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Abstract

The aim of this report is to derive PID tuning-rules for processes with either a pair of complex poles
in the left-half-plane or a single real pole in the right-half-plane. For the case of stable processes with
complex poles and a first order filter, a simple model-reduction scheme has been proposed, that enables
use of the existing SIMC-rules [6] to get PID-controller settings. For pure oscillatory stable processes and
the unstable case with a singe real pole a review of previous work by professor Skogestad, Ntnu, has
been conducted. A method for perfomance-comparison of the resulting PID-controller with a IAE- and
TV-optimal controller has been propsed. There is still work to be done on this topic.
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Chapter 1

Introduction

Skogestad [6] has published a very sucsessful set of tuning rules for PID controllers that work well for both
reference tracking and load disturbances. Those analytically derived settings have the nice advantage of
being simple and easy to memorize and work well on a broad range of processes. Basically, the tuning is
done in two steps:

Step 1. Reduce to model at hand to a first or second-order plus delay model.

Step 2. Derive model-based controller settings

Although very practical and effective, the rules of Skogestad [6] do not directly tackle the problem of
processes with complex poles and/or zeros and right-half plane (RHP) poles. In step 1, reduce the model
at hand to a first or second-order plus delay model, one may use the half-rule in Skogestad [6]. In this
project we aim to either reduce the model at to a first or second-orded plus delay model, so we can directly
use the SIMC-settings of the reduced model, or we will derive new tuning rules directely. The new issue
in model reduction will be to approximate a model with complex poles to a first or second order process
plus delay with real poles1.

1.1 Review of the SIMC PID settings

Assume we have a model on the form

g(s) =
k

(τ1s + 1)(τ2s + 1)
e−θs (1.1)

or

g(s) =
k

(τ1s + 1)
e−θs (1.2)

1This may seem a bit strange, but remeber that we have the delay as a degree of freedom in the approximation.
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The SIMC PID controller settings are then [6, page 93] for the process model in (1.1)

Kc =
1

k

τ1

τc + θ
(1.3)

τI = min{τ1, 4(τc + θ)} (1.4)

τD = τ2 (1.5)

For a process model on the form in equation (1.2) we get tuning rules by setting τD = 0, and we get a
PI controller. Note that to get a PID controller we start with a model on the form (1.1), whereas for a
PI controller, we start with a model on the form (1.2). We note that the only tuning parameter is τc. A
recommended value for τc for fast response and good robustness is τc = θ [6].

The settings for a PID controller are given for a cascade controller:

c(s) = Kc

(
τIs + 1

τIs

)

(τDs + 1) (1.6)

1.2 A note on simulation tools used in the report

All simulations and optimization problems in this report were solved using Matlab and Simulink. The
number of scripts and functions grew rather large, and as to reduce the length of the report I choose not
to include all the files. However, I did include two files, that are shown in appendix D. I choose to include
these two files because I think maybe future student might like to use them for their work. The main
Simulink-models are attached in A.
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Chapter 2

Stable processes with complex poles

2.1 Introduction

This part of the report will cover tuning processes of the kind

g(s) =
1

(τ1s + 1)(τ 2
0 s2 + 2ζτ0s + 1)

e−θs (2.1)

with PID controllers. Underdamped systems is the main focus. Ogata [3] shows that we will only get
closed loop resonace if ζ < 0.7071, so only damping coefficients below this value will be considered.

As a first approach we will divide these processes into three categories as shown in table 2.1.

Category Description

Category A τ0 >> τ1. When this is the case we will observe a distinctive resonant
peak in frequency domain. There processes may be threated as “pure”
2nd order underdamped systems, where we might include the neglected
time-constant τ1 in τ0 and the delay θeff , as in the half-rule derived by
Skogestad [6].

Category B τ0 < τ1, but still a clear peak in the frequency domain, that is, the peak
gain is the maximum gain for the process.

Category C τ0 < τ1, where the resonant peak is less than the low-frequency gain for
the process.

Table 2.1: Categories of systems

Figures 2.1 and 2.2 shows some typical examples of these kinds of processes. For the time-responses in
figure 2.1 a unit-step in the input was conducted at t = 0. The letters indicate what kind of categories
the different processes belong in.

’

1See also for example Seborg et al. [4, page 121] to understand why there is no peak when ζ > 0.707
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(B)/C

Figure 2.1: Time responses
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A A/B

B/C

(B)/C

Figure 2.2: Frequency responses
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2.2 Category B

2.2.1 Introduction

We have a process on the form

g(s) =
k

(τ1s + 1)
(
τ2
0 s2 + 2τ0ζs + 1

)e−θs (2.2)

which we want to control with a PID controller. Ideally we would like to reduce this model to a first or
second order plus delay model (see equations (1.2) and (1.1)), and thereafter use the SIMC-rules to derive
PID controller settings.

2.2.2 Gain

From Seborg et al. [4, page 353] we have that the maximum amplitude ratio for a underdamped second
order transfer is (AR)max = 1/(2ζ

√

1 − ζ2). AR is the amplitude ratio, defined as the ratio of output to
input amplitude. We get a pure second-order underdamped process by setting τ1 = 0 in equation (2.2).
In this part we assume that τ1 > τ0, so the dominating dynamics is the first order part. The dominating
dynamic part will filter out the underdamped part and thereby reduce the oscillating behaviour of the
process, so one may say that this is an filtered underdamped process. Remember that this category is the
set of processes that has this filer-effect and also has a peak-gain at some frequency that is larger than the
low-frequency (steady-state) process gain.

The first order part of the process model (equation (2.2)) will reduce the usual peak gain (for a pure second-
order process with τ1 = 0) approximately linearly in the log-log space (See figure 2.3) if τ0 ≤ τ1. As we see
from the figure the filter-effect (τ1 ≥ τ0) will reduce the log10 k by log10(1/τ0)− log10(1/τ1) = log10(τ1/τ0).
This is true for asymptotic regions, i.e. when τ0 and τ1 is different from each other.

This means that the amplitude at the resonant peak is approximately:

log10
kmax

k
=







log10

(

1

2ζ
√

1−ζ2

)

− log10

(
τ1
τ0

)

τ0 ≤ τ1

log10

(

1

2ζ
√

1−ζ2

)

τ0 > τ1

(2.3)

...or equivalently

kmax

k
=







(

(τ0/τ1)

2ζ
√

1−ζ2

)

τ0 ≤ τ1
(

1

2ζ
√

1−ζ2

)

τ0 > τ1

(2.4)

This gain-rule is always safe, but it is not good, as the gain is higher than the process gain at all frequencies.

Note that this gain should never be set to a value below 1. (Then we are no longer in this set of processes.
See section 2.3).
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First order filter
reduces the peak gain
approximately linearly

Figure 2.3: Approximate bode-plot for the function g(s) = 1
(τ1s+1)(τ2

0 s2+2τ0ζs+1)
, τ1 > τ0. (τ1, τ0/τ1, ζ) =

(1, 0.3, 0.1)

2.2.3 Phase, τ0 ≤ τ1

The gain rule from section 2.2.2 is rather conservative for all frequencies, since it chooses the maximum
gain for all frequencies. In a mathematical sense we may say that the gain-rule tries to find a gain
kgain rule = maxω |g(jω)|. We want to make a model in order to afterwards use the SIMC-rules for tuning,
so it is important that the model is as good as possible. The gain rule is of course safe for all frequencies,
since it oversetimates the process gain at all frequencies. Since we want a fast and robust response for the
resulting controller after applying the SIMC-rules, we should put some emphasis on getting a good model
for the phase.

As a simple approach we could try to approximate the phase of the transferfunction (equation (2.2)) by a
delay e−θapproxs. The delay will only affect the phase, so however we choose this delay, our model for the
gain will remain unchanged. We want to find θapprox as a function of lag (τ1, τ0) and damping coefficient
ζ.

Skogestad [6, pages 113-114] argues in his derivation of the half-rule that the important frequencies are be-
low the bandwidth-frequency of the controller, and that this bandwidth is given by ωbandwidth ≈ 1/θeffective.
After some trial and error, we found that a possible approximation for the phase is given by equation (2.5).

θapprox(ζ, τ1, (τ0/τ1)) = (1.5 + ζ · 5) · (τ0/τ1) · τ1 · f (2.5)

f = 0.6(τ0/τ1)2 (2.6)

To see why (2.5) is a possible approximation for the phase of the process, consider figures 2.4 and 2.5.
By looking at (2.5) we observe that this phase-corretion consists of two parts, the term (1.5 + ζ · 5) and
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1

1

2

2

3

3

4

4

Figure 2.4: Comparing transferfunctions with the approximation given above, g = kmaxe
−θeffs. 1:

(ζ, τ0/τ1) = (0.1, 1), 2: (ζ, τ0/τ1) = (0.1, 0.5), 3: (ζ, τ0/τ1) = (0.2, 1), 4: (ζ, τ0/τ1) = (0.2, 0.5). The
dotted vertical line is 1/θeff ≈ ωbandwidth. The process (full line) is g = k

(τ1s+1)(τ2
0 s2+τ0ζs+1)

. k = 1.
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1
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2

3

3
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4

Figure 2.5: Comparing transferfunctions with the approximation given above, g = kmaxe
−θeffs, but with

f = 1. 1: (ζ, τ0/τ1) = (0.1, 1), 2: (ζ, τ0/τ1) = (0.1, 0.5), 3: (ζ, τ0/τ1) = (0.2, 1), 4: (ζ, τ0/τ1) = (0.2, 0.5).
The dotted vertical line is 1/θeff ≈ ωbandwidth. The process (full line) is g = k

(τ1s+1)(τ2
0 s2+τ0ζs+1)

. k = 1.
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the term f = 0.6(τ0/τ1)2 . The first term is meant to be a correction of the phase as a function of ζ when
τ0 >> τ1. Then the phase-curve will have a certain form, and this term is meant to describe the phase
when we have this situation. As τ0 approches τ1 (from above), the phase will drop quicker, as we get
contributions from both dynamic modes at the same time2. Then we need a second correction, and the
f -part is meant to take care of this.

By inspection of figures 2.4 and 2.5 we see that the f -correction gives a really good phase approximation,
whereas setting f = 1 generally gives a phase-approximation with more phase-lag than the actual process.
Of course it is more safe to assume that the approximated model has more phase-lag than the original
process, since this will give more conservative controller settings in the resulting controller. (See equations
(1.3) - (1.5), page 2). On the other hand, since our gain-approximation is (too) conservative at all
frequencies except at the peak-frequency, it may be better to have a more optimistic approximation for
the phase, and thereafter assume that the conservative gain and optimistic phase approximations cancel
each other out, to give an overall good controller.

Let us now discuss the bandwidth assumption. Look at process 1 in figure 2.4, i.e. the upper-left process.
The phase-approxiamtion is here good up to the assumed bandwidth frequency, but above the bandwidth
it is not good and very unsafe, as the real process had significantly more phase-lag than our approximation.
Fortunately the gain-approximation is very conservative in this region, but considering that we may have
modelling-errors in the orginial model this may be a bit too optimistic approximation. However, this is a
“limiting process”, as τ1 = τ0 in this case, and we observe that the approxiamtion is better for processes
with τ1 strictly less than τ0.

Another issuse worth mentioning is that we have assumed that we only need to have a model of the
phase below the bandwidth, whereas we have tried to capture the maximum gain without considering
the resulting bandwidth, and we observe that generally the peak actually lies outside the bandwidth.
Since the processes we are looking at are generally more or less oscillatory, and we want to control and
maybe remove / damp out some of the oscillations, it is most likely necessary to inculde the peak in the
approximated model, even though it is outside the bandwidth.

