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ABSTRACT – An important issue in control structure selection is the plant 
”stabilization”. By the term ”stabilize” we here include both modes which are 
mathematically unstable (modes with RHP poles) as well as ”drifting” modes which 
need to be kept within limits to avoid operational problems. By this definition, we can 
include the states x  as variables that should be ”stabilized”, i.e., we want to avoid them 
to drift too far away from their desired (nominal) values. An advantage of this approach 
is that we are able to avoid problems resulted from nonlinear effects. Therefore, as the 
objective function can, usually, be considered as a combination of the states, the control 
system obtained by this approach is not tied too closely to a particular primary control 
objective (which may change with time) because it allows the designer to change the 
control objective. This paper presents a way to reduce the effects of disturbances and 
measurement errors in the states and the results show the effectiveness of this approach.  
 
KEYWORDS: perfect indirect control; minimization of state deviations; distillation 
column. 

 
 
1.INTRODUCTION            
 

In the regulatory control layer the 
main objective is to ”stabilize” the plant. Here 
we put the word stabilize in quotes because we 
use it with the same meaning as used by 
Skogestad (2003): ”stabilization” includes 
both modes which are mathematically unstable 
(modes with RHP poles) as well as ”drifting” 
modes which need to be kept within limits to 
avoid operational problems. Doing this we are 
able to avoid problems resulted from, for 
example, nonlinear effects. 

 

By this definition, we include any 
states x  as variables that should be 
“stabilized”, i.e., we want to avoid them to 
drift too far away from their desired (nominal) 
values. An advantage of keeping all states 
close to their nominal values is that we are 
able to avoid problems resulting from 
nonlinear effects. 

 
Therefore, an important point in the 

control structure selection is the choice of the 
operational objectives. According to 
Skogestad (2003), this is the first step to be 
done. The problem is that the operational 



 

objectives may change with time, according to 
the necessities, e.g. market, safety constraints, 
etc. Due to these changes, we don’t want to tie 
the control system too closely to a particular 
primary control objective. As, usually, the 
objective function can be considered a 
combination of the states a good approach 
would be to define it (the objective function) 
in this way ( 1 =y Wx ). This approach has the 
advantage of allowing the controller designer 
to easily change the control objective only 
changing the combination of the states. 
Another advantage is that the minimization of 
Wx  includes both stabilization of RHP-poles 
and disturbance rejection. 

 
In summary, the good of this paper is 

to discuss in more detail the approach 
introduced in Skogestad (2003) of selecting 
secondary controlled variables ( 2=c y ) such 
that we minimize the effect of disturbances 
(d ) on the weighted states ( 1 =y Wx ). 

 
2.PERFECT INDIRECT CONTROL 
 

Consider that we have the following 
linear model: 

 
1 1 d1∆ = ∆ + ∆y G u G d  

 
y y y

d∆ = ∆ + ∆ +y G u G d n  
 
where:  

1G , d1G , yG , and y
dG  are steady-state models 

∆u  - manipulated variables 
∆d  - disturbances 

1∆y  - primary controlled variables 
∆y  - available measurements. 

yn  - measurement noise 
 

By definition, indirect control is when 
we cannot control the primary outputs ( 1y ) 
(e.g., because they are not measured online) 
and, instead, we aim at indirectly controlling 

1y  by controlling the ”secondary” variables c  

(Skogestad and Postlethwaite, 1996). It is 
proven (Halvorsen et al., 2003) that if the 
number of measurements ( #y ) is equal or 
larger than the sum of the number of inputs 
( #u ) and the number of disturbances ( #d ), 
then we can obtain a combination  of these 
measurements (c ) that ensures a perfect 
indirect control of the ”primary” controlled 
variables (in this case c  is used as 
”secondary” controlled variable). Then we 
have: 
 

c
d

y y y
d∆ = ∆ = ∆ + ∆ +

G nG

c H y HG u HG d Hn  

 
where the matrix H  represents the 
combination of measurements. 
 

