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1 Introduction
•

Self-optimizing control is when, using a constant set-point feedback policy, ac-
ceptable economic operation can be achieved in spite of external disturbances
and measurements errors.

• The key in self-optimizing control is to select the feedback controlled variables c.
• The null space method is a systematic method for finding good self-optimizing variables

(Alstad and Skogestad, 2002, 2004).
• Optimal operation (steady-state):

min
x,u0

J0(x, u0, d)

s.t.
f(x, u0, d) = 0
g(x, u0, d) ≤ 0

– J0 is the scalar economic objective.
– x the states.
– u0 the inputs (DOF) and
– d the unmeasured external disturbances.

• Active constraints: A subset g′ of g(·) active for all d. Control the active constraints:
ci = g′(·)

• Resulting unconstrained reduced space optimization problem:
min

u
J(u, d)

•

Goal: Find feedback controlled variables c of the available measurements y0 to
achieve self-optimizing control.

1.1 Motivation
• Two sources of uncertainty in operation, see Figure 1(a):

1. External disturbances (d): Suppress with feedback.
2. Measurement errors (n): Always present, minimize by selecting insensitive feedback vari-

ables, see Figure 1(b).
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(a) Feedback control loop
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(b) Effect of implementation error on loss: two candidate controlled variables, labeled c1

and c2 where |G2| > |G1| and ∆ci = Gi∆u

• Two different controlled variables candidates c1 and c2 (Figure 1(b)).
• The effect of the implementation error larger for c1 than c2 due to lower gain |G1| < |G2|. Select

controlled variables with large gains (Halvorsen et al., 2003).

1.2 Taylor series expansion of the loss function
• A second order accurate expression of the loss function:

L = J(cs + n, d) − Jopt(d)
where:
– L is a scalar loss function.
– J(cs + n, d) is the actual cost using the constant feedback policy
– Jopt(d) is the true optimal value of the objective function.

• Halvorsen et al. (2003) show that the loss is:

L =
1
2

eT
u Juueu = zT z (1)

z = J1/2
uu (J-1

uuJud −G-1Gd)Wdd′ + J1/2
uu G-1Wnn′c

=Mdd′ +Mnn′c (2)

=
[

Md Mc
]

[

d′ n′c
]T

where
Md = J1/2

uu (J-1
uuJud −G-1Gd)Wd

Mn = J1/2
uu G-1Wn

Juu and Jud the Hessian matrices
∆c = G∆u +Gd∆d

Wd and Wn are scaling matrices

2 The null space method
• The null space method of Alstad and Skogestad (2004, 2002) propose to select controlled

variables as functions of a subset of the measurements:

∆c = H∆y where ∆y = Gy
∆u +Gy

d∆d (3)
• The matrix H is found by selecting the rows hi of H to be the null vectors of the optimal sensi-

tivity matrix F where

∆yopt
= F∆d where F = −

(

GyJ-1
uuJud −Gy

d

)

(4)
so

hT
i ∈ N(FT ) (5)

such that

HF = 0
• Assumption:

– Gy and Gy
d have full column rank.

– The number of controlled variables (nc) equals the number of input (nu).
– Implies that the number of measurements are (length of y)

ny = nu + nd (6)
for the null space of F to exist.

• Explicit expression for the null space matrix H is:

H =M-1
n J[G̃y]−1 where

G̃y = [Gy Gy
d] (7)

J = [J1/2
uu J1/2

uu Juu
-1Jud]

where Mn is a parameter matrix and G̃y assumed invertible.
• Selecting H as given in equation (7) implies that Md = 0.
• Assume that the total number of measurements nyo > ny. Issues:

1. How to select the best minimum set of measurements in order to reduce the effect
of implementation error on the operational objective.

2. How to use the null space method when using all available measurements.

3 Selection of the best set of measurements
• Select measurements such that the effect of measurement noise Mn is minimized, see (1).
• Noise contribution (Md = 0):

z =Mnnc =MnHny (8)
so MnH should be selected as small as possible.

