keeping
selected controlled variables at given constant values (setpoints). This idea is here called “self-optimizing control”.
The goal of this paper is to present a unified framework for selecting controlled variables that achieve self-optimizing
control, and to provide a number of examples.
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1 Introduction

The national economy, the goverment, companies and businesses, consumers, chemical process plants, bio-
logical systems, and so on, are all decision makers that make up a complex hiearchical decision system(Findeisen
etal. 1980). Ateach level, there are available degrees of freedom (decision variables or “inputs”) that gener-
ally are adjusted locally in order to optimize the local behavior. We are here not concerned with the optimal
coordination of all these decision makers (which is certainly very interesting), but rather on studying how
these individual “players” make and more importantly implement their decisions.

A major problem in making the right decision is that the world is changing. These changes, which we
can not affect, are here denoted disturbances d. They include changes in exogeneous variables (such as the
outdoor temperature), as well as parameter variations in the system (e.g., aging of system components). A
common strategy in practice is to use a simple feedback strategy where the degrees of freedom w are adjusted
to keep selected controlled variables c at constant values ¢, (“setpoints”). The idea is to get “self-optimizing
control” where “near-optimal operation” is indirectly achieved, without the need for continuously solving
the above optimization problem. In this paper we study this is more detail, and provide a number of
examples.

We assume that optimal operation of the system can be quantified in terms of a scalar cost function
(performance index) J, which is to be minimized with respect to the available degrees of freedom w,,
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Here d represents the exogenous disturbances that affect the system, including changes in the model (typ-
ically represented by changes in the function g¢,), changes in the specifications (constraints), and changes
in the parameters (prices) that enter in the cost function (and possibly in the constraints). x represents the
internal states. We have available measurements y = f,(x, u,, d) that give information about the actual
system behavior during operation (y also includes the cost function parameters (prices), measured values
of other disturbances d, and measured values of the independent variables w,). For simplicity, we do not
in this paper include time as a variable. The equality constraints (g; = 0 ) include the model equations,
which give the relationship between the independent variables (u, and d) and the states (z). The system
must generally satisfy several inequality constraints (g, < 0), for example, we usually require that selected
variables are positive. The cost function J, is in many cases a simple linear function of the independent
variables with prices as parameters. In many cases it is more natural formulate the optimization problem as
a maximization of the profit P, which may formulated as a minimization problem by selecting J, = —P.

In most cases some subset g;, of inequality constraints g, are active (i.e. g5, = 0 at the optimal solu-
tion). Implementation to achieve this is usually simple: We adjust the corresponding number of degrees of
freedom u, such that these active constraints are satisfied (the possible errors in enforcing the constraints
should be included as disturbances). In some cases this consumes all the available degrees of freedom. For
example, if the original problem is linear (linear cost function with linear constraints g; and g,), then it is
well known that from Linear Programming theory that there will be no remaining unconstrained variables.

For nonlinear problems (e.g. g, is a nonlinear function), the optimal solution may be unconstrained, and
such problems are the focus of this paper. The reason is that it is for the remaining unconstrained degrees
of freedom (which we henceforth call u) that the selection of controlled variables is an issue.

For simplicitly, let us write the remaining unconstrained problem in reduced space in the form

min J (u,d) (3)

where u represents the remaining unconstrained degrees of freedom, and where we have eliminated the
states z = x(u, d) by making use of the model equations. .J is then not a simple function in the variables
u and d, but rather a functional. For any value of the disturbances d we can then solve the (remaining)
unconstrained optimization problem (3) and obtain u (d) for which

min J (u, d) = J (topi(d), d) E Jops (d)

The solution of such problems has been studied extensively, and is not the issue of this paper. In this paper
the concern is implementation, and how to handle variations (known or unknown) in d in a simple manner.
In the following we let d* denote the nominal value of the disturbances.