As the new variable c  is used as 
“secondary” controlled variable, then we can 
solve Equation 3 with respect to ∆u : 
 
 -1 -1 -1 c

d∆ = ∆ − ∆ −u G c G G d G n  
 

In Equation 4 we will consider 
∆ =c 0  because we want to keep these 
variables constant. In this way, Equation 4 
becomes: 

 
-1 c -1

d∆ = − − ∆u G n G G d  
 
Substituting Equation 5 into Equation 

1 gives: 
 

( )
cd

1 1 c
1 d1 1 d 1

− −∆ = − ∆ −
PP

y G G G G d G G n  

 
where the ”partial disturbance gain” dP  gives 
the effect of disturbances on 1y  with closed-
loop (partial) control of the variables c , and 

cP  gives the effect on 1y  of changes in c  (e.g., 
due to setpoint changes in sc  or control error). 

 
As we want to reject perfectly the 

effect of the disturbance in the primary 

(1)

(2)

(3) 

(4) 

(5)

(6) 



 

variables, we want to select a set of controlled 
variables such that the matrix dP  be equal to 
zero. As will be shown below, this objective 
can be reached if we have enough 
measurements y , more specifically, when the 
number of measurements ( #y ) is equal or 
larger the sum of the number of inputs ( #u ) 
and the number of disturbances ( #d ). The 
matrix cP  is a degree of freedom which can be 
arbitrarily specified ( c c0=P P ) by the designer, 
for example, when c =P I  we have a 
decoupled response from sc . 

 
To find the linear combination of 

variables we will make some additional 
assumptions: 
1. The number of controlled variables ( #c ), 

primary variables ( 1#y ), and manipulated 
variables ( #u ) is equal ( 1# # #= =c y u ); 

2. The number of measurements ( #y ) is 
equal to the number of manipulated ( #u ) 
plus disturbances ( #d ), i.e., 
# # #= +y u d ; 

3. The matrix c0P  is invertible. 
 

Then, we want to find a matrix H  
that gives us d =P 0  and c c0=P P . From 
Equation 6 we have that: 
 

1
c c0 1

−= =P P G G  
 

1
d d1 1 d

−= − =P G G G G 0  
 

Then, from Equation 3, we have that 
Equations 7 and 8 become: 

 

( ) 1y
1 c0

−
=G HG P  

 
 ( ) ( )1y y

1 d d1

−
=G HG HG G  

 
Or, equivalently: 

 

 y -1
c0 1=HG P G  

 
 y -1

d c0 d1=HG P G  
 

Joining Equations 11 and 12 results 
in: 

 
 [ ]y y -1

d c0 1 d1  = H G G P G G  
 

By assumption number 1 we have that 
the matrix y y

d  G G  is square and, as the 
measurements are independent, the matrix is 
invertible, then, finally: 

 
 [ ]

-1y1

1-1 y y
c0 1 d1 d

−
 =  

G G

H P G G G G  

 
When c0 =P I  and we use 

combinations of variables as secondary 
controlled variables, from Equation 6 is easy 
to see that 1=G G  and d d1=G G . 

 
3.MINIMUM STATE DEVIATION 
 

To keep the states close to their 
desired (nominal) values in the presence of 
disturbances and implementation error, we will 
define a matrix W  that represents a linear 
combination of the states. It can also be 
interpreted as the objective of the controller 
defined by the controller’s designer. 
 
 We will consider that we have the 
following linear model: 
 
 x x

d∆ = ∆ + ∆x G u G d  
 
where: 

xG , and x
dG  are steady-state models 

∆x  - states 
 
 If we substitute Equation 5 into 
Equation 15 we will have: 
 

(7)

(8)

(9)

(10) 

(11) 

(12) 

(13) 

(14) 

(15) 



 

( )
*x*x

d

x x -1 x -1 c
d d∆ = − ∆ −

G
G

x G G G G d G G n  

 
 The matrices x∗G  and x

d

∗

G  represent 
the effect of the disturbances and 
implementation errors in the states when we 
control combinations of variables. To avoid 
problems related to nonlinearities, it is 
important that these matrices be as small as 
possible. Then, to minimize the effect of the 
disturbances (d ) and the implementation 
errors ( cn ), we want to minimize the norms 

x∗G , x
d

∗

G , and x x
d

∗ ∗

G G . 

 
 It is important to emphasize that we 
will not control the states x  directly but, 
instead, we will “control” them using indirect 
control as presented in section 2. 
 