• Now, consider the case of which we have more measurements than the minimum necessary,
thus

ny0 > ny = nu + nd (9)
and we may use these extra measurements to minimize the effect of the measurement error
on the loss. This may be achieved in two ways
1. Method 1: Select the best subset of measurements from the full set of measurements.
2. Method 2: Use all measurements and select the best combination.

Best minimum subset of measurements (Method 1)
• Recognizing that from equation (7) we have

MnH = J[G̃y]-1 (10)
•J independent of which measurement while G̃y depends on the measurements.
• Selection of the best minimum set of measurements yi where i ∈ {1, .., ny} from the full set of

measurements y0, j for j = {1, .., ny0}.
• The choice of Mn does not influence the effect of the measurement noise (right hand side of

equation (10) is a constant matrix).
• From equation (10) we get that in order to minimize the loss

max
‖ny‖2≤1

1
2zT z = max

‖ny‖2≤1
1
2‖z‖

2
2 =

1
2σ̄(J[G̃y]-1)2 ≤ 1

2

(

σ̄(J)σ̄([G̃y]-1)
)2
=

1
2

(

σ̄(J)σ([G̃y]-1)
)2

(11)

1. Optimal: Select measurements such that σ̄
(

J[G̃y]-1) is minimized.
2. Sub-optimal: Select measurements yi such that σ(G̃y) is maximized.

Best combination of all measurements (Method 2)
Using all measurement we replace the inverse of equation (10) by the pseudo-inverse (Moore-
Penrose generalized inverse):

H =M-1
n J[G̃y

0]† (12)

where [G̃y
0]† is the pseudo-left inverse of G̃y

0, such that the effect of the measurement error is
MnH = J[G̃y

0]†.

Extensions: Fewer measurements (ny < nu + nd)
Methods for reducing the dimension of the problem (Md , 0):
• Lump “similar” disturbances based on SVD of Gy

d = UdΣdVT
d .

∆d ≈ Ṽd∆d̃ (13)
corresponding to the large singular values {σ1, σ2, . . . , σ j} with directions Ṽd =

[

vd,1 . . . vd,σ j

]

.
• Pseudo-right inverse as given by equation (12) above.

4 Toy example
• SISO system with one disturbance and the following objective function

J = (u − d)2 (14)
with the nominal disturbance d∗ = 0.

• Measurements:

y1 = 0.1(u − d) y2 = 20u y3 = 10u − 5d y4 = u

• Optimal sensitivity matrix:
∆yopt

0 = F∆d = Gy′
∆uopt(d) +Gy′

d ∆d =
[

0.1 20 10 1
]T
∆d +

[

−0.1 0 −5 0
]T
∆d =

[

0 20 5 1
]T
∆d
(15)

• Null space method : Minimum number of measurements, see (6), is
ny = nu + nd = 1 + 1 = 2

which results in 6 possible candidate sets of measurements to check.
• Sub-optimal rule, see Table 1: Use measurements 2 and 3 (y2 and y3).
• Table 2 show the worst case loss for the candidate controlled variables.
• Loss reduced with a factor of 6 using the null space method.
• Using all measurements in equation (12) the loss is marginally smaller compared to cLC,4 due

to the high implementation error of measurements y1 and y4 (Lall
LC = 0.04247).

Table 1: Minimum sin-
gular values
cLC,# y# y# σ(G̃y)

4 2 3 4.4490
6 3 4 0.4458
1 1 2 0.1
3 1 4 0.0995
2 1 3 0.0447
5 2 4 0

Table 2: Worst case loss
Rank c L

1 cLC,4 0.0425
2 y3 0.26
3 y2 1.0025
4 cLC,6 1.04
5 y4 2
6 y1 100
7 cLC,5 inf
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Figure 1: Loss due to disturbance d

−1 −0.5 0 0.5 1
0

0.5

1

1.5

2

Lo
ss

n
y

y4 and cLC,6

y1

cLC,4

y2

Figure 2: Loss due to measurement error n
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