Let us first assume that the disturbance variables are constant, i.e., d = d*. In this case implementation
is simple: We keep w constant at u, = wuept(d*) (here u, is the “setpoint” or desired value for ), and we
will have optimal operation. (Actually, this assumes that we are able to implement v = u,, which may not
be possible in practice due to an implementation error n = u — u, (Skogestad 2000)). But what happens if
d changes? In this case u(d) changes and operation is no longer optimal. What value should we select
for u, in this case? Two “obvious” approaches are

1. If we do not have any information on how the system behaves during actual operation, or if it is not
possible to adjust « once it has been selected, then the optimal policy is to find the best “average” value
ug for the expected disturbances, which would involve “backing off” from the nominally optimal
setpoints by selecting u, different from up (d*). The solution to this problem is quite complex, and
depends on the expected disturbance scenario. For example, we may use stochastic optimization
(Birge and Louveaux 1997). In any case, operation may generally be far from optimal for a given
disturbance d.



2. In this paper we assume that the uconstrained degrees of freedom » may be adjusted freely. Then,
if we have information (measurements y) about the actual operation, and we have a model of the
system, we may use these measurements in to update the disturbances d, and based on this perform
a reoptimization to compute a new optimal value u,(d), which is subsequently implemented, v =

Uopt ().

Both of these approaches are complex and require a detailed model of the system, and are not likely to be
used in practice, except in special cases. Is there any simpler approach that may work?

2 Implementation of optimal operation: Self-optimizing control
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Figure 1: Implementation with separate optimization and control layers. Self-optimizing control is when
near-optimal operation is achieved with ¢, constant.

We assume in the rest of this paper that we have available measurements y = f,(u, d) about how
the actual operation is proceeding, and that the values of » may be adjusted freely. If we look at how real
systems operate, then we see that in most cases a feedback solution is used, whereby the degrees of freedom
u are adjusted in order to keep certain controlled variables ¢ at constant values, where c is a selected subset
of the available measurements y; see Figure 1.

Example 1. Central Bank. Consider the role of the Central Bank in a country, which has available one
degree of freedom, namely the interest rate (u). The measurements y may in this case include the inflation
rate (y1), the unemployment rate (y,), the consumer spending (y3) and the investment rate (y4). In addition,
we also know the chosen interest rate (ys = u). The simplest policy would be to do nothing, that is, keep
the interest rate constant (corresponds to the choice ¢ = y5 = u). A more common policy today is for the
Central Bank to adjust the interest rate (u) in an attempt to keep the inflation rate constant (corresponds to
the choice ¢ = ;). A typical desired value (setpoint) for the inflation rate is ¢, = 2.5%.

What is the motivation behind attempting to keep ¢ constant at ¢,? Obviously, the idea must be that the
optimal value of ¢, denoted ¢, (d), depends only weakly on the disturbances d, such that by keeping ¢
at this value, we indirectly obtain optimal, or at least near-optimal, operation (Morari et al. 1980). More
precisely, we may define the loss L as the difference between the actual value of the cost function obtained
with a specific control strategy, e.g. adjusting u to keep ¢ = c¢,, and the truly optimal value of the cost
function, i.e.

L(u,d) = J(u,d) — Jopt(d) 4)



Self-optimizing control (Skogestad 2000) is when we can achieve an acceptable loss with
constant setpoint values for the controlled variables (without the need to reoptimize when dis-
turbances occur)

Let us summarize how the optimal operation may be implemented in practice:

1. A subset of the degrees of freedom u,, are adjusted in order to satisfy the active constraints (as given
by the optimization).

2. The remaining unconstrained degrees of freedom (u) are adjusted in order to keep selected constrolled
variables ¢ at constant desired values (setpoints) ¢s. These variables should be selected to minimize
the loss.

Ideally, this results in “self-optimizing control” where no further optimization is required, but in practice
some infrequent update of the setpoints ¢, may be required. If the set of active constraints changes, then
one may have to change the set of controlled variables ¢, or at least change their setpoints, since the optimal
values are expected to change in a discontinuous manner when the set of active constraints change.