2.2.4 Direct synthesis of a PID controller

The gain and phase rules from above approximates the process model from equation (2.2) by g ≈
kmaxe

−θeffs. By conducting a direct synthesis for setpoints, we have as in e.g. Skogestad [6] that

c(s) = g−1 1

(τc + θeff)s
(2.7)

= (1/kmax)
1

(τc + θeff)s
(2.8)

This is a pure I-controller. With the SIMC-rule τc = θ we get a I-controller with no more degrees of
freedom. (Thight control).

2.2.5 Simulation of controller in closed loop

We will now consider the process as in equation (2.2) with the process conditions (τ1, τ0/τ1, ζ, θ/τ1) =
(1, 0.5, 0.2, 0). An open-loop step-response of the process is displayed in figure 2.6. Figure 2.7 shows a

2i.e. the corner-frequencies of 1/(τ1s + 1) and 1/(τ 2
0 s2 + 2τ0ζs + 1) approaches each other
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closed loop plot with a step in the controller setpoint at t = 0 and disturbance at t = 30. The disturbance
enters as showed in figure A.1, page 45. Both the input and output is plotted. We observe that the process
output y is following it’s setpoint rather good3, and the disturbance rejection is acceptable. The input
is not oscillatory. (This might be due to the fact that we have a pure integral controller, so the high
frequencies are damped by the controller.)

The controller was implemented with the equation:

c(s) = (1/kmax)
1

(τc + θeff)s
(2.9)

kmax : given above. (Peak gain) (2.10)

θeff = (1.5 + ζ · 5) · (τ0/τ1) · τ1 · 0.6(τ0/τ1)2 (2.11)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4
Step Response

Time (sec)

A
m

pl
itu

de

Figure 2.6: Step-response on the process g(s) = k
(τ1s+1)(τ2

0 s2+2τ0ζs+1)
e−θs with conditions

(τ1, τ0/τ1, ζ, θ/τ1) = (1, 0.5, 0.2, 0)

2.2.6 Performance of the pure I-controller compared to an optimal PI-controller

In order to assess the performance of the controller we compare it with an optimal PI-controller with
respect to the measures IAE and TV. This is showed in figures 2.8 and 2.9 and will be discussed later.

3At least it seems good on the plot, but it might be a bit slow, keeping in mind that the dominant time constant τ1 = 1.
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2

2

1

1

1

Figure 2.7: Closed loop response on the process g(s) = k
(τ1s+1)(τ2

0 s2+2τ0ζs+1)
e−θs with conditions

(τ1, τ0/τ1, ζ, θ/τ1) = (1, 0.5, 0.2, 0) and controller c(s) = (1/kmax)
1

(τc+θeff)s with τc = θeff . Step in the
controller setpoint at t = 0 and load disturbance at t = 30.
1: process output y. 2: controller output u.
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IAE and TV are defined as follows:

IAE =

∫
∞

0
|e(t)|dt (2.12)

TV =
∞∑

i=1

|ui+1 − ui| (2.13)

Since one want to see how the controller is compared to both of these measures one may solve a multi-
objective function problem:

min

{

IAE

TV

subject to the constraints

The constraints in our problem are the process model with it’s response to setpoint changes and distur-
bances, and of course technical issues like “only allow positive controller parameters”. A naive way to
solve this multi-objective problem is to follow these steps:

Step 1. Compute optimal PI-controller with respect to IAE only.

Step 2. Get TV from the solution, TV0.

Step 3. Include TV in the constraints of the optimization, in the form TV ≤ αnTV0, where α is some
factor 0 < α < 1, n ∈ N is some counter.

Step 4. Recompute the optimization to get a new point in the curve (See for example figure 2.8). Increase
n by 1.

Step 5. Continue until we have enough points in the curve. (Go back to step 4).

The model we use (as a constraint) may vary. Look at figure 2.8. The line in the left-most figure (setpoint)
was comupted by only doing a change in the setpoint, and let the process settle. In the middle figure
(disturbance) we only performed a step in the disturbance, and let the process settle. In the right-most
figure we performed steps in both setpoint and disturbance (and let the process settle inbetween and after).
The dots show the same simulation perform on “our controller” as discussed in the previous section, with
τc = θeff.

In figure 2.9 we have two other simulations also, when τc = 1.5θeff and τc = 0.5θeff. Some perfor-
mance/robustness measures were calculated both for the optimal curve and the I-controller, and are
showed in table 2.2. Note that the following parameterization of the PI-controller was used in table 2.2:

c = Kc

(

1 +
1

τIs

)

= Kc + KI
1

s
(2.14)

i.e. KI = Kc/τI .

Let us look at figures 2.8 and 2.9. We observe that the setpoint-tracking for our controller is a large
distance from the optimal PI-controller line, whereas for disturbance rejection it is close to the optimal
line. Look at the L = g(s)c(s) plots in figure 2.10. We see that the slope after the crossover-frequency
is -1, then flat, then -2. This is close to what is desired in loopshaping [7, page 44], and the roll-off rate
should imply good disturbance rejection, as we see from figure 2.8. The rather poor setpoint tracking may

13



0.8 1

2

2.5

3

TV

IA
E

Setpoint

1 1.2

2.2

2.4

2.6

2.8

3

TV
IA

E

Disturbance

1.6 1.8 2 2.2 2.4
4

5

6

7

TV

IA
E

Combined

Figure 2.8: Process: g(s) = k
(τ1s+1)(τ2

0 s2+2τ0ζs+1)
with conditions (τ0/τ1 = 0.5), (ζ = 0.2), (k = 1). τc = θ.
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Figure 2.9: Process: g(s) = k
(τ1s+1)(τ2

0 s2+2τ0ζs+1)
with conditions (τ0/τ1 = 0.5), (ζ = 0.2), (k = 1) Robust-

ness measures for the points in this figure are given in table 2.2.
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Number Kc KI GM PM MS MT

1 0.16 0.59 2.27 62.22 1.79 1.01
2 0.15 0.58 2.35 62.66 1.74 1.00
3 0.13 0.56 2.45 62.94 1.69 1.00
4 0.14 0.53 2.55 64.33 1.65 1.00
5 0.16 0.50 2.61 66.85 1.62 1.00
6 0.18 0.47 2.65 69.43 1.61 1.00
7 0.20 0.44 2.68 72.26 1.60 1.00
8 0.20 0.41 2.78 74.43 1.57 1.00
9 0.22 0.38 2.82 77.58 1.56 1.00
10 0.25 0.34 2.84 81.12 1.56 1.00
11 0.26 0.29 2.93 84.73 1.54 1.00

τc/θeff Kc KI GM PM MS MT

1.5 0.00 0.28 5.01 71.10 1.28 1.00
1.0 0.00 0.36 4.01 66.81 1.36 1.00
0.5 0.00 0.47 3.01 60.12 1.51 1.02

Table 2.2: Robustness measures for points in figure 2.9
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Figure 2.10: Bode-plots of L = g(s)c(s).
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be explained by the fact that the optimal controller has P-action, whereas our lack this feature. When we
introduce a step in the setpoint the P-part of the controller will usually give the process a “kick” in the
right directon, and then the I-part will “pull it” into it’s correct operating point after some time.

Consider now figure 2.9 and table 2.2. In Seborg et al. [4, page 373] we have that:

Guideline: In general, a well-tuned controller should have a gain margin (GM) between 1.7
and 4.0 and a phase margin (PM) between 30◦and 45◦.

Interestingly, none of the optimal controllers achieve a PM that is well-tuned. One of the differences
between a PI controller and a PID is that the D-part in the PID-controller lifts the phase by about 90◦4.
Maybe the guideline from Seborg et al. [4] tells us that for saistfactory control of these processes we should
include a D-part also. However, if we want to use PID-control with the SIMC-rules we need to have a
second order (plus time-delay) model, see for example equation (1.1). There is quite a lot of work to
modify/extend our current approximated model, which is a pure time delay, to such a model, and due to
time-limitations this will not be considered in this report.

Other things we observe from figure 2.9 is that reducing the tuning parameter τc gives generally faster
control (IAE goes down) but less roubstness (GM and PM down, MS and MT up). This is excatly as
expected, remembering that τc is the desired closed-loop first-order reponse time constant. The same
trend is also seen with the optimal controllers, but we also observers that optimal controller number 1 has
more or less good GM, PM, and MT. The MS value of 1.79 is maybe a bit high, but it is in the range of
the following guideline, also found in Seborg et al. [4, page 377]:

Guideline: For a satisfactory control system, MT should be in the range of 1.0-1.5 and MS

should be in the range of 1.2-2.0.

This observation hints that using a IAE-optimal PI-controller on this process will work OK, it is not nec-
essary to consider optimization with respect to TV. Note that this obersvation is only valid for controllers
with no D-action, as this surely would imply consideration of the TV measure also.

Furthermore, we see that the simple I-controller with the rule τc = θ is not bad at all compared to an
optimal PI-controller that is designed for both setpoint tracking and disturbance rejection. It is “best”
for disturbance rejection, and if it should be improved we should focus on including some P-action to get
the setpoint-tracking better.

As a last comment, consider the gain and phase margins in table 2.2. One observes that the optimal
controller and our I-controller has quite similar phase margins, whereas the gain margin is considerably
higher for the I-controller than the optimal one. This is expected, as we were very conservative with the
gain approximation, while we tried to model the phase as good as possible in the expected closed loop
bandwidth.

Some comments on practical issues with this method for tuning-evualtion

I had significat convergence problems with using this method, and this is the main (and very strong) reason
why only one example is included in the report. One problem that often occured was that the simulation

4Depends of course on how one chooses to implement the usual D-filter
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did not converge, because the gain was to high or the integral action to low, so we got an unstable process
with the controller implemented. (Simulink-model, see A.3, page 47) When writing this comment I have
not time to improve the rountine, but one simple solution I have thougth of is to include a saturation-block
on the input, or possibly on the output. Then the objective function, which is to minimize IAE, will then
just increase to a bound if the optimizer for some reason is going in this direction, but it would not diverge.
Of course one should try to record if the optimization converged to this bound, because then we need to
relax it until we converge to a solution that don’t “need” input saturation, since the process we want to
simulate does not have saturation inherent.

Another approach I would like to investigate is the method of Kristiansson and Lennartson [2]. This is a
method based on frequency rather than the present method, which is based on time-domain simualtions.
Some pros and cons of the current method and the one of Kristiansson and Lennartson [2] are discussed
at the end of chapter 3, page 39.

2.3 Category C

During a project on tuning several of the low level PID control loops on the Snøhvit LNG plant one
controller was encountered that was difficult to tune with the assumptions that was done at the time. I
will use this process as an example loop for Category C-processes.

2.3.1 Look at step response (“empirical”)

Let me explain what we did by first looking at a step response of the process g, as shown in figure 2.11.
The solid line is approximately the response we got. We wanted to only use PI-control on this process,
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Figure 2.11: Solid line: 1/((τ1s + 1)(τ 2
0 s2 + 2τ0ζs + 1)). Dotted line: 1/(τ1s + 1). τ1 = 2.9, τ0 = 0.75 and

ζ = 0.31

and therefore we tried to fit the reponse by drawing a “1st order” line through the reponse signal. This is
shown by the dotted line (only the dominat time constant). Intuitively this seems conservative, because
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the high-frequency gain is larger5, but we are missing the oscillating peak. There was also some delay in
this process that we have neglected for the current discussion (and in figure 2.11). The delay was about
0.5 time units. The tuning was done on a rigourous model of a large part of the plant, so the model we
were tuning on was in nature non-linear. The solid line in figure 2.11 is a approximated response.