As we saw in section 2, when we 
have perfect indirect control and c0 =P I , the 
matrices G  and dG  become equal to the 
matrices 1G  and d1G , respectively. If we 
define the primary variables as linear 
combinations of the states ( 1 =y Wx ), then we 
have that: 
 
 

1 d1

x x
1 d∆ = ∆ = ∆ + ∆

G G

y W x WG u WG d  

 
where W  is the matrix that represents the 
linear combination of the states. 
 

Equation 16 then becomes: 
 

( )( ) ( )
xx

d

-1 -1x x x x x x c
d d

∗
∗

∆ = − ∆ −

GG

x G G WG WG d G WG n

 
 
 One important point to be discussed 
in this session is: 
- What is the optimal choice of W  that 
minimizes the effect of the disturbances in the 

states, i.e., minimizes the value of x
d

∗

G  in 
Equation 18? 
 

If we assume that the matrix W  is 
equal to the transpose of xG  (

Tx=W G ), then 
we will have: 

 

( ) ( )T T T-1 -1
x x x x x x x x x c
d d

 ∆ = − ∆ − 
 

x G G G G G G d G G G n  

 

 The matrix ( )T T-1
x x x xG G G G  in 

Equation 19 is called projection matrix 
(Strang, 1980). It means that the product 

( )T T-1
x x x x x

dG G G G G  is the closest point to 
x
dG , i.e., there isn’t any other matrix W  that 

can result in a smaller value of x*
dG  than 

Tx=W G . Then we conclude that the choice of 
Tx=W G  gives us the minimum value of x*

dG . 
This will be demonstrated in the example 
below. But it is important to notice that this is 
not the only optimum choice, any matrix 

Tx
x=W P G  is an optimum solution, where xP  

is any non-singular square matrix with 
apropriated dimensions. 
 
 The choice of 

Tx=W G  is optimum 
for any choice of c0P  non-singular, i.e., this 
result is not restricted to c0 =P I . 
 
 It is important to notice that the 
matrix W  can be arbitrarily chosen by the 
designer according to the objective of the 
process. For example, he can choose to make a 
combination of only some states or use all of 
them. 
 
 Another important point to discuss is 
if the choice of 

Tx=W G  gives the minimum 
value of x∗G . From Equation 19 we see that 

the matrix ( )T -1
x x xG G G  is the right pseudo-

(16) 

(17) 

(18) 

(19) 



 

inverse of xG . It means that this is the 
solution of the problem x c∆ − =G x n 0  
(Strang, 1980). 
 
4.APPLICATION TO DISTILLA-
TION 
 

The proposed theory is applied to a 
distillation column with 82 states (41 
compositions and 41 levels). As the levels 
don’t have steady state effect, we considered 
that the objective function is a combination of 
the compositions only. This example has, after 
stabilization, 2 remaining manipulated 
variables (reflux flow rate ( L ) and vapor 
boilup (V )), and 2 disturbances (feed flow rate 
( F ) and fraction of liquid in the feed ( Fq )). 
Having 2 manipulated variables, we are able to 
control perfectly 2 combinations of the states. 
The measurements (∆y ) are the flow rates ( L , 
V , D , and B ). The variables were scaled 
according to Skogestad and Postlethwaite 
(1996). 
 
 In this example we compared the 
effect of the disturbances in the states using, as 
primary variables, 4 different combinations of 
states (4 different matrices W ). The 
combinations used were: 
- Combination 1: The matrix W  was 

selected in order to select the bottom and 
top compositions as primary variables. 
This is the most common choice in 
distillation studies. 

- Combination 2: The matrix W  was 
selected in order to separate the column in 
the following way. The compositions 
below the feed stage (feed stage 
composition included) were combined in 
one primary variable (with all weights 
equal to 1) and the compositions above the 
feed stage were combined in the other 
primary variable (also with all weights 
equal to 1). 

- Combination 3: The matrix W  was 
selected as being the transpose of xG  
(

Tx=W G ). 
- Combination 4: The matrix W  was 

calculated by the following minimization 
problem: 

 
x* x*

d 2
min   W

G G  

 
where x*G  and x

d

∗

G  represent the effects of 
the noise and the disturbances in the states, 
respectively (see Equation 18). 
 
For each combination we calculated the best 
combination of measurements (calculated the 
matrix H ) using Equation 14. Then, finally we 
calculated the matrices x*G  and x

d

∗

G . The 

values of the 2-norm x*G , x
d
∗G , and 

x* x*
d  G G  are presented in Table 1. 