We next present some simple examples to illustrate the above ideas.

Example 2. Cake baking. Let us consider the final process in cake baking, which is to bake it in an oven.
Here there are two independent variables, the heat input (u, %ef Q) and the baking time (uo def t). ltisa
bit more difficult to define exactly what .J is, but it could be quantifed as the average rating of a test panel
(where 1 is the best and 10 the worst). One disturbance will be the room temperature. A more important
disturbance is probably uncertainty with respect to the actual heat input, for example, due to varying gas
pressure for a gas stove, or difficulty in maintaining a constant firing rate for a wooden stove. In practice,
this seemingly complex optimization problem, is solved by using a thermostat to keep a constant oven
temperature (e.g., keep ¢; = T,,.,, at 200°C). and keeping the cake in the oven for a given time (e.g., choose
co = us = 20 min). The feedback strategy, based on measuring the oven temperature ¢y, gives a self-
optimizing solution where the heat input (u;) is adjusted to correct for disturbances and uncertainty. The
optimal value for the controlled variables (c; and ¢;) are obtained from a cook book, or from experience.
An improved strategy may be to measure also the temperature inside the cake, and take out the cake when
a given temperature is reached (i.e., u is adjusted to get a given value of co = Trqke.

Example 3. Long distance running. Consider a runner who is participating in a long-distance race, for
example a marathon. The cost function to be minimized is the total running time, J = T'. The independent
variable w is the energy input (or something similar). Of course, the runner may perform some “on-line”
optimization of his/her body, but this is not easy (especially if the runner is alone), and a constant setpoint
policy may probably be more efficient.

The most common and simplest strategy is to run at the same speed as the other runners (e.g. ¢ = y; =
distance to best runner, with ¢, = 1m) , until one is no longer able to maintain this speed. However, this
does not work if the runner is alone.

Another possible strategy is to keep constant speed (¢ = y» speed). However, this policy is not good if
the terrain is hilly (d = slope of terrain), where it is clearly optimal to reduce the speed. This policy, as well
as the previous one, may also give infeasability, since the the runner may not able to maintain the desired
speed, for example, towards the end of the race.

A better self-optimizing strategy for a lone runner may be to keep a constant heart rate (¢ = y3 = heart
rate). In this case, a constant setpoint strategy seems more reasonable, as the speed will be reduced while
running uphill.

Example 4. Biology. Biological systems, for example a single cell, have in place very complex chemical
and biochemical reaction newtworks, of which significant parts have the function of a feedback control



systems (Savageau 1976) (Doyle and Csete 2002). Indeed, Doyle (lecture, Santa Barbara, Feb. 2002)
speculates that many of the supposedly unimportant genes in biological systems are related to control, and
compares this with an airplane (or a chemical plant) where the majority of the parts of the system are related
to the control system. Biological systems at the cell level are obviously not capable of performing any “on-
line” optimization of its overall behavior. Thus, it seems reasonable to assume that biological systems have
instead developed self-optimizing control strategies of the kind discussed in this paper. A challenge is to
find out how these complex systems work and what the controlled variables are. Biological systems have
developed and been optimized over millions of years. If we could identify the controlled variables, then we
can also do further “reverse engineering” in an attempt to identify the cost function .J, that nature has been
attempting to minimize.