When tuning this controller we did not have the second order time τ0 constant (This was found later by
approximating the reponse in Matlab), so we selected the delay to be the observed delay in the process
and we used the SIMC rules directly with τc = θ. The result was an unstable loop.

2.3.2 Systematic design based on model: Naive use of half rule

Let us now look at this response in the frequency domain, shown in figure 2.12. The vertical dotted
line in the figure shows 1/θeff . The effective delay θeff is in this case deduced from the half-rule, i.e.
gapprox = e−θeffs/(τs + 1), θeff = 0.5τ0 and τ = τ1 + 0.5τ0. That is, we use the half-rule [6] naively by
simply ignoring the damping coefficient ζ and just distributing the largest neglected time constant τ0

evenly between τ and θeff.6 From figure 2.12 we see that the difference between gτ1 (only the dominant

Figure 2.12: g: 1/((τ1s + 1)(τ 2
0 s2 + 2τ0ζs + 1)). gτ1 : 1/(τ1s + 1). gapprox = e−0.5τ0s/((τ1 + 0.5τ0)s + 1).

τ1 = 2.9, τ0 = 0.75 and ζ = 0.31. Vertical dotted line is 1/(0.5τ0), i.e. the assumed closed-loop bandwidth.

time-constant) and gapprox is minor in amplitude, and both of them underestimates the gain of the process
transferfunction g. In phase the approximation with delay is not so bad, and it follows g until about -80◦in

5Steeper ascent at t = 0 means smaller time constant which leads to a larger corner-frequency 1τ .
6Perhaps one could argue that we should use the half rule this way: θeff = θ0 + τ0, τ = τ1 + τ0, since the τ 2

0 s2 + 2ζτ0s + 1
term in the denominator acutally consists of two poles. This would yield more conservative PI-settings by using SIMC-rules,
but due to project time-constraints this is yet to be investigated.
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phase, but when the two curves differ the difference is rather significant. Actually it is very wrong in the
assumed bandwidth-area, and this will surely yield problems when we later use the SIMC-rules.

In addition we have a problem with the gain, see figure 2.12, where we see that the approximation is
optimistic. (The process gain is higher, especially around the peak frequnecy, and this error is inside the
assumed band-width of the resulting controller).

The loop transfer function L = gc with a SIMC-tuned PI controller for this process is shown in figure 2.13.
We see that in closed loop this will be unstable. For the unstable loop the gain margin is 0.6 (absolute)
and the phase margin is -30◦. The instabillity is not surprising when approximations in both gain and
phase are optimistic, and they are both wrong (see above) around the assumed bandwidth frequnecy
ωbandwith ≈ 1/θeffective, see Skogestad [6, page 114].
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Figure 2.13: L = g(s)c(s). g is the process without any delay, and c(s) is a PI-controller with settings
given by the SIMC-rules of the process model gapprox = e−0.5τ0s/((τ1 + 0.5τ0)s + 1)

2.3.3 Systematic designed based on model: Making an approximate model for SIMC-
tuning purposes

As we see from figure 2.12 the gain at the peak is neglected when we estimate the process without
considering the damping coefficient ζ. The phase is also rather poorly modelled in this case.

In Seborg et al. [4, page 353], we have that the resonant peak frequency is:

ωr =

√

1 − 2ζ2

τ0
(2.15)
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Assuming we want to use a PI-controller, we should preferably model the process as a 1st order + delay
process. In gain, we should be safe if we can maintain a high gain in the model so that the resonant peak
is “well covered”. See figure 2.14. If the amplitude ratio at the peak is less than the low-frequnecy gain
for the process transfer function we could model the gain by a first order transferfunction7:

ggain =
1

τgains + 1
(2.16)

τgain =
τ0

√

1 − 2ζ2
(2.17)

This approxiamtion will be safe in gain for all frequencies, and it will be good for low frequencies. What
we did was to place the corner-frequency “above” the process gain, so we should stay conservative with
respect to gain for all frequencies ω.

For the phase we might use the same rule as for Category B, which is that we adjust the phase by a delay
until the phase “touches” the process delay. This rule is un-safe (but good at low frequencies) in phase,
but again, as for Category B, we have a safe approximation in gain, and overall the approximation should
be OK.

These two approximations is conducted and displayed as the dotted line in figure 2.14. Note that we had
to modifty the rule (equation (2.5)) slightly. This implies that the rule is not fully developed yet. The
necassary modification was to change the “offset parameter” from 1.5 to 0.5.8

Since we have a 1st order + time-delay model we can use the SIMC settings to find nice PI-controller
paramteres. This was done, and a closed-loop simulation is showed in figure 2.15. The closed loop response
is rather nice, with acceptable input usage and good setpoint-tracking and disturbance rejection. In figure
2.16 the loop transfer function L = g(s)c(s) is plotted and the usual roboustness-measures is documented.

2.3.4 Conclusion

By looking at the reponses in time-domain (figure 2.15), frequency-domain (figure 2.16) and noting that
(GM, PM, MS, MT) = (3.90, 44.05, 1.77, 1.34) we can conclude that as a simple approach of approximating
a model as conduced in this chapter, we get a well tuned controller with respect to the guidelines from
Seborg et al. [4], see page 16. Only the MS-value is a bit over it’s recommended value. (All theses measures
are defined in appendix B). This shows that it is possible to get satisfactory control by first reducing the
model to a first order + time-delay, and thereafter use this model as a basis for implementing a SIMC-tuned
PI controller.

2.3.5 Further work

Only one process has been tested, and we need to perform more testing to verify the results of this proposed
model-reduction. It would also be worthwhile to perform comparisons with other familiar tuning methods.

7Note that this approximation should be OK when there is no peak above the low-frequency gain. This should be true for
all processes in this category.

8The very first number one sees when looking at equation (2.5)
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Figure 2.14: Solid line: g(s) without delay. Dotted line: gapprox = 1
τgains+1e−θeffs, θeff = (0.5 + ζ · 5) ·

0.6(τ0/τ1)2 . Vertical dotted line: 1/θeff.

2.4 Category A

In this case the oscillating mode of the process is the dominating one, so we may regrad this as a pure
oscillating second order process9. Some work has been conduced on this subject by prof. Skogestad10,
and this section will be based upon his work. The .txt file (see footnote) is the basis for the following
discussion.

2.4.1 Extending the SIMC rules to cover 0 < ζ < 1 for a seond order plus delay
transferfunction

We have a process model on the form

g(s) = k
e−θs

τ2
0 s2 + 2τ0ζs + 1

(2.18)

with 0 < ζ < 1. By direct synthesis we can derive an IMC controller for this process that would yield good
setpoint tracking, but it is not necessarily good for disturbance rejection. We can show that the resulting
controller for a double integrating process, i.e. τ0 = ∞, τ0ζ = 0, the resulting IMC-controller is a pure
D-controller, which would certainly be poor for disturbance rejection. Skogestad [6, page 93] have another

9τ0/τ1 → ∞
10http://www.nt.ntnu.no/users/skoge/publications/2003/tuningPID/more/extensions/oscillating.txt
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Figure 2.15: Simulation of the closed loop system gc/(1 + gc), with g process model without delay and
c given from SIMC settings on the model gapprox = 1

τgains+1e−θeffs, θeff = (0.5 + ζ · 5) · 0.6(τ0/τ1)2 . Set-

pointchange from 0 to 1 at t = 0 and unit step in disturbance at t = 30. y is the process output and u is
the input to the process from the controller. IAEsetpoint = 3.88, TVsetpoint = 0.94, IAEdisturbance = 3.37,
TVdisturbance = 1.16
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Figure 2.16: Loop transferfunction L = g · c with improved model and a SIMC-tuned PI controller. (GM,
PM, MS, MT) = (3.90, 44.05, 1.77, 1.34).

recommendation for the double integrating process, which includes both P- and I-action. The question is:
Can we find a simple “correction” for integrating processes that also includes oscillating processes?

Appendix C gives a derivation of a set of PID-tuning rules based upon comparing the following:

• IMC setpoint settings (for a process on the form 2.18) (A)

• SIMC-correction for integrating process with ζ > 1 (B)

• SIMC-correction for double-integrating process with ζ = 0 (C)

The derivation concludes that a possible set of tuning rules is found by interpolating between the SIMC-
correction for integrating process with ζ > 1 and the SIMC-correction for double-integrating procesess
with ζ = 0 in the following way:

Interpolation rule

Let c(s) be a controller on the form

c(s) = K ′

c + K ′

I/s + K ′

Ds (2.19)

We then have the following tuning for an underdamped stable second order process:
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• K ′

c = max{A,X}, where X = B for ζ ≥ 1 and X = ζB ′ + (1 − ζ)C for ζ < 1

• K ′

I = max{A,X}, where X = B for ζ ≥ 1 and X = ζB ′ + (1 − ζ)C for ζ < 1

• K ′

D from either A,B or C

where A,B,B ′ and C are defined by table 2.3

K ′

c K ′

I K ′

D

A 1
k′′

1
τc+θ

2ζ
τ0

1
k′′

1
τc+θ

1
τ2
0

1
k′′

1
τc+θ

B 1
k′′

1
(τc+θ)2

(

1 + 4(τc + θ) +
(

ζ +
√

ζ2 − 1
)

1
τ0

)
1
k′′

1
(τc+θ)2

1
τ0

(

ζ +
√

ζ2 − 1
)

1
k′′

1
τc+θ

B′ 1
k′′

1
(τc+θ)2

(

1 + 4(τc + θ) + ζ
τ0

)
1
k′′

1
(τc+θ)2

ζ
τ0

1
k′′

1
τc+θ

C 1
2k′′

1
(τc+θ)2

1
16k′′

1
(τc+θ)3

1
k′′

1
τc+θ

Table 2.3: Expressions for use in interpolation rule. k ′′ = k/τ2
0 . Note that B ′ is obtained by setting

√

ζ2 − 1 = 0 in B.

2.4.2 Discussion

Tables 2.4, 2.5 and 2.6 shows GM, PM, MS and MT for the interpolation rule and Ziegler-Nichols (ZN) and
Tyreus-Luyben (TL) tuning[4]. Figures 2.17 and 2.18 shows time-domain respones for the interpolation
rule compared with ZN and TL tuning on the process (2.18) with (k, τ0, θ) = (1, 1, 0.5) and ζ = 0.15 and
ζ = 0.85 respectively. Note that the robustness margings in tables 2.4, 2.5 and 2.6 are calculated with a
derivative filter equal to 1/(τf τDs + 1), τf = 0.000001 ≈ 0, while in the time-domain simulations a filter
of τf = 0.01τD is used, see appendix A.2 for Simulink-model. Tables 2.7, 2.8 and 2.9 indicates IAE and
TV vaules for both tracking and disturbance rejection for the different tuning procedures.