 
Table 1 - Values of x*G , x

d
∗G , and 

x* x*
d  G G  for all 4 combinations. 

 x*G  x*
dG  x* x*

d  G G

1 48.8289 2.5182 48.8817 
2 0.2548 1.1070 1.1080 
3 0.0252 1.0886 1.0886 
4 0.2560 1.0886 1.0886 

 
Although the choice of the top and 

bottom compositions as primary variables 
(case 1) is able to control perfectly these two 
variables (the resulting closed-loop gains that 
relate the disturbances to the bottom and top 
compositions are zero), the closed-loop gains 
of the states in the middle of the column are 
very large (above 0.7) (see Table 2). And also 
this choice doesn’t give good rejection of the 
implementation error (see matrix x*G  in Table 
2). 
 
 As expected (see session 3), the 
results presented in Table 1 confirm that the 

(20) 



 

use of 
Tx=W G  as the combination of 

variables is an optimum choice (it has the 
same value of x* x*

d  G G  as obtained by 

optimization).  
 

 
Table 2 - Values of the matrices x*G  and x*

dG  for the four combinations. 
Combination 1 Combination 2 Combination 3 Combination 4 

x*G  x
d

∗

G  x*G  x
d

∗

G  x*G  x
d

∗

G  x*G  x
d

∗

G  
  1.0000         0
  1.4851     0.0000
  2.0690     0.0104
  2.7643     0.0363
  3.5807     0.0840
  4.5229     0.1615
  5.5860     0.2779
  6.7521     0.4430
  7.9849     0.6663
  9.2268     0.9551
10.3980     1.3125
11.4015     1.7346
12.1331     2.2095
12.4987     2.7164
12.4326     3.2275
11.9136     3.7119
10.9721     4.1409
  9.6844     4.4928
  8.1582     4.7557
  6.5112     4.9285
  4.8528     5.0192
  4.8185     6.6327
  4.7126     8.2966
  4.5197     9.8952
  4.2315   11.2891
  3.8513   12.3376
  3.3956   12.9284
  2.8924   13.0048
  2.3761   12.5800
  1.8807   11.7311
  1.4335   10.5778
  1.0517     9.2533
  0.7418     7.8796
  0.5017     6.5517
  0.3237     5.3327
  0.1972     4.2566
  0.1115     3.3346
  0.0565     2.5628
  0.0238     1.9280
  0.0067     1.4132
      0          1.0000



































































 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
   

 

-0.0000         0
-0.0000    0.0000
-0.0000    0.0015
-0.0000    0.0053
-0.0000    0.0124
-0.0000    0.0237
-0.0000    0.0409
-0.0000    0.0651
-0.0001    0.0980
-0.0001    0.1405
-0.0001    0.1930
-0.0001    0.2551
-0.0001    0.3249
-0.0001    0.3994
-0.0001    0.4746
-0.0001    0.5458
-0.0001    0.6089
-0.0001    0.6606
-0.0001    0.6993
-0.0001    0.7247
-0.0001    0.7381
-0.0001    0.7328
-0.0001    0.7167
-0.0001    0.6874
-0.0001    0.6436
-0.0001    0.5857
-0.0001    0.5164
-0.0001    0.4399
-0.0001    0.3614
-0.0001    0.2860
-0.0001    0.2180
-0.0001    0.1600
-0.0001    0.1128
-0.0000    0.0763
-0.0000    0.0492
-0.0000    0.0300
-0.0000    0.0170
-0.0000    0.0086
-0.0000    0.0036
-0.0000    0.0010
-0.0000   -0.0000

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

 0.0071   -0.0016
 0.0105   -0.0024
 0.0146   -0.0033
 0.0195   -0.0042
 0.0251   -0.0052
 0.0317   -0.0062
 0.0389   -0.0071
 0.0469   -0.0078
 0.0552   -0.0083
 0.0634   -0.0084
 0.0710   -0.0078
 0.0773   -0.0066
 0.0816   -0.0045
 0.0832   -0.0017
 0.0818    0.0019
 0.0772    0.0060
 0.0697    0.0104
 0.0600    0.0148
 0.0487    0.0191
 0.0367    0.0229
 0.0249    0.0262
 0.0216    0.0371
 0.0177    0.0486
 0.0133    0.0597
 0.0087    0.0696
 0.0040    0.0773
-0.0003    0.0820
-0.0040    0.0833
-0.0069    0.0813
-0.0088    0.0763
-0.0098    0.0692
-0.0100    0.0609
-0.0096    0.0521
-0.0088    0.0435
-0.0077    0.0356
-0.0066    0.0285
-0.0055    0.0224
-0.0044    0.0172
-0.0035    0.0130
-0.0026    0.0095
-0.0019    0.0068