Example 5. Business systems and KPIs. Business systems are very complex with a large number of
degrees of freedom (u’s), measurements, disturbances and constraints. The overall objective of the system
is usually to maximize the profit (or more specifically, the net present value of the future profit, J = —NPV)
(although, businesses are often criticized for using other shorter-term objectives, such as maximizing this
years share price, but we will leave that discussion). In any case, it is clear that few managers base their
decisions on performing a careful optimization of their overall operation. Instead, managers often make
decisions about “company policy”, which in many cases involved keeping selected controlled variables (¢’s)
at constant values. For example, the common approach of identifying “value metrics” or key perfomance
indicators (KPIs) for the business (e.g.,(Koppel 2001)), may be viewed as the selection of appropriate
controlled variables, that is c = K P1. Some examples of KPIs may be

Time for the business to respond to an order from a customer
Energy consumption per unit produced

Number of accidents per unit produced

Number of employees per unit produced

Fraction of manually controlled variables in the plant

Ratio income / research spending

Note that the value of the KPI should usually not be maximized or minimized (minimized in the above
list), because this may imply non-optimal operation (overspending for the above list). The optimal value
for the KPIs are typically obtained by comparing with other succesful businesses (“benchmarking” to find
the “best business practice”). However, it is less obvious to find what the KPIs (which variables) should be.
The results in the next section may be used (at least in theory) to find the optimal set of KPIs, provided that
we have knowledge about the optimal sensitivity (matrix F).

3 Optimal choice of controlled variables

Let y denote the available measurements (online information about the system behavior), e.g. temperature,
inflation rate or energy consumption. we have about In most cases the controlled variables ¢ are selected
simply as a subset of the measurements y, but more generally we may allow for variable combinations and
write ¢ = h(y) where the function h(y) is free to choose. Here the number of controlled variables (s’s) is
equal to the number of degrees of freedom. If we only allow for linear variable combinations then we have

Ac = HAy (5)

where the constant matrix H is free to choose. Does there exist a variable combination with zero loss
for all disturbances, that is, for which c.p¢(d) is independent of d? As proved by Alstad and Skogestad
(2002) the answer is yes” for small disturbance changes, provided we have at least as many independent



measurements (y’s) as there are independent variables (u’s and d’s). The derivation Alstad and Skogestad
(2002) is surprisingly simple: In general, the optimal value of the y’s depend on the disturbances d, and we
may write this dependency as y,p. (). For “small” disturbances the resulting change in the optimal value of
Yopt (d) depends linearly on d, i.e.

Agops(d) = FAd (6)

where the sensitivity F' = dy,p(d)/dd is a constant matrix. We would like to find a variable combination
Ac = HAy such that Acop, = 0. We get Acopy = HAyope = HF Ad = 0. This should be satisfied for any
value of Ad, so we must require that H is selected such that

HF =0 (7

i.e. H must be in the left null space of F. This is always possible provided we have at least as many
(independent) measurements y as we have independent variables (u’s and d’s) (Alstad and Skogestad 2002).

Example 1. Central Bank (continued). For this problem we have u = interst rate and J = — National
Product. An important constraint in this problem is that « > 0 (because a negative interest rate will result
in an unstable situation), but in most cases this constraint will not be active, so we have an unconstrained
optimization problem with one degree of freedom. The measurements y may include the inflation rate (y),
the unemployment rate (y-), the consumer spending (y3) and the investment rate (y4). There are many
disturbances, for example, d; ="“the mood” of the consumers, d, = global politics, including possible
wars, ds = oil prices, d; = weather, ds = technology changes, etc. As mentioned earlier, and a common
policy is to attempt to keep the inflation rate constant, i.e. ¢ = y;. However, recall from the requirement
HF = 0 for zero loss, that we need an extra measurement for every disturbances, so with the large number
of disturbances it is unlikely that this choice is always self-optimizing. Even if we assume that there
there is only one major disturbance (e.g. d;=consumer mood), then from the results presented above we
need to combine at least two measurements. This could, for example, be a corrected inflation goal based
on using the interest rate, ¢ = hyy; + hou, but more generally we could use additional measurements,
¢ = hiyr + hayo + h3ys + hays + hsu. The parameters for such a corrected inflation goal could be obtained
by reoptimizing the model for the national economy with alternatives disturbances, using the approach just
outlined.