From the tables and figures mentioned above one observes that

• For very low delay and small ζ, see table 2.4, the rule τc = θ yields an unstable closed loop. An
obvious solution to this would be to increase τc until we achieve a desired response, as τc = θ may
be too thight control in this case. 11

• For processes with moderate time-delay, see table 2.5 the interpolating-rule tuning with τc = θ yields
a controller that is inbetween ZN and TL with respect to all measures for most of the ζ-values, that
is, we observe:

GMTL ≤ GMinterpolation ≤ GMZN 0.55 ≤ ζ ≤ 0.95

PMTL ≤ PMinterpolation ≤ PMZN 0.25 ≤ ζ ≤ 0.95

MTL
S ≤ Minterpolation

S ≤ MZN
S 0.15 ≤ ζ ≤ 0.95

MTL
T ≤ Minterpolation

T ≤ MZN
T 0.15 ≤ ζ ≤ 0.95

11We have here that τ0/θ = 1/0.05 = 20, so there is very little delay in the process, and by setting τc = θ we try to do
strict cancellation of the process with the controller. This should be feasible, but since we have (τc + θ) in the denominator
for the gain, we get very high gain when θ = τc is small, so the controller will be “too thight.”
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• The same trend is observed when θ is large, see table 2.6.

• Consider the two time-domain simulations in figure 2.17 and 2.18 and tables 2.5 and 2.8. We obeserve
that for small ζ, e.g. ζ = 0.15, the interpolation rule with τc = θ might be a bit to thight. We see this
from the time-domain reponse and the relatively low GM and PM - vaules compared to the ZN- and
TL-tuning, see second row in table 2.5. The IAE for the interpolation rule is low and the TV is high
when ζ = 0.15 compared to ZN- and TL- tuning, confirming that the tuning might be too thight.
When ζ = 0.85 we observe that the interpolation rule is superior to the other two methods with
respect to IAE, and TV is moderate. As mentioned above, the GM, PM, MS and MT for interpolation
rule is inbetween the corresponding vaules for ZN and TL. This seems promising, as the ZN-tuning
rules tend to produce oscillatory reponses and large overshoots for set-point changes, but still are
widely used as a benchmark for evalutaion of different tuning methods, while the TL-tuning settings
should be generally be a more conservative set of tuning-rules[4, page 319].

Overall the interpolation-rule seems like a promsing start for deriving PID-tuningrules for underdamped
second-order processes. Further investigation could be to look at how one should choose the tuning
parameter τc.

Interpolation rule Ziegler-Nichols Tyreus-Luyben
ζ GM PM Ms MT GM PM Ms MT GM PM Ms MT

0.05 − − − − 55.41 19.72 2.9 3.1 105.85 40.58 1.6 1.5
0.15 − − − − 27.23 18.05 3.2 3.4 52.36 38.33 1.6 1.6
0.25 2.85 38.72 1.8 1.6 20.11 17.87 3.2 3.5 38.88 38.67 1.6 1.6
0.35 2.88 40.86 1.8 1.5 16.38 18.25 3.2 3.4 31.83 39.59 1.6 1.5
0.45 2.91 42.91 1.8 1.4 14.16 18.48 3.1 3.4 27.63 40.59 1.5 1.5
0.55 2.94 44.88 1.7 1.4 12.56 18.82 3.1 3.3 24.61 41.61 1.5 1.5
0.65 2.96 46.75 1.7 1.3 11.33 19.23 3.0 3.2 22.29 42.62 1.5 1.4
0.75 2.99 48.52 1.7 1.3 10.40 19.53 3.0 3.2 20.54 43.57 1.5 1.4
0.85 3.01 50.20 1.7 1.2 9.65 19.82 2.9 3.1 19.14 44.48 1.5 1.4
0.95 3.03 51.77 1.7 1.2 8.98 20.23 2.8 3.0 17.86 45.36 1.4 1.4

Table 2.4: τ0 = 1, k = 1, θ = 0.05, τc = θ. Interpolation rule with τc = θ is unstable for ζ = {0.05, 0.15}.

Interpolation rule Ziegler-Nichols Tyreus-Luyben
ζ GM PM Ms MT GM PM Ms MT GM PM Ms MT

0.05 2.78 21.07 2.7 2.9 12.34 41.50 2.1 1.6 36.89 92.90 1.3 1.0
0.15 2.98 41.02 1.7 1.4 5.71 42.47 2.1 1.5 14.85 98.54 1.3 1.0
0.25 3.14 61.35 1.6 1.0 4.20 42.47 2.0 1.5 10.34 104.09 1.3 1.0
0.35 3.14 61.35 1.6 1.0 3.53 42.31 2.0 1.5 8.40 109.52 1.3 1.0
0.45 3.14 61.35 1.6 1.0 3.15 42.03 2.0 1.5 7.30 114.83 1.3 1.0
0.55 3.14 61.35 1.6 1.0 2.90 41.69 2.0 1.5 6.59 119.92 1.3 1.0
0.65 3.14 61.35 1.6 1.0 2.72 41.33 2.0 1.5 6.10 124.49 1.3 1.0
0.75 3.14 61.35 1.6 1.0 2.59 40.96 2.1 1.5 5.73 127.72 1.3 1.0
0.85 3.14 61.35 1.6 1.0 2.49 40.56 2.1 1.5 5.44 126.78 1.3 1.0
0.95 3.16 56.98 1.6 1.1 2.41 40.22 2.1 1.5 5.22 119.77 1.3 1.0

Table 2.5: τ0 = 1, k = 1, θ = 0.5, τc = θ.
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Interpolation rule Ziegler-Nichols Tyreus-Luyben
ζ GM PM Ms MT GM PM Ms MT GM PM Ms MT

0.05 1.85 62.71 2.2 1.2 1.27 92.30 5.1 4.2 3.05 91.73 1.6 1.0
0.15 3.14 61.35 1.6 1.0 1.66 94.61 2.7 1.7 3.82 93.94 1.4 1.0
0.25 3.14 61.35 1.6 1.0 1.72 96.31 2.5 1.6 3.81 96.30 1.4 1.0
0.35 3.14 61.35 1.6 1.0 1.73 97.03 2.5 1.5 3.75 98.64 1.4 1.0
0.45 3.14 61.35 1.6 1.0 1.74 96.46 2.5 1.5 3.70 100.92 1.4 1.0
0.55 3.14 61.35 1.6 1.0 1.74 94.16 2.4 1.5 3.66 103.14 1.4 1.0
0.65 3.14 61.35 1.6 1.0 1.75 89.59 2.4 1.5 3.63 105.30 1.4 1.0
0.75 3.14 61.35 1.6 1.0 1.75 82.92 2.4 1.5 3.60 107.37 1.4 1.0
0.85 3.14 61.35 1.6 1.0 1.75 75.85 2.4 1.5 3.58 109.37 1.4 1.0
0.95 3.14 61.35 1.6 1.0 1.75 69.87 2.4 1.5 3.56 111.27 1.4 1.0

Table 2.6: τ0 = 1, k = 1, θ = 1.5, τc = θ.
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Figure 2.17: Time-domain simulations for the process g(s) = k
τ2
0 s2+2τ0ζs+1

, with conditions (k, τ0, θ, ζ) =

(1, 1, 0.5, 0.15). Setpointchange at t = 0 and disturbance at t = 50 time units.
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Figure 2.18: Time-domain simulations for the process g(s) = k
τ2
0 s2+2τ0ζs+1

, with conditions (k, τ0, θ, ζ) =

(1, 1, 0.5, 0.85). Setpointchange at t = 0 and disturbance at t = 50 time units.

Interpolation rule Ziegler-Nichols Tyreus-Luyben
Setpoint Disturbance Setpoint Disturbance Setpoint Disturbance

ζ IAE TV IAE TV IAE TV IAE TV IAE TV IAE TV

0.05 − − − − 3.12 4.54 2.51 3.96 15.77 1.19 15.77 2.13
0.15 − − − − 2.33 15.63 0.65 4.41 3.48 2.89 3.48 2.07
0.25 0.41 87.04 0.02 2.03 1.94 26.91 0.32 4.46 1.85 4.66 1.67 2.00
0.35 0.42 79.09 0.02 1.94 1.65 37.11 0.20 4.41 1.31 6.37 1.02 1.95
0.45 0.44 72.08 0.02 1.85 1.47 46.90 0.13 4.31 1.05 7.93 0.71 1.89
0.55 0.45 66.97 0.02 1.74 1.32 56.01 0.10 4.23 0.90 9.61 0.53 1.85
0.65 0.47 60.91 0.02 1.70 1.21 65.32 0.08 4.11 0.80 10.98 0.41 1.77
0.75 0.49 59.83 0.03 1.63 1.11 73.47 0.06 4.03 0.73 12.44 0.33 1.74
0.85 0.50 54.57 0.03 1.58 1.04 82.42 0.05 3.97 0.70 13.71 0.28 1.69
0.95 0.51 51.36 0.03 1.53 0.97 91.39 0.04 3.96 0.67 15.14 0.23 1.65

Table 2.7: IAE and TV for setpoint change and disturbance. τ0 = 1, k = 1, θ = 0.05, τc = θ. Interpolation
rule with τc = θ is unstable for ζ = {0.05, 0.15}.
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Interpolation rule Ziegler-Nichols Tyreus-Luyben
Setpoint Disturbance Setpoint Disturbance Setpoint Disturbance

ζ IAE TV IAE TV IAE TV IAE TV IAE TV IAE TV

0.05 5.22 3.70 4.78 4.13 21.91 0.86 21.91 2.08 78.32 0.31 77.91 0.88
0.15 3.76 1.63 3.01 1.95 6.61 0.87 6.61 2.02 49.78 0.63 49.55 1.16
0.25 3.46 1.04 2.53 1.27 3.57 1.31 3.57 2.01 33.22 0.76 33.11 1.23
0.35 2.81 1.12 1.88 1.24 2.51 1.83 2.33 1.97 23.48 0.81 23.43 1.23
0.45 2.44 1.19 1.52 1.20 2.18 2.32 1.69 1.96 17.48 0.83 17.46 1.20
0.55 2.20 1.36 1.30 1.20 2.03 2.96 1.30 1.91 13.59 0.86 13.57 1.15
0.65 2.04 1.54 1.15 1.17 1.95 3.42 1.04 1.91 10.94 0.88 10.93 1.11
0.75 1.93 1.71 1.06 1.16 1.89 4.05 0.86 1.91 9.05 0.92 9.05 1.06
0.85 1.85 1.93 1.01 1.16 1.86 4.67 0.73 1.89 7.65 0.94 7.65 1.02
0.95 1.89 2.27 0.91 1.24 1.84 5.23 0.63 1.87 6.59 0.96 6.59 1.02

Table 2.8: IAE and TV for setpoint change and disturbance. τ0 = 1, k = 1, θ = 0.5, τc = θ.

