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Introduction

Are large process gains a problem in terms of input-output controllability?

Two main types of input errors are discussed: input (load) disturbance

and input (valve) inaccuracy caused by limited input resolution. This

work is motivated by the results in [1, 2, 3, 4, 5].
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Figure 1. Block diagram of a feedback control system.

For performance we must require |SGdu| < ymax, ∀ω. This gives the

controllability requirement:

|G(jωS)| <
ymax

|du| , (1)
where |S(jωS)| = 1 and typically

ωS ≈ 0.5/θ (θ is the effective delay in

the loop).

Example, pH neutralization: |G(0)| > 104. Use many tanks to get G(s) high order so it drops off.

Limited Input Resolution

Limited input resolution is represented in Figure 2 by a quantizer in which

uq = q · round(u/q), where q is the quantization step.
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Figure 2. Feedback control configuration for limited input resolution.

With a quantizer, limit cycles oscillations are inevitable if the controller

has integral action - independent of the controller tuning.

Proof: At steady state the average uss = r/|G(0)| does not generally match uq. With oscillations between two quanti-

zation levels, uss = uq1 · f + uq2 · (1− f ) [f = fraction of time at a given quantizer level].

Sinusoidal oscillations

Consider the following system:

G(s) =
100

(10s + 1)(s + 1)2

K(s) = 0.04
10s + 1

10s
q = 0.03

r0 = 1 (2)
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Figure 3. Simulation results for the system (2).

From the figure, the oscillations have magnitude a = 0.189 and period

T = 6.72s. From a describing function analysis, assuming sinusoidal be-

havior, a = (4q/π) · |G(jωL,180)|. This analysis agrees with the simulation

in Figure 3: a = 0.187 and T = 2π/ωL,180 = 6.28. The corresponding

controllability requirement with a = ymax is then:

|G(jωL,180)| <
π

4
· ymax

q
,(3) where L = GK. Typically,

ωL,180 ≈ 1.5/θ.

Nonsinusoidal oscillations

Consider the following system:

G(s) =
100e−s

10s + 1

K(s) = 0.04
10s + 1

10s
q = 0.03

r0 = 0.2 (4)
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Figure 4. Simulation results for the system (4).

For a first-order plus time delay processes G(s) = ke−θs/(τs + 1) with a

PI-controller K = Kc(τIs + 1)/τIs and τI = τ , the exact amplitude (a)

and period (T) of the limit cycles are:

a = kq


(1 − e−(θ/τ )/(1−f)) · (1 − e−(θ/τ )/f)

1 − e−(θ/τ )[1/(1−f)+1/f ]


 ; T = θ(

1

1 − f
+

1

f
) (5)

T varies between 4θ (f = 0.5) and ∞ (f = 0 or f = 1).
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Figure 5. The amplitude in (5) agrees surprisingly well with the describing function analysis (3).

Example Figure 4: the measured and calculated values (5) are a = 0.30

and T = 16.07s. For this case, (3) is a bit optimistic as it gives a = 0.24

and T = 4θ = 4s. Conclusion: (3) is a nice bound!

How to Avoid Oscillations

The oscillations in Figure 2-4 can be reduced by the following means:

a.Change the valve (smaller q);

b.Redesign the process (smaller effective delay θ);

c.Remove integral action (but P-control may give poor performance);

d. Introduce fast forced cycling, e.g., du = sin ωt (may wear out the valve,

see Figure 6).
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Figure 6. Simulation results for the system given by (4) using a modulator.

Conclusion

Large steady-state gain |G(0)| is not a problem.

Large gain |G(jω)| at bandwidth frequencies should be avoided:

1.With input load disturbances, a high gain implies the need for a high

bandwidth which cannot always be achieved.

2. For limited input resolution, high gains give a large amplitude of the

resulting limit cycles.

3.Controllability: (1) is more restrictive than (3) if |du| > q/2.4 (normally

the case).