In the above example, the prices were assumed constant. From physical considerations, it is clear that the
introduction of price changes may be taken care of by introducing a setpoint change or “price correction” on
each controlled variable, but that price changes otherwise will not affect the problem of selecting controlled
variables. The reason is that prices appear only in the optimization part of the block diagram in Figure 1,
so that it is not prossible to detect price changes in the process itself.

4 Example6: Optimal blending of gasoline

The following example illustrates clearly the importance of selecting the right controlled variables, and
illustrates nicely of the method of Alstad and Skogestad (2002) for selecting optimal measurement combi-
nations.

Problem statement. We want to make 1 kg/s of gasoline with at least 98 octane and not more than 1
weight-% benzene, by mixing the following four streams

e Stream 1: 99 octane, 0% benzene, price p; = (0.1 4+ my) $/kg.
e Stream 2: 105 octane, 0% benzene, price p, = 0.200 $/kg.

e Stream 3: 95 octane, 0% benzene, price p; = 0.12 $/kg.

e Stream 4: 99 octane, 2% benzene, price p, = 0.185 $/kg.



The maximum amount of stream 1 is 0.4 kg/s. The disturbance is the octane contents in stream 3 (d = O3)
which may vary from 95 (its nominal value) and up to 96. We want to obtain a self-optimizing strategy that
“automatically” corrects for this disturbance.

Solution. For this problem we have

T
U= (m1 mg mz My)

where m; [kg/s] represents the mass flows of the individual streams. The optimization problem is to minize
the cost of the raw material

J(uo) = Zpimi = (0.1 +mq)my + 0.2my + 0.12m3 + 0.185my

subject to the 1 equality constraint (given product rate) and 7 inequality constraints.
my+me+mz+my=1

my 2 0;mg > 0;mg > 0;my 2> 0
my <04
99 my + 105 my + O3 m3 + 99 my > 98
2my <1

At the nominal operating point (where O3 = d* = 95) the optimal solution is to have
Ugopt (A = 95) = (0.26  0.196 0.544 0)"

which gives Jop(d*) = 0.13724 $. We find that three constraints are active (the product rate equality
constraint, the non-negative flowrate for m, and the octane constraint). The same three constraints remain
active when we change O3 to 97, where the optimal solution is to have

Ugopt(d = 97) = (0.20 0.075 0.725 0)"

which corresponds to Jopi(d = 97) = 0.126 $.
The proposed control strategy is then to use three of the degrees of freedom in u,, to control the following
variables (active constraint control)

1. Keep the product rate at 1 kg/s
2. Keep the octane number at 98
3. Keepmy =0

This leaves one unconstrained degree of freedom (which we may select, for example, as v = m, but which
variable we select to represent « is not important as any of the three variables my, ms or ms will do). We
now want to evaluate the loss imposed by keeping alternative controlled variables ¢ constant at their nominal
optimal values, c; = copt(d*). The measurements available are a subset of u,, namely

y:(ml mao m3)T

Here we have excluded my since it is kept constant at 0, and thus is independent of d and u. Let us first
consider keeping each individual flow constant (and the two others are adjusted to satisfy the active product
rate and octane number constraints). We find when d = O3 is changed from 95 to 97:

e ¢ = m, constant at 0.26: .J = 0.12636 corresponding to loss L = 0.12636 — 0.126 = 0.00036



e ¢ = my constant at 0.196: Infeasible (requires a negative mj to satisfy constraints)
e ¢ = mg3 constant at 0.544: J = 0.13182 corresponding to loss L = 0.13182 — 0.126 = 0.00582

Let us now obtain the optimal variable combination that gives zero loss. We use a linear variable
combination
Cc = Hy = h1m1 + h2m2 + h3m3

The relationship between the optimal value of y and the disturbance is indeed linear in this case and we
have

0.20 — 0.26 1 —0.03
AYopt = FFAd = | 0.075 — 0.196 iAd = | —0.06 | Ad
0.725 — 0.544 0.09
——————
F