Interpolation rule Ziegler-Nichols Tyreus-Luyben
Setpoint Disturbance Setpoint Disturbance Setpoint Disturbance

ζ IAE TV IAE TV IAE TV IAE TV IAE TV IAE TV

0.05 16.73 1.77 42.14 3.46 34.99 0.85 45.41 3.61 86.26 0.21 85.03 0.86
0.15 5.31 1.01 7.95 1.14 16.32 0.81 16.31 2.29 72.33 0.39 71.30 0.83
0.25 4.41 0.94 5.27 1.12 10.04 0.85 10.04 2.09 60.75 0.52 59.93 0.94
0.35 4.09 0.89 4.29 1.11 7.18 1.02 7.18 2.02 51.79 0.61 51.12 1.00
0.45 3.94 0.84 3.83 1.10 5.58 1.24 5.58 1.97 44.79 0.67 44.25 1.04
0.55 3.86 0.81 3.59 1.11 4.55 1.49 4.55 1.94 39.24 0.71 38.80 1.06
0.65 3.81 0.79 3.43 1.10 3.90 1.73 3.84 1.91 34.78 0.74 34.42 1.08
0.75 3.77 0.79 3.30 1.10 3.58 1.99 3.32 1.88 31.13 0.76 30.83 1.07
0.85 3.74 0.80 3.20 1.09 3.41 2.24 2.92 1.87 28.11 0.77 27.86 1.07
0.95 3.70 0.83 3.12 1.09 3.33 2.50 2.61 1.86 25.58 0.79 25.37 1.06

Table 2.9: IAE and TV for setpoint change and disturbance. τ0 = 1, k = 1, θ = 0.5, τc = θ.
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2.5 Conclusion

In this section tuning-rules has been proposed for processes on the form

g(s) =
k

(τ1s + 1)(τ 2
0 s2 + 2τ0ζs + 1)e−θs

.

Three different sets of tuning-rules have been proposed for various combinations of the process parameters
(k, τ1, τ0, ζ, θ). When τ0 < τ1 we have two sets of rules, depending on the amplitude of the peak gain.
When this peak is higher than the low-frequency gain we get a I-controller, and when the peak is below
the low-frequency gain we get a PI-controller. The rules are to reduce the model to a pure time-delay and
first order plus time-delay respectivly, and then use the SIMC-rules to tune the (P)I controller.

When τ0 >> τ1 we derived the “interpolation rule”, which gives a PID controller. The rule is based upon
direct synthesis.

Various methods for determining the performances of the controllers have been used in this section. They
range from multi-objective optimization (page 14) to comparison with benchmark tuning methods such
as Ziegler-Nichols and Thyreus-Luyben.

There is a gap in the tuningrules when τ0 > τ1, that is when τ0 grows larger than τ1 from below. This set
of processes has not been considered, but a naive solution would be to use the half-rule [6] and increase
the delay by 0.5τ1 and the second-order part by 0.5τ1.

2.6 Recommendations to further work

All of the tuningrules seemed to work nicely with respect to the performace indicators used. However,
more work is needed, for instance:

• Introduce P-action in the pure I-controller for Category B-processes.

• Improve the phase-rule to cover a wider range of (τ0, τ1), so we get the same rule for all cases when
τ0 < τ1.

• Determine how to choose τc when there is little delay for the pure underdamped process (Category
A).

• Test the rules on a broader class of processes.
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Chapter 3

Unstable processes

3.1 Unstable processes. Direct Synthesis

The following derivation is based upon Skogestad [5]

Consider the process

g(s) =
g0(s)

s − a
, a > 0 (3.1)

Since the PID controller is unable to cancel a right-hand-side pole (RHP), we need

l(s) = g(s)c(s) =
l0(s)

s − a
, i.e. c(s) = l0 · g−1

0 (3.2)

Closed loop set-point response will now be

y

ys
=

gc

1 + gc
=

l0(s)

s − a + l0(s)
(3.3)

We want to use integral action in the controller, so for a first attempt we may try

l0 =
K0

s
(3.4)

We then get that

y

ys
=

K0

s(s − a) + K
=

K0

s2 − as + K0
(3.5)

By inspection we see that the process transferfunction from ys to y, equation (3.5), will always be unstable.
We need something to lift the phase before the instability occurs. We therefore try

l0 =
K0

s
(Ts + 1) (3.6)

By substitution into (3.2) we get

y

ys
=

K0 (Ts + 1)

s(s − a) + K0 (Ts + 1)
=

K0 (Ts + 1)

s2 + (K0T − a) s + 1
=

Ts + 1

1
K0

s2 +
(

T − a
K0

)

s + 1
(3.7)
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Assume we want a denominator on the form (τc1s + 1)(τc2s + 1) = τc1τc2s
2 + (τc1 + τc2)s + 1. Solving for

K0 and T we get

K0 =
1

τc1τc2
, T = τc1 + τc2 + aτc1τc2 (3.8)

If the process was g(s) = k′/(s − a) this would correspond to a PI-controller with

Kc =
1

k′

τI

τc1τc2
(3.9)

τI = T = τc1 + τc2 + aτc1τc2 (3.10)

Note that if we want very fast control, i.e. τc1 and τc2 small, Kc → ∞ and τI → 0.

3.1.1 Unstable process with delay

Now let us consider the process

g(s) = k′
e−θs

s − a
(3.11)

As a first attempt we will consider pure P-control, i.e. g(s) = Kc. We approximate the delay by e−θs =
1 − θs. The closed loop polynominal 1 + gc = 0 becomes

(s − a) + k′Kc (1 − θs) = 0 (3.12)
(
1 − k′Kcθ

)

︸ ︷︷ ︸

>0

s + k′Kc − a
︸ ︷︷ ︸

>0

= 0 (3.13)

For stability we require that the coefficients in the polynomial are positive, i.e.

k′Kc <
1

θ
and k′Kc > a (3.14)

i.e. Kc < 1
k′

1
θ (3.15)

and Kc > a
k′ (3.16)

To fulfill both of these constraints simultaneously we need a process with the property that

aθ < 1 (3.17)

We may say that “the system should not go unstable before we have time to act on it”. In practise, we
need aθ < 0.25 to get a reasonable good reponse.

What is a reasonable tuning?

• P-part Unstable processes needs to be counteracted with a high controller gain, so we set this value
to the maximum value recommended by the SIMC rule for a stable process with time delay:

Kc =
0.5

k′

1

θ
(3.18)

We see that this is half the gain as given in (3.14), and it is the same value as a integrating process
with delay
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• I-part Let us compare two expressions:

Pure integrating process (aθ � 1): τI = 8θ

Pure unstable process: τI = τc1τc2 + aτc1τc2

If we choose to set τc1 = τc2 we get1

τc1 = τc2 =
4θ

1 − 2aθ

Which gives an I-part in the controller as

τI = τc (2 + aτc) =
4θ

1 − 2aθ

(

2 +
aθ

1 − 2aθ

)

(3.19)

Observe that when a → 0, τI → 8θ.

As an alternative we may also express τI as

τIa = 8 · θ · f (3.20)

f =
1 + aθ/2

1−2aθ

1 − 2aθ
=

1 + aθ
2(1−2aθ)

1 − 2aθ
(3.21)

f =







1 for aθ = 0

1.33 for aθ = 0.1

1.95 for aθ = 0.2

2.5 for aθ = 0.25

10 for aθ = 0.4

∞ for aθ = 0.5

(3.22)

In the above derivation we made two significant assumptions, the first that the gain should be choosen
to be the maximum gain allowed with time-delay2. The other assumption was to set τc1 = τc2. The first
assumption has already been discussed. Setting τc1 = τc2 may be a bit optimistic, since we loose one
degree of freedom by doing this. Given that unstable processes are difficult to control, we should maybe
try to search a larger area of paramaters than only along the line τc1 = τc2, so this is something that needs
to be investigated later3.

3.2 A method based on empirical fitting

Sree et al. [8] gives tuning rules for unstable systems based upon emperical fitting of simulations of
unstable systems with PID controllers implemented. For PID control these rules have an “operating

1Proof: We have that Kpure unstable
c = 1

k′

τI

τ2
c

and Kmax allowed with delay
c = 0.5

k′

1
θ
. For the pure unstable proces we also

found that τI = τc1 + τc2 + aτc1τc2. Combining these expressions we observe that Kpure unstable
c = Kmax allowed with delay

c ⇒
1
k′

τc1+τc2+aτc1τc2

τ2
c

= 0.5
k′

1
θ
. If we set τc1 = τc2 = τc we obtain 2 1

τc
+ a = 1

2θ
⇒ τc = 4θ

1−2aθ
, aθ ≤ 1

2
.

2Same as setting τc = θ in the original IMC-rule, where we have that Kc = 1
k′

1
τc+θ

, see [6, equation (19), page 91].
3Actually we initially have three parameters, τc in the original IMC-rule, and τc1 and τc2. But linear dependence needs to

be checked to find out how many degrees of freedom we have.

32



area” of 0.01 ≤ ε ≤ 0.9, where ε = τd/τ = τda = aθ for the process model g = kp exp−τds/(τs − 1) =
(kp/τ) exp−θs/(s−a), τd = θ and a = 1/τ . For PI action only their rules “is operating” for 0.01 ≤ ε ≤ 0.6
This agrees rather well with the above derivation with respect to what kind of processes may be controlled
with a PI(D) controller.

Huang and Chen [1] proposes a two-degree of freedom control structure that can handle 0 ≤ aθ ≤ 2 by
using two PID-controllers, but as this report is on tuning and not structure, this will not be considered
here.

3.3 Comparing the methods of Sree et al. and the one based unpon
direct synthesis

Let us first review the notation used by Sree et al. [8, pages 2202 and 2208]. We have that

g(s) = kp
e−τds

τs − 1
(3.23)

=
kp

τ
︸︷︷︸

k′

e−θs

s − a
(3.24)

so,

kp = k′
1

a
(3.25)

τd = θ (3.26)

a = 1/τ (3.27)

for a FOPTD process. Their tuning rules for a PI-controller on an unstable FOPTD process is with
ε = aθ4:

Kc =
a

k′
0.8624(aθ)−0.9744 ≈ 0.8624

k′

1

θ
for 0.01 ≤ aθ ≤ 0.6 (3.28)

τI =
1

a

(
143.34(aθ)3 − 73.912(aθ)2 + 19.039(aθ) − 0.2276

)
for 0.01 ≤ aθ ≤ 0.6 (3.29)

Note From equation (3.29) it might seem like τI → ∞ when a → 0, but the expression is bounded by the
restriction on aθ, that is, 0.01 ≤ aθ ≤ 0.6. Another problem is that the expression inside the parenthesis
is negative for (aθ) < 0.01265. As we will see in the next section, problems arise when aθ is below 0.015.
Note also the close resemblance between the IMC-rule for the gain and the rule of Sree et al. [8], the latter
beeing found by minimization. It is a little higher than the IMC-rule for stable processes, but not higher
than the (derived) maximum gain allowed for stability, see equation (3.14).

3.3.1 Simulations

With reference to figure A.1 page 45 we may simulate the tuning rules on an unstable system. As shown
above, these simulations only make sense when aθ ≤ 0.5. 4 simulations were conducted, and their process

4Equation (6), page 2202 in [8]: ε = τd

τ
= 1

τ
θ = aθ.

5Found by using the Matlab-function fsolve on the expression.
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conditions is shown in table 3.1. The two lower vaules for aθ (={0.015,0.014}) were chosen because these
were the lowest vaules we could implement and still achieve a stable closed loop with the method of Sree
et al. [8]. I have adopted the notion of “servo problem” and “regulatory problem” from Sree et. al. Here
the servo problem is simulated by conducting a unit step in the setpoint, while the regulatory problem is
simulated by a unit step in the disturbance. See figure A.1.