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

0.0000   -0.0270
0.0000   -0.0401
0.0000   -0.0547
0.0000   -0.0705
0.0000   -0.0872
0.0000   -0.1038
0.0000   -0.1193
0.0000   -0.1320
0.0000   -0.1399
0.0000   -0.1405
0.0000   -0.1315

-0.0000   -0.1106
-0.0000   -0.0763
-0.0000   -0.0285
-0.0000    0.0314
-0.0000    0.1005
-0.0000    0.1748
-0.0000    0.2496
-0.0000    0.3207
-0.0000    0.3849
-0.0000    0.4400
-0.0000    0.3820
-0.0000    0.3134
-0.0000   0.2361
-0.0000    0.1536
-0.0000    0.0712
-0.0000   -0.0055
-0.0000   -0.0709
0.0000   -0.1214
0.0000   -0.1551
0.0000   -0.1727
0.0000   -0.1763
0.0000   -0.1694
0.0000   -0.1552
0.0000   -0.1370

 0.0000   -0.1170
0.0000   -0.0970
0.0000   -0.0782
0.0000   -0.0612
0.0000   -0.0462
0.0000   -0.0333

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

0.0005    0.0005
0.0007    0.0007
0.0009    0.0009
0.0012    0.0012
0.0016    0.0016
0.0020    0.0020
0.0024    0.0024
0.0029    0.0029
0.0033    0.0033
0.0038    0.0038
0.0042    0.0042

 0.0045    0.0044
0.0046    0.0046
0.0046    0.0045
0.0043    0.0043
0.0039    0.0039
0.0033    0.0033
0.0026    0.0025
0.0018    0.0017
0.0010    0.0009
0.0002    0.0001

-0.0005   -0.0005
-0.0012   -0.0013
-0.0020  -0.0020
-0.0027   -0.0027
-0.0033   -0.0033
-0.0037   -0.0037
-0.0040   -0.0040
-0.0040   -0.0041
-0.0039   -0.0039
-0.0036   -0.0037
-0.0033   -0.0033
-0.0029   -0.0029
-0.0024   -0.0024
-0.0020   -0.0020
-0.0016   -0.0016
-0.0013   -0.0013
-0.0010   -0.0010
-0.0008   -0.0008
-0.0006   -0.0006
-0.0004   -0.0004

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

0.0000   -0.0315
0.0000   -0.0468
0.0000   -0.0641
0.0000   -0.0831
0.0000   -0.1035
0.0000   -0.1244
0.0000   -0.1449
0.0000   -0.1630
0.0000   -0.1767
0.0000   -0.1833
0.0000   -0.1799

 0.0000   -0.1639
0.0000   -0.1334

-0.0000   -0.0877
-0.0000   -0.0279
-0.0000    0.0431
-0.0000    0.1213
-0.0000    0.2016
-0.0000    0.2794
-0.0000    0.3509
-0.0000    0.4134
-0.0000    0.3541
-0.0000    0.2845
-0.0000   0.2066
-0.0000    0.1242
-0.0000    0.0426
-0.0000   -0.0325
 0.0000   -0.0958
 0.0000   -0.1435
 0.0000   -0.1742
 0.0000   -0.1887
 0.0000   -0.1895
 0.0000   -0.1799
 0.0000   -0.1634

  0.0000   -0.1432
 0.0000   -0.1217
 0.0000   -0.1005
 0.0000   -0.0808
 0.0000   -0.0630
 0.0000   -0.0475
 0.0000   -0.0342

 
 
 
 
 
 
 
 
 
 
 
























































 




























































 