To get a variable combination with zero loss we must have HF = 0 or
—0.03h; — 0.06hy 4+ 0.09h3 = 0

In this case we have 1 unconstrained degree of freedom (u) and 1 disturbance (d), so we need to combine at
least 2 measurements to get a variable combination with zero loss. This is confirmed by the above equation
which may always be satisfied by selecting one element i H equal to zero. We then find that the following
three combinations of two variables give zero loss:

1. ¢ =my; — 0.5my: Zero loss (derived by setting 3 = 0 and choosing h; = 1)
2. ¢ = 3my + mg: Zero loss (derived by setting h, = 0 and choosing h; = 1)
3. ¢ = 1.5my + mg: Zero loss (derived by setting 2, = 0 and choosing h3 = 1)

There are an infinite number of variable combinations of 3 measurements (m1, ms, m3) with zero distur-
bance loss. However, if we also include the implementation error, then there will a single optimal combi-
nation of 3 measurements.

Matlab file for Example 6

H=[0.2000;, 0000, 0000; 000DO0]

f =[0.1 0.2 0.12 0.185] % prices

A=1[-99 -105-95-99; 0002 -1000; O0-100;
00-10, 000-1; 00 0 1]

b=1[-9810.4000 0]

Aeg = [1 111 ]

beq = 1
[ X, FVAL] =QUADPROG( H, f , A, b, Aeq, beq)

The answer X is the optimal mass fractions of the four streans.
The cost (\$/kg) is: FVAL = 0.5*X *H*X + f'*X

To find active constraints conpute: b-A*X
(The active constraints will correspond to zero val ues)

Di sturbance d: Octane nunber of stream 3 changed to 97:
A=1]-99 -105 -97 -99; 0002 -1000; 0-100;
00-10;, 000-1; 000 1]
[ X, FVAL] =QUADPROG( H, f , A, b, Aeq, beq)

Change in price of stream?2 from0.2 to 0.21



[0.1 0.21 0.12 0.185] % prices

[-99 -105 -95 -99; 0002 -1000; O0-10 0;
00-10;, 000-1; 00 0 1]

[ X, FVAL] =QUADPROG( H, f, A, b, Aeq, beq)

5 Discussion

5.1 Changein prices

In the above example, the prices were assumed constant. From physical considerations, it is clear that the
introduction of price changes may be taken care of by introducing a “price correction” on the controlled
variables, but that it otherwise will not affect the problem of selecting controlled variables. The reason is
that prices appear only in the optimization part of the block diagram in Figure 1, so that it is not prossible
to detect price changes in the process itself.

If the prices change, then we may easily correct for this. It may done in two different ways:

1. Make the setpoint ¢, a function of prices (this is probably the simplest and most obvious approach).

2. Keep constant setpoints, and instead include the prices as extra “measured disturbances” d.

The latter approach is probably less obvious so let us illustrate how it can be applied to our blending
example.

Example 6 (continued). Let us return to the blending example, and consider the case where the price of
stream 2 may vary. Specifically, changing the price p, from 0.2 to 0.21 gives the new optimum

Ugopt (P2 = 0.21,05 = 95) = (0.28  0.188 0.532 0)"

and defining
T
y= (ml mo Mg pz)
d= (03 D2 )T
gives
—-0.03 2.0
—0.06 —0.8
AYort = | ggg —1.0 |29
0 1

F

We then have
CcC = Hy = h1m1 + h2m2 + h3m3 + h4p2

To get a variable combination with zero loss we must have HF = 0 or
—0.03h; — 0.06hy + 0.09h3 = 0

2hy — 0.8hg — 1.2hg + hy =0

The first equation is the same as above (and has the same solutions), and from the last equation the price
correction factor is:
hy = —2hy + 0.8hy + 1.2h3

This gives the following optimal variable combinations with price correction:



2. c= 3m1 —+ mg — 48p2
3. ¢c=1.5my + mg + 2.4psy

Some remarks are in order:

1. With the exception of the price correction, the optimal combination is unaffacted by the price change.

2. It seems here that the sum of the first and third variable combination gives a possible “magic” con-
trolled variable, which is independent of the price p3. However, it turns out that this variable is
my + me + mgs, Which indeed is independent of the price, is also identical to one of the equality
constraints (the total mass flow is always 1), so this variable is degenerate and fixing its value does
not provide any additional information.