Figure/Table a θ aθ

3.1/3.2 1 0.015 0.015
3.2/3.3 1 0.25 0.25
3.3/3.4 0.014 1 0.014
3.4/3.5 0.25 1 0.25

Table 3.1: Process conditions for simulations of the unstable system g(s) = k
s−ae−θs with references to

corresponding figures and tables.
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Figure 3.1: g(s) = 1
s−1e−0.015s

3.3.2 Discussion

First of all, note that the simulations were conducted at the boundaries for the area in which the tuning
is sensible, that is, we have 0.01 ≤ aθ ≤ 0.6 from Sree et al. [8]. Further we know that in practise
only systems with aθ ≤ 0.25 is likely to be controllable with a single PI controller. We therefore choose
to perform the simulations at (a, θ) = {(1, 0.015), (1, 0.25), (0.014, 1), (0.25, 1)}, which was the closest we
could move in the lower aθ area and still have a stable closed loop with the method of Sree et. al.
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Method IAE, Setpoint TV, Setpoint IAE, disturbance TV, disturbance

SIMC 0.06 49.31 0.0 1.6
Sree 0.08 230.37 0.0 4.2

Method GML GM PM Ms MT Kc τI

SIMC 0.03 2.95 45.72 1.7 1.3 33.3 0.1
Sree 0.03 1.60 17.68 3.9 3.4 51.6 0.0

Table 3.2: g(s) = 1
s−1e−0.015s, c(s) = Kc

(

1 + 1
τIs

)

.
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Figure 3.2: g(s) = 1
s−1e−0.25s

Method IAE, Setpoint TV, Setpoint IAE, disturbance TV, disturbance

SIMC 3.43 5.81 2.5 3.1
Sree 1.45 13.52 0.6 4.0

Method GML GM PM Ms MT Kc τI

SIMC 0.53 2.75 28.66 2.1 2.4 2.0 5.0
Sree 0.35 1.57 18.47 3.8 3.3 3.3 2.2

Table 3.3: g(s) = 1
s−1e−0.25s, c(s) = Kc

(

1 + 1
τIs

)

.

35



0 20 40 60
0

1

2

3

4

Time

ou
tp

ut

Servo problem

SIMC
Sree

0 20 40 60
0

1

2

3

4

Time

ou
tp

ut

Regulatory problem

SIMC
Sree

0 20 40 60
−4

−2

0

2

Time

in
pu

t

0 20 40 60
−4

−2

0

2

Time

in
pu

t

Figure 3.3: g(s) = 1
s−0.014e−s

Method IAE, Setpoint TV, Setpoint IAE, disturbance TV, disturbance

SIMC 4.14 0.74 16.6 1.6
Sree 15.60 12.65 17.1 14.0

Method GML GM PM Ms MT Kc τI

SIMC 0.03 2.95 45.80 1.7 1.3 0.5 8.3
Sree 0.04 1.23 5.24 11.8 11.5 0.8 1.8

Table 3.4: g(s) = 1
s−0.014e−s, c(s) = Kc

(

1 + 1
τIs

)

.

Method IAE, Setpoint TV, Setpoint IAE, disturbance TV, disturbance

SIMC 13.72 1.45 40.0 3.1
Sree 5.79 3.38 10.3 4.0

Method GML GM PM Ms MT Kc τI

SIMC 0.53 2.75 28.66 2.1 2.4 0.5 20.0
Sree 0.35 1.57 18.47 3.8 3.3 0.8 8.6

Table 3.5: g(s) = 1
s−0.25e−s, c(s) = Kc

(

1 + 1
τIs

)

.
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Figure 3.4: g(s) = 1
s−0.25e−s

One immediately observers that as either a or θ approaches zero, the metod of Sree et. al. is poor with
respect to all measures, while the SIMC method6 is good in both cases. When a → 0 the SIMC-method
approaches the SIMC-tuning for an integrating process with delay, while when θ → 0, it approaches the
pure unstable tuning with τc1 = τc2. At the two other edges of the valid tuning area the two methods
are more comperable. As already commented, when (aθ) approaches 0.01, which is the lower validity-
boundary for the Sree-tuning, their expression for τI goes to zero, and actually a bit under zero, so I
suspect that if they had been more conservative with respect to the interval in which the tuning rules
were valid, these problems would be avoided. I could not find exactly for which data set they had fitted
their tuning-parameters to, but it seems at least that if they want to cover their present range for aθ they
should put more emphasis (weight in a given objective function) on the boundary case when aθ → 0.01.

Consider now tables 3.3 and 3.4. I was a bit alarmed when I observed that the frequency-domain measures
for the cases of g(s) = e−0.25s/(s − 1) and g(s) = e−s/(s − 0.25) seems to be almost equal. Look at the
loop transferfunctions for the two cases, shown i figures 3.5 and 3.6, correspondingly. We observe that in
the frequency domain the L’s are shifted along the ω-axis, but all the margins (S and T not shown) are
almost equal. The one measure we are missing to distinguish the two cases is the closed-loop bandwidth,
ωbandwidth, which surely is different in the two cases. We observe that, as expected, the bandwidth for the
process with more delay is the one with least bandwidth.

By looking at all the cases one obsereves that the (usual) gain margin (GM) and phase margin (PM) for
the SIMC-tuned controllers are all higher that the corresponing values for the Sree-tuned ones. For the
two comparable cases (tables 3.5 and 3.3) we see that there is a factor of about 2/3 between the GM and
PM vaules. However, the lower gain margin is better for the method of Sree et. al., as we want this to be

6I choose to label the direct synthesis method SIMC because it is based upon a model (IMC) and we choose to use τc = θ
when we selected the controller gain.
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Figure 3.5: L(s) = g(s)c(s) for g(s) = 1
s−1e−0.25s.
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Figure 3.6: L(s) = g(s)c(s) for g(s) = 1
s−0.25e−s.
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as low as possible. (See appendix B for a review of the different performance and robustness measures).
The lower gain margin of 0.53 for the SIMC-tuned controller is likely to be a bit high, as we would like to
at least have it below 0.57.

By inspection of the time-domain plots in figures 3.4 and 3.2 one sees that the SIMC-tuned controller is
slower and smoother than the corresponding Sree-controller. We observe that the Sree-controller is rather
oscillatory in the transient response, and the input-usage is higher. This is of course expected as the GM
and PM are lower and the MS and MT is higher for the Sree-controller. In this example one also observes
the common “rule” that a high TV and low IAE usually corresponds to a less robust controller than a
response with low TV and high IAE, so the TV measure is in fact a good measure for robustness. The
practial problem is maybe that one has to compare it with another controller8, since it will be relative
to the other controller, whereas the usual frequency-domain measures such as PM and GM are more
independent of comparison with a reference controller.

Summary

This section was meant to assess if the proposed tuning method is a good one or not. Unfortunaltely the
present conculsion is inconclusive. We have tried to compare it to a (new) method found in litterature,
but there is not much to say, besides that SIMC-tuning is better than the method for in litterature for
the limiting cases as a → 0 and θ → 0. When a and θ are mutually non-zero, the SIMC-tuning seemed to
be more robust than the other method, but one needs to define more specifically what is desirable in the
case of unstable processes. We also observed that when aθ = 0.25 the lower gain margin of the present
method possibly to high.

3.4 Recommendations to further work

Here I will list some ideas to further work on this subject:

• When deriving the tuning-rules we selected τc1 = τc2. Since we have two degrees of freedom, we could
maybe try to find a closed loop characteristic polynomial lcl(s). With the two degrees of freedom
we could specify two properties of this polynomial, for instance damping and time-constant. This
would yield another expression for τI .

• We could investigate how an optimal controller with respect to some performance and robustness
measures would select the tuning paramteres τc1 and τc2, and possibly get some clues to how we
can improve the model. By optimal controller I mean for instance to make a plot such as my
naive method in chapter 2.2.6, or maybe better, to use the method proposed in Kristiansson and
Lennartson [2]. They use three criteria, with two of them as inequality constraints in the objective
funtion, while the last one is the objective function itself. As one example, they proposes to solve

7A rule-of-thumb is that the lower gain margin should be lower than 1/2 to 1/4.
8Or normalize it somehow such that is may be used as a general measure.

39



the following constrained optimization problem:

min
ρ

Jv(ρ)

subject to

GMs(ρ) ≤ C1

Ju(ρ) ≤ C2

where ρ is the vector of tuning-paramteres. Interesstingly, they note that it is worthwhile to include
a filter constant for the D-filter in this vector. The other expressions are defined as:

GMs = max (||S||∞, α||T ||∞)

Ju =

∣
∣
∣
∣

∣
∣
∣
∣

c(s)

1 + g(s)c(s)

∣
∣
∣
∣

∣
∣
∣
∣
∞

Jv =

∣
∣
∣
∣

∣
∣
∣
∣

1

s

g(s)

1 + c(s)g(s)

∣
∣
∣
∣

∣
∣
∣
∣
∞

||◦||
∞

= max
ω

|◦(jω)|

where the last equation defines the norm || ◦ ||∞. I think α is a tuning parameter, in my opinion the
paper was not clear on this point.

As one observes, the main difference between the simple method used in chapter 2.2.6 and the method
of Kristiansson and Lennartson [2] is that the first one uses time-domain information in objective
function and constraints, that is, we simulate the system in time-domain, whereas the latter method
uses frequency-information. Intuitively, the latter method has two main advantages:

– Whereas the time-domain approach with unit steps in setpoint and disturbance only exites the
low frequencies of the system9, the method of Kristiansson and Lennartson [2] covers a broader
range of frequencies.

– In the time-domain method one has to simulate the system with for instance Simulink. If
the optimizer goes with large steps in for example D-action the simulation will quite easily
fail to converge. In the frequency-approach this problem is eliminated, so the frequency-based
approach seems easier to use in practise.

• Another obvious way to improve this discussion would be to compare the proposed method to more
methods found in litterature. As mentioned above the comparison with the method of Sree et al. [8]
was inconclusive.

9Unit step is 1/s in Laplace domain, which has high gain at low frequencies and low gain at high frequencies.
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Chapter 4

Overall discussion, conclusion and
recommendations

4.1 Discussion

This work that has been conducted from September to November 2005 turned more into a indentification

of research needs, rather than pure research. I have discovered that in order to do work on a scientific
field one has to have a lot of insight into what the problem really is. Further, one has to learn how to
use and understand the various scientific tools. For me, this was for instance to get more insight into
frequency-domain of linear systems. When I was thought this subject two years ago I found it quite easy
to understand and did not identify much problems with it. However, to use a mathematical tool such
as frequency-analysis, one needs to develop a gut feeling, or intuition, for how it’s properties and what
conculsion one can draw from using this tool. Furthermore, I assume that this is a peak one has to climb
in any research related work before one can start to do some “serious buisness”.

The conducted work has focused on tuning rules for systems with complex poles on the left-hand-side of
the complex axis and systems with a single real pole on the right-hand-side of the complex axis. For the
case with stable but complex poles I tried to divide the systems into three categories and develop tuning
rules for these cases independently, but at the same time focusing on continuity between the rules. A first
attempt on this was made, but still there is quite some work to be done before we have a good set of
rules with the desired properties. For the case of an underdamped system with a first order filter a way to
reduce the model to either a pure time-delay or a first-order plus time-delay model was proposed. We then
investigated performance when using the existing SIMC-rules for stable processes. For the case of a pure
underdamped system with no other apparent dynamics a review of work conducted by prof. Skogestad
was performed. The resulting rules looked promising compared to the well-known Ziegler-Nichols and
Tyreus-Luyben rules.

As for the case of a single real pole in the right half plane, a review of work conduced by professor
Skogestad was done and a comaprison with a set of tuning-rules in a rather new (2004) paper in these
kind of processes. However, the comparison was not conculsive, and we only manged to get an overview
of the problem and discover how we need to work to develop the rules further.