 0.0070   -0.0018
 0.0104   -0.0027
 0.0145   -0.0037
 0.0193   -0.0048
 0.0250   -0.0060
 0.0314   -0.0072
 0.0387   -0.0084
 0.0465   -0.0094
 0.0547   -0.0102
 0.0629   -0.0106
 0.0704   -0.0104
 0.0766   -0.0095
 0.0808   -0.0077
 0.0824   -0.0051
 0.0809   -0.0016
 0.0763    0.0025
 0.0688    0.0070
 0.0591    0.0117
 0.0478    0.0162
 0.0359    0.0203
 0.0241    0.0239
 0.0206    0.0345
 0.0166    0.0456
 0.0120    0.0564
 0.0072    0.0660
 0.0025    0.0735
-0.0019    0.0782
-0.0056    0.0797
-0.0084    0.0778
-0.0102    0.0732
-0.0110    0.0665
-0.0110    0.0585
-0.0105    0.0501
-0.0095    0.0419
-0.0083    0.0342
-0.0071    0.0274
-0.0059    0.0216
-0.0047    0.0166
-0.0037    0.0125
-0.0028    0.0092
-0.0020    0.0065

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

0.0000   -0.0315
0.0000   -0.0468
0.0000   -0.0641
0.0000   -0.0831
0.0000   -0.1035
0.0000   -0.1244
0.0000   -0.1449
0.0000   -0.1630
0.0000   -0.1767
0.0000   -0.1833
0.0000   -0.1799

 0.0000   -0.1639
-0.0000   -0.1334
-0.0000   -0.0877
-0.0000   -0.0279
-0.0000    0.0431
-0.0000    0.1213
-0.0000    0.2016
-0.0000    0.2794
-0.0000    0.3509
-0.0000    0.4134
-0.0000    0.3541
-0.0000    0.2845
-0.0000   0.2066
-0.0000    0.1242
-0.0000    0.0426
-0.0000   -0.0325
-0.0000   -0.0958
0.0000   -0.1435
0.0000   -0.1742
0.0000   -0.1887
0.0000   -0.1895
0.0000   -0.1799
0.0000   -0.1634
0.0000   -0.1432

 0.0000   -0.1217
0.0000   -0.1005
0.0000   -0.0808
0.0000   -0.0630
0.0000   -0.0475
0.0000   -0.0342

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 










































 














































 

 
Another advantage of this choice is 

that it reduces the effect of the implementation 
error (reduces the norm x*G , see Table 1) in 
the states. As we can see in Table 2, 
combinations 3 (

Tx=W G ) and 4 (obtained by 
optimization) are equivalent in relation to 
matrix x

d

∗

G , the matrices are exactly the same 
in both cases. But when we analyze x*G  
separatelly we see that the use of 

Tx=W G  
gives us a better result. The reason is that in 
the optimization we are only interested in the 
norm x* x*

d  G G  and, in this case, the norm 

of the matrix x
d

∗

G  is much more important 

than the matrix x*G . This can be easily seen 
when we analyze Table 1 more carefully. 
Although the value of x*G , for combination 
4, is quite large (0.2560), the value of 

x* x*
d  G G  is almost the same as the value 

of x*
dG  (it is important to emphasize that 

although the values of x*
dG  and 

x* x*
d  G G  presented in Table 1 for 

combinations 3 and 4 are the same, in reality 
the values of x* x*

d  G G  are slightly larger 



 

than x*
dG , the difference does not appear due 

to the approximation that was done). 
 
As we can see in Table 2, the choice 

of 
Tx=W G  doesn’t give perfect control for 

the top and bottom compositions, but it 
reduces the sensitivity of the states in the 
middle of the column (about 0.4) to variations 
in the disturbances. This point is important to 
avoid the effects of non-linearities in the 
process. 
 
5.CONCLUSIONS 
 
 In this paper we showed that it is 
possible to control perfectly (having perfect 
disturbance rejection and minimizing the 
implementation error effects) any combination 
of the states if we have enough measurements 
available. 
 
 Therefore, it is shown the importance 
of the use of the combination of states as 
primary variables. Although the choice of the 
top and bottom compositions of a distillation 
column is good to reject perfectly the 
disturbances, it fails in the rejection of the 
implementation error and also it doesn’t give a 
good control of the states in the middle of the 
column. 
 
 The choice of 

Tx=W G  proved to be 
the best choice if the objective is to keep the 
states as close as possible to their desired 
(nominal) values. It rejects very well both 
disturbances and implementation errors, 
although it doesn’t give perfect control of the 
top and bottom compositions. 
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