3. We could alternatively (or maybe preferably) view the price correction as a change in the optimal
setpoint for c;.

5.2 Implementation error

One issue which we have not discussed so far is the implementation error n, which is the difference be-
tween the actual controlled variable ¢ and its desired value (n = ¢ — ¢,). In some cases there may be no
implementation error, but this is relatively rare.

Figure 1 is a bit misleading as it (i) only includes the contribution to n from the measurement error, and
(ii) gives the impression that we directly measure ¢, whereas we in reality measure vy, i.e. n in Figure 1
represents the combined effect on ¢ of the measurement errors for y.

Example 1 (continued). Let us again consider the Central Bank. A simple policy would be to do nothing,
that is keep the interest rate constant (i.e. select ¢ = u). In this case there would be no implementation error.
However, a more common policy is to attempt to keep the inflation rate constant (¢ = y1), and in this case
there will generally be a difference n between the actual inflation rate (¢) and its desired value (c;), because
of (i) poor dynamic control, and (ii) an incorrect measurement of the inflation rate.

Comment. In Example 1, there was no implementation error when using the “no-control” (open-loop)
policy with ¢ = wu, but this is not at all a general rule. For example, in a wood-fired oven (Example 2)
our inability to keep the heat input (u;) at a constant desired value, may be a key reason for avoiding the
open-loop policy (¢; = uq).

In any case, the implementation error n generally needs to be taken into account, and it will affect the
optimal choice for the controlled variables. Specifically, when we have implementation errors, it will no
longer be possible to find a set of controlled variables that give zero loss. One way of seeing this is to
consider the implementation error n as a special case of a disturbance d. Recall that to achieve zero loss,
we need to add one extra measurement y for each disturbance. However, no measurement is perfect, so
this measurement will have an associated error (“noise”), which may again be considered as an additional
disturbance, and so on.

Unfortunately, the implementation error makes it much more difficult to find the optimal measurement
combination, ¢ = h(y), to use as controlled variables. Numerical approaches may be used, at least locally
(Halvorsen et al. 2003), but these are quite complicated.

5.3 Mode uncertainty

Model uncertainty, the differences between the actual system and its model, is usually not very important
when implementing a “self-optimizing” constant setpoint policy. This follows since the model is not ex-
plicitly used in a constant setpoint policy, but rather we are using a feedback implementation based on



measurements from the actual plant. It may be desirable to use the model to obtain the optimal setpoints
cs, but alternatively we may attempt to obtain ¢, by observing the actual behavior. A model is needed when
using the above procedure to select the best controlled variable (with minimum loss), but since we are using
this model to make structural rather than parametric decisions, it is obviusly not critical if there is some
mismatch between the system and the model, as long as its structural properties are correct.

6 Conclusion

The selection of controlled variables for different systems may be unified by making use of the idea of self-
optimizing control. The idea is to first define quantitavely the operational objectives through a scalar cost
function .J to be minimized. The system then needs to be optimized with respect to its degrees of freedom
u,. From this we identify the “active constraints” which are implemented as such. The remaining uncon-
strained degrees of freedom w are used to controlled selected controlled variables ¢ at constant setpoints. In
the paper it is discussed how these variables should be selected. We have in this paper not discussed the
implementation error n = ¢ — ¢, which may be critical in some applications (Skogestad 2000).
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