Some various methods for evaluating the performance and robustness of the tuning-rules has been used in
this report. They include
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• Inspection of the loop transferfunction L = gc and it’s properties in the frequency domain. Issues
such as roll-off, slope around bandwidth frequency and gain at low frequency were discussed.

• Time-domain evaulation by inspection of reponses after setpoint changes and disturbances.

• Comparison with well-known tuning-methos such as Ziegler-Nichols and Tyreus-Lubyen.

• Comparison with optimal controller with repsect to IAE and TV.

• Comparison with methods found in litterature (Sree et al. [8]).

4.2 Recommendations to further work

Throughout this report quite a lot of recommendations to further work has been made. I will now
summarize the most important issues:

• Improve the rule for phase-approximation for the systems with τ1 ≥ τ0 such that it covers all cases,
for the process g(s) = k/

(
(τ1s + 1)(τ 2

0 s2 + 2τ0ζs + 1)
)
e−θs.

• Try to get P-action in Category B-processes, that is the processes with τ1 ≥ τ0 and a clear resonant
peak.

• Investigate how to choose the tuning parameter τc for pure oscillatory processes, that is, g(s) =
k/(τ2

0 s2 + 2τ0ζs + 1)e−θs, 0 ≤ ζ ≤ 0.707.

• Look at how to choose the tuning paramteres τc1 and τc2 for the case of a process with one real pole
in the right half plane.

• Improve the comparison method with the optimal controller and do a closer comparison with the
method of Kristiansson and Lennartson [2].

4.3 Conclusion

A start on the work of “Extensions of Skogestad’s SIMC tuning rules to oscillatory and unstable processes”
has been conducted. Processes with either a pair of complex poles in the left half plane, or a single real
pole in the right half plane have been investigated. Tuning rules have been proposed based on either
model reduction to a stable process or by direct synthesis. For all the covered processes the results seems
promising, but at the same time they all share the need for further review.

A method for comparing the resulting PID-controller with an optimal controller with respect to integrated
square error and total input variation has been prosed. We have observed that this method needs to be
improved before it becomes practically applicable.

There is still work to be done before a complete set of satisfactory tuning-rules exists. This report may
be used as a starting-point for further work on this topic.

Henrik Manum, Trondheim, December 19, 2005
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Nomenclature

Here are some of the most used symbols in the report. See also table B.1, page 49 and the definitions on
page 50.

Symbol Description

τ Time constant, [time]
θ Delay, [time]
ω Frequency, [rad/s]

c(s) Controller equation
k Gain

g(s) Process equation
s Laplace-domain variable [time−1]
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Appendix A

Simulink models

For simulation in time-domain Simulink together with Matlab was used to solve the simulation problem.
Three different models were needed. First, a model for the cascade form PID-controller, showed in figure
A.1. Further, a model for the ideal form PID-controller is showed in figure A.2. Last, we needed a model
for the pure I-controller, which is displayed in figure A.3.

Figure A.1: Simulink-model for cascade form PID-controller
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Figure A.2: Simulink-model for ideal form PID-controller
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Figure A.3: Simulink-model a pure I-controller
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Appendix B

Definitions

This chapter will cover a brief review of the basic measures used for evaluation of performance and
robustness. All of this is taken from Skogestad and Postlethwaite [7].

B.1 Frequency domain performance

Consider the negative feedback scheme in figure B.1. We define the loop transfer function L = gc, where
G = g and K = c in the single input single output (SISO) case. Further we define the sensitvity function
S = (I +L)−1 = 1/(1+L) where the last equality holds for SISO-systems. The complementary sensitivity
function is defined as T = (I + L)−1L = L/(L + 1) where again the last equality holds for SISO-systems,
but generally not for multiple input multiple output (MIMO) systems. For performance and robustness

Figure B.1: Block diagram for negative feedback.

measures in the frequency domain may then be defined as in table B.1.
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Measure Definition Description

GM 1/ |L(jω180)| (Upper) gain margin. The factor by which the loop gain |L(jω)| may
be increased before the closed-loop system becomes unstable. The GM is
thus a direct safegard against steady-state gain uncertainty (error). The
phase crossover frequency ω180 is where the Nyquist curve of L(jω) crosses
the negative real axis between −1 and 0.

GML 1/ |L(jωL180)| Lower gain margin. The factor by which the loop gain |L(jω)| may
be decreased befor the closed-loop system becomes unstable. ω180L is the
frequency where the Nyquist curve of L(jω) crosses the negative real axis
between −∞ and −1. If there is more than one such crossing, we take the
closest crossing to −1.

PM ∠L(jωc) + 180◦ Phase margin. The PM tells us how much more negative phase (phase
lag) we can add to L(s) at frequency ωc before the phase at this frequency
becomes −180◦ which corresponds to closed-loop instability. ωc is the
frequency where |L(jw)| crosses 1.

MS maxω |S(jω)| Maximum peak of the sensitivity function. Measure for degraded
control in the mid-frequnecy range and robustness measure. We want this
to be close to 1.a

MT maxω |T (jω)| Maximum peak of the complementary sensitivity function. A
large value of MT indicates poor performance as well as poor robustness,
so we want this to be small.

aSee the source, Skogestad and Postlethwaite [7], for more information about MS and MT.

Table B.1: Frequency domain performance/robustness measures. Note: j 2 = −1 and ω [=] rad/sek.
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B.2 Time domain performance

The two time domain measures used in this report are total variation (TV) and integrated absolute error
(IAE). These are defined as:

TV(v) =
∞∑

i=1

|vi| (B.1)

IAE(e) =

∫
∞

0
|e(τ)| dτ (B.2)

Typically TV is used on the input signal u from the controller to the process, and e(t) is usually ys(t)−y(t).
IAE, which is defined for a contious signal above, may be computed for a discrete signal for instance with
the trapeze method.

Generally a robust controller will have a low TV, as it moves the input less than a controller with a high
TV. A controller with a low TV will in effect give a smooth, but possibly slow control, while a high-TV
controller will give a fast but possibly less roubust control.

A low IAE value usually means that the controller is fast and has a good setpoint tracking and disturbance
rejection, while a high IAE implies that the controller is acting slower. To achieve a low IAE one necessarily
needs to use a lot of input, TV, so these so measures are conflicting.
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Appendix C

Derivation of SIMC-rule for
underdamped stable secondorder plus
delay transferfunctions

This is taken entirely from Professor Skogestads work,
http://www.nt.ntnu.no/users/skoge/publications/

2003/tuningPID/more/extensions/oscillating.txt.

Note to the reader: This derivation is a bit tedious and it might be easy to “loose the tread”.
However, it’s all more or less simple algebra, the point is just to keep track of the various
expressions.

For a standard second order oscillation process (we neglect τ1, assuming that only the oscillating part is
dominant)

g(s) = k
e−θs

τ2
0 s2 + 2τ0ζs + 1

(C.1)

direct synthesis (IMC) for setpoints gives the controller [6, page 90-91]

c(s) = (1/k)
1

(τc + θ)s

(
τ2
0 s2 + 2τ0ζs + 1

)
(C.2)

Since this controller is derived for setpoints it would naturally give very good tracking, but we need to
make sure that is it robust with respect to disturbance rejection.

Let us consider the limiting case of a double integrating process:

g(s) =
1

k′′

e−θs

s2
, k′′ = k

τ2
0

(C.3)

The double integrating process (C.3) is on the form (C.1) with

τ0 = ∞, τ0ζ = 0, k′′ =
k

τ2
0

(C.4)
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We observe that k = “∞2”. For (C.3) the vcontroller (C.2) becomes

c(s) = (1/k′′)
1

τc + θ
s (C.5)

which is a pure D-controller with KcτD = (1/k′′)(τc + θ). This controller will not work well for an input
(load) disturbance, s has as we know large gain at high frequencies, and these are the frequencies we want
to reject by the controller.

In fact, for the double-integrating processes Skogestad [6, page 93, equations (26) and (27)] recommends
the following tuning

Kc =
1

k′′

1

4(τc + θ)2
, τD = 4(τc + θ), τI = 4(τc + θ) (C.6)

where we observe the integral action has been added. (Note that these are for the cascade-form controller).
Also note that the “D-term” for the controller in (C.6) is the same as just found, that is,

KcτD =
(1/k′′)

τc + θ

The main focus is now: Can we find a simple “correction” for integrating processes that includes also
oscillating processes?

In the following we will work with a PID controller in the form:

c(s) = K ′

c + K ′

I/s + K ′

Ds = K ′

c(1 + 1/(τ ′

Is) + τ ′

Ds) (*)

C.1 IMC setpoint settings for general second-order processes

We are still looking at processes on the form (equation (C.1)):

g(s) = k
e−θs

τ2
0 s2 + 2τ0ζs + 1

Controller (C.2) for process (C.1) corresponds to the following “ideal” settings:

K ′

c =
1

k

2τ0ζ

τc + θ

τ ′

I = 2τ0ζ

τ ′

D =
1

2

τ0

ζ

For the controller from in (*)

K ′

c =
1

k

2τ0ζ

τc + θ

K ′

I = K ′

c/τ
′

I =
1

k

1

τc + θ

K ′

D = K ′

cτ
′

D =
1

k

τ2
0

τc + θ
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or in terms of k′′:

K ′

c =
1

k′′

1

τc + θ

2ζ

τ0
(C.7a)

K ′

I =
1

k′′

1

τc + θ

1

τ2
0

(C.7b)

K ′

D =
1

k′′

1

τc + θ
(C.7c)

Note: Double integrating processes where τ0 = ∞ and ζ = 0 gives K ′

c = 02 and K ′

I = 02, i.e. both go to
zero in second order.

C.2 SIMC-corrections for integrating overdamped processes (ζ > 1)

Consider the process

g(s) = k
e−θs

(τ1s + 1)(τ2s + 1)
(C.8)

Comparing terms with (C.1) we see that (C.8) is on the form (C.1) with:

τ1τ2 = τ2
0

τ1 + τ2 = 2τ0ζ

Translation formulas to get τ0 and ζ:

τ0 =
√

τ1τ2

ζ =
τ1 + τ2

2
√

τ1τ2

Translation formulas to get to τ1 and τ2:

τ1 = τ0

(

ζ +
√

ζ2 − 1
)

τ2 =
τ0

ζ +
√

ζ2 − 1

From [6, Equations (23)-(25)] we have the following settings for a cascade PID controller (corrected for
better disturbance rejection)

Kc =
1

k

τ1

τc + θ

τI = 4(τc + θ)

τD = τ2

Translated to the ideal form using the translation formulas given in [6, Equation (36)], with c = 1+τD/τI =
1 + τ2/(4(τc + θ)):

K ′

c = Kcc, τ ′

I = τI , c τ ′

D = τD/c

For the controller form in *

K ′

c = Kcc, K ′

I = K ′

c/τ
′

I = Kc/τI , K ′

D = K ′

cτ
′

D = KCτD
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so we get

K ′

c =
1

k

τ1

τc + θ

(

1 +
τ2

4(τc + θ)

)

K ′

I =
1

4k

τ1

(τc + θ)2

K ′

D =
1

k

τ1τ2

τc + θ

or

K ′

c =
1

4k

1

(τc + θ)2
τ1 (τ2 + 4(τc + θ))

Introducing τ0 and ζ:

K ′

c =
1

4k

1

(τc + θ)2
τ0

(

τ0 + 4(τc + θ)
(

ζ +
√

ζ2 − 1
))

K ′

I =
1

4k

1

(τc + θ)2
τ0

(

ζ +
√

ζ2 − 1
)

K ′

D =
1

k

τ2
0

τc + θ

Or, in terms of k′′ (k = k′′τ2
0 )

K ′

c =
1

4k′′

1

(τc + θ)2

(

1 + 4(τc + θ)
(

ζ +
√

ζ2 − 1
) 1

τ0

)

(C.9a)

K ′

I =
1

4k′′

1

(τc + θ)2
1

τ0

(

ζ +
√

ζ2 − 1
)

(C.9b)

K ′

D =
1

k′′

1

τc + θ
(C.9c)

Comparing (C.9) with (C.7) we note that K ′

D is unchanged.

C.3 Correction for oscillating processes, 0 < ζ < 1

Can we extend (C.9) to ζ < 1? Not directly because this would give complex K ′

c and K ′

I .

To get some idea let us consider the double-integrating process which corresonds to

τ0 = ∞, ζ = 0

For this process we have already (C.6) which seems reasonable. These settings,

Kc =
1

k′′

1

4(τc + θ)2
, τD = 4(τc + θ), τI = 4(τc + θ)

have τD/τI = 1. Thus c = 1 + τD/τI = 2 and (C.6) corresponds to the following SIMC ideal-form tunings
for double-integrating processes:

K ′

c = Kc · 2 =
1

2k′′

1

(τc + θ)2

τ ′

I = τI · 2 = 8(τc + θ)

τ ′

D = τD/2 = 2(τc + θ)
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or

K ′

c =
1

2k′′

1

(τc + θ)2
=

τ2
0

2k

1

(τc + θ)2
(C.10a)

K ′

I = K ′

c/τ
′

I =
1

16k

τ2
0

(τc + θ)3
(C.10b)

K ′

D = K ′

cτ
′

D =
1

k′′

1

τc + θ
=

τ2
0

k

1

τc + θ
(C.10c)

Want to find a correction that fits both (C.9) and (C.10), and which resembles (C.7) as much as possible.
Let us recall the expressions:

(C.7) IMC setpoint settings
(C.9) SIMC-correction for integrating processes with ζ > 1
(C.10) SIMC-correction for double-integrating processes with ζ = 0

Let us compare the expressions. Frist, the P-action: From (C.7) we have:

K ′

c =
1

k′′

1

τc + θ

2ζ

τ0

=
1

k

1

τc + θ
2ζτ0

=
1

k

1

τc + θ
(τ1 + τ2)

Corrections: From (C.9) we have:

K ′

c =
1

4k′′

1

(τc + θ)2

(

1 + 4(τc + θ) +
(

ζ +
√

ζ2 − 1
) 1

τ0

)

=
1

4k′′

1

(τc + θ)2

(

1 +
4(τc + θ)

τ2

)

=
1

4k

1

(τc + θ)2
τ2
0

(

1 +
4(τc + θ)

τ2

)

=
1

4k

1

(τc + θ)2
τ1 (τ2 + 4(τc + θ))

and from (C.10):

K ′

c =
1

2k′′

1

(τc + θ)2
=

1

2k

1

(τc + θ)2
τ2
0

Integral gain: (C.7) gives:

K ′

I =
1

k′′

1

τc + θ

1

τ2
0

=
1

k

1

τc + θ

Corrections: (C.9):

K ′

I =
1

k′′

1

(τc + θ)2
1

τ0

(

ζ +
√

ζ2 − 1
)

=
1

4k′′

1

(τc + θ)2
1

τ2
=

1

4k

1

(τc + θ)2
τ1
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(C.10):

K ′

I =
1

16k′′

1

(τc + θ)3
=

1

16k

1

(τc + θ)3
τ2
0

Derivative gain:

(C.7) : K ′

D = 1
k′′

1
τc+θ

(C.9) : K ′

D = 1
k′′

1
τc+θ

(C.10) : K ′

D = 1
k′′

1
τc+θ

Note: k′′ = k/τ2
0 = k/(τ1τ2).

From this we have:

• K ′

D is easy because it is unchanged

• K ′

c: Try absolute value |ζ2 − 1| for (C.9). Gives factor 2 lower K ′

c for (C.10), but this should be OK.
But is seems like (C.9) is close to (C.10), so maybe it is even better just to take the maximum or
even better: Simplify and always use expression (C.10) for K ′

c. (Which is at most a factor 2 larger
than B). By numerical inspection one can see that (C.10) > (C.9) in some cases, but at most a factor
2

• K ′

I : Can not use (C.9) directly due to division by τ0. Better to take the maximum ((C.9) generally
largest except when τ0 is large. By looking at some examples one can show that (C.10) > (C.9) in
some cases, and difference arbitary large for large values of τ0

Since we ideally would like to retain the SIMC-rules for ζ > 1,it seems easier to simply interpolate between
(C.10) and (C.10).

C.4 Conclusion

Skogestad, still with reference to the .txt file as menitoned above, proposes the following conlusion to
this derivation:

• K ′

c = max{A,X}, where X = B for ζ ≥ 1 and X = ζB ′ + (1 − ζ)C for ζ < 1

• K ′

I = max{A,X}, where X = B for ζ ≥ 1 and X = ζB ′ + (1 − ζ)C for ζ < 1

• K ′

D as given from (C.7)

• A is the settings given in (C.7), B is the settings given in (C.9) and C is the settings given in (C.10)

• B′ is obtained from B by setting
√

ζ2 − 1 = 0 for ζ < 1

This gives smooth transition and also makes the limiting case unchanged.
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Appendix D

Matlab highlight

s

As the main simulation tools for this report Matlab and Simulink were used. A lot of files were eventu-
ally made, and I will not attach all files here, since that would only imply a lot of pages of uninteresting
code. Rather, I thought I should include some files that other studens (my younger colleagues) would
perhaps use as a starting point for their work. Note that a very good startingpoint for PID-tuning related
work is to use the files found on prof. Skogestad’s homepage, http://www.nt.ntnu.no/users/skoge/
publications/2003/tuningPID/mfiles/. If you are interested in other Matlab-functions that you sus-
pect I have, please feel free to contact me.1

D.1 Lower gain margin

The routine minbode.m calculates a lot of performance and robustness criteria, but unfortunately not the
lower gain margin. I therefore made a Matlab-function called GM unst.m, which calculates this. I also
included the usual gain margin and phase margin, but this was taken from minbode.m. I just included it
for simplicity when you use the function.

function [GM_L,GM,PM] = GM_unst(sys,w)

% function [GM_L,GM,PM] = GM_unst(sys,w)

%

% calculation of lower and upper gain margins and

% phase margin using matlab’s bode.m function

%

% Henrik Manum, 10. Nov. 2005

[mag_sys,phase_sys] = bode(sys,w);

% get the mag and phase out of the 3D-matrix

for i = 1:length(w)

mag(i) = mag_sys(1,1,i);

phase(i) = phase_sys(1,1,i);

end

1Current email adress is henriman@stud.ntnu.no.
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vA = phase - 360; A = mag;

%Beregning av w180 og gain margin

under = 1;

for m=1:length(vA)

if (vA(m)< -180 )&(under == 1)

pos = m;

elseif vA(m) > -180

under = 0;

end

end

a = (vA(pos+1) - vA(pos))/(w(pos+1) - w(pos));

w_lower = (-180 - vA(pos))*(w(pos+1) - w(pos))/a;

a2 = (A(pos+1) - A(pos))/(w(pos+1)-w(pos));

A_w_lower = a2*w_lower/(w(pos + 1)- w(pos)) + A(pos);

GM_L = 1/A_w_lower;

if min(vA)>-180

disp([’Ingen fase kryssover frekvens i det aktuelle frekvens’ ...

’ intervallet’])

w180=[];

GM=[];

else

for m=pos:length(vA)

if vA(m)>-180

posisjon=m;

end

end

%Secant

w180=w(posisjon)-(vA(posisjon)+180)* ...

(w(posisjon+1)-w(posisjon))/(vA(posisjon+1)-vA(posisjon));

%Gain margin ved interpolasjon

Lw180=A(posisjon)+(w180-w(posisjon))*(A(posisjon+1)-A(posisjon))...

/(w(posisjon+1)-w(posisjon));

GM=1/Lw180;

end

% PM

if max(A)<1

disp(’Maks amplitude mindre enn ein.’)

wc=[];

vAwc=[];

PM=[];

else

for m=1:length(A)

%Kryssing oven fra

if A(m)>1

posisjon=m;
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end

end

%Secant

wc=w(posisjon)-(A(posisjon)-1)* ...

(w(posisjon+1)-w(posisjon))/(A(posisjon+1)-A(posisjon));

%Fasen ved

vAwc=vA(posisjon)+(wc-w(posisjon))*(vA(posisjon+1)-vA(posisjon))...

/(w(posisjon+1)-w(posisjon));

PM=vAwc+180;

end

D.2 Ziegler-Nichols tuning

Ziegler-Nichols tuning and the modified version of Tyreus-Lyuben are often used in PID-tuning evaluation.
I could not find that these methods had been implemented in the files on prof. Skogestads homepage, so I
made the following file ZN.m. Note that I assume only one crossing of the -180◦ line here. I have not tested
the file on unstable processes, but it surely needs modification if these cases should be covered. I guess,
if there is only one phase crossing from above, we could use this one (that is, the upper gain margin) to
derive the ZN tuning for unstable processes, so the modification does not need to be large.

function [Kc,taui,taud] = ZN(num,den,gain,delay,w,method)

% function [Kc,taui,taud] = ZN(num,den,gain,delay,w,method)

% Input:

% num : er teller polynomet

% den : er nevner polynomet

% gain : er forsterkning

% delay : er dodtid

% w : er frekvensene (NB! omraadet maa vaere stort nok)

% method : 1 = ZN, P

% 2 = ZN, PI

% 3 = ZN, PID [Ideal form]

% 4 = Tyreus-Luyben, PI

% 5 = Tyreus-Luyben, PID [Ideal form]

%

% need: minbode.m

%

% Henrik Manum, 17. oct 2005

[A,vA,w180,wc,GM,PM,Ms,Mt]=minbode(num,den,gain,delay,w);

% søker 1/Kcu...

mindre = w < w180;

storre = w > w180;

lengde = length(w);

wl = w(sum(mindre));

wu = w(sum(mindre)+1);

a = (w180 - wl)/(wu-wl);

if (a < 0)|(a > 1)

59



error(’a not between 0 and 1! Please improve the routine’);

end

A_wc = A(sum(mindre)) + a*(A(sum(mindre)+1) - A(sum(mindre)));

Kcu = 1/A_wc;

Pu = 2*pi/w180;

% ref: s.318 i Process Dynamics and Control

if method == 1

Kc = 0.5*Kcu;

taui = 0;

taud = 0;

elseif method == 2

Kc = 0.45*Kcu;

taui = Pu/1.2;

taud = 0;

elseif method == 3

Kc = 0.6*Kcu;

taui = Pu/2;

taud = Pu/8; % paralell/ideal form !!!!

elseif method == 4

Kc = 0.31*Kcu;

taui = 2.2*Pu;

taud = 0;

elseif method == 5

Kc = 0.25*Kcu;

taui = 2.2*Pu;

taud = Pu/6.3; % paralell/ideal form !!!!!

else

error(’Please choose a method’)

end

subplot(2,2,[1 2]); loglog(w,A);

subplot(2,2,[3 4]); semilogx(w,vA); axis([w(1) w(end) -270 0])
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