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Abstract

For a linear multivariable unstable plant we consider the problem of finding the best pairing of a
single actuator (input) and a single noisy measurement (output) such that the plant is stabilized with
minimum input usage. For cases with a single unstable mode, the solution to this problem is to select the
input and output corresponding to the largest element in the input and output pole vectors, respectively.
In fact, this choice minimizes both theH2- andH∞-norms of the transfer functionKS from plant
output to plant input. The pole vectors thus provide a powerful tool for independent selection of inputs
(actuators) and outputs (sensors) for stabilizing control.

1 Introduction

Stabilization is a key reason for using feedback control. From linear system theory we know that a plant
is stabilizable if all of its unstable modes are observable from its outputy and state controllable from its
input u. In most cases stabilization is performed at the lowest layer in the control hierarchy using single-
input single-output (SISO) controllers. A critical issue is then usually to avoid saturation of the input used
for stabilization, because otherwise the system effectively becomes open-loop and stability is lost. This
motivates the following problem (see Figure 1):

• Which manipulated input (actuator)uj and which controlled output (measurement)yk should be
selected for stabilizing control in order to minimize input usage?
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Figure 1: PlantG with stabilizing control loopuj ↔ yk

This important problem has attracted little attention in the system theory literature, although there is
some related work (Wang and Davison, 1973; Benninger, 1986; Tarokh, 1985; Tarokh, 1992; Hovd and
Skogestad, 1992; Lunze, 1992; Liet al., 1994a; Li et al., 1994b).

More generally, we want to minimize the required magnitude of the stabilized transfer function[KS]jk
from the selected outputyk to the selected inputuj. This follows since for a planty = Gu + Gdd with
feedback controlu = −K(y + n− r) the closed-loop input signal is

u = −KS(n + Gdd︸ ︷︷ ︸
unavoidable

−r)

whereS = (I + GK)−1 (the disturbanced and referencer are not shown in Figure 1). Thus, to minimize
the required (unavoidable) input usage (u) due to measurement noise (n) and disturbances (d), we should
minimize the norm ofKS. However, the presence of an unstable (Right half plane - RHP) pole imposes
a minimum value on the norm ofKS (Havre and Skogestad, 2001), and this is the basis for the results
presented in this paper.

The outline of the paper is as follows: In multivariable system the poles have directions associated with
them, and in Section 2 we quantify these by defining the input and output pole vectors. In Section 3 we study
the stochastic problem of minimizing the input energy required for stabilization in the presence of white
measurement noise, or equivalently the problem of minimizing theH2-norm of [KS]jk. We show that the
minimum value is explicitly given in terms of the corresponding elements in the pole vectors. In Section 4
we derive identical results in terms of theH∞-norm, and the main result in the paper is summarized in
Theorem 3. It shows that the required input usage for stabilization, both in terms of theH2 andH∞-norms,
is minimized by selecting the input and output corresponding to the largest element in the input and output
pole vectors, respectively. In section 5 we discuss the implications of these results for actuator/measurement
selection and give a simple example. The main limitation of the theoretical results, namely that they only
hold for a single unstable pole, is discussed in Section 6. We here also justify the usefulness of the pole
vectors for a single stable pole. The conclusions are given in Section 7.

The presentation in this paper is brief in places, and for detailed proofs and additional examples we refer
to Chapter 6 of the thesis by Havre (1998).

Notation is fairly standard. We consider a linear plant with state-space realization

dx(t)

dt
= Ax(t) + Bu(t), y = Cx(t) + Du(t)

wheret is time,x(t) ∈ Rn is the state,u(t) ∈ Rm is the input,y(t) ∈ Rl is the output, andA, B, C,D
are real matrices of appropriate dimensions. The corresponding transfer function matrix from inputsu to
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outputsy is

G(s) = C(sI − A)−1B + D
s
=

[
A B
C D

]
We will use the following indexes (subscripts):i for the statesx, j for the inputsu, andk for the outputsy.
We letpi = λi(A) denote thei’th pole ofG(s), whereλi(A) is thei’th eigenvalue ofA. When we refer to
the “mode”pi we mean the dynamic response associated withpi. For a systemz = M(s)w theH∞-norm
of M is

‖M(s)‖∞ = sup
ω

σ̄M(jω) = sup
w(t) 6=0

‖z(t)‖2

‖w(t)‖2

where‖z(t)‖2 is the usual Euclidian vector norm. TheH2-norm ofM is

‖M(s)‖2 =

√
1

2π

∫ ∞

−∞
tr(M(jω)HM(jω))dω = sup

w(t)=unit impulses

‖z(t)‖2

2 Pole vectors

For a polepi the corresponding right eigenvectorti (“output state direction”) and left eigenvectorqi (“input
state direction”) are defined by

Ati = piti; qH
i A = piq

H
i

We usually normalize the eigenvectors to have unit length, i.e.‖ti‖2 = 1 and‖qi‖2 = 1. The input pole
vectorassociated with the polepi is defined as

up,i = BHqi (1)

and theoutput pole vectoris defined as
yp,i = Cti (2)

For a given realization (A, B, C,D) and normalized eigenvectors, the pole vectors corresponding to a dis-
tinct polepi are unique up to the multiplication of a complex scalarc of length 1 (|c| = 1). For a repeated
polepi (not distinct) there may be more than one linearly independent eigenvector, in which case the eigen-
vectors and pole vectors associated withpi are matrices. (These technical issues are not important for this
paper, since all theorems are for distinct poles.) To motivate the introduction of pole vectors, consider for
the case when alln poles are distinct the following dyadic expansion of the transfer function,

G(s) =
n∑

i=1

1

qH
i ti

· Ctiq
H
i B

s− λi

+ D =
n∑

i=1

1

qH
i ti

·
yp,iu

H
p,i

s− λi

+ D (3)

(It is common to assume that the eigenvectors have been scaled such thatqH
i ti = 1, but we do require this

here.) Note here thattiq
H
i is a rank-onen× n matrix andyp,iu

H
p,i is a rank-onel ×m matrix, whereas the

inner productqH
i tiH is a scalar. Douglas and Athans (1996) note thatup,i = BHqi is “an indication of how

much thei’th mode is excited by the inputs”, and thatyp,i = Cti is “an indication of how much thei’th
mode is observed in the outputs”. Indeed, the pole vectors may be used for checking the state controllability
and observability of a system, and from linear system theory we have that (Zhouet al., 1996, p.52)).

• The modepi is controllable if and only ifup,i = BHqi 6= 0 (for all left eigenvectorsqi associated
with pi).
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• The modepi is observable if and only ifyp,i = Cti 6= 0 (for all right eigenvectorsti associated with
pi).

(the need to considerall eigenvectors only applies whenpi is a repeated pole, because otherwise the eigen-
vectors are unique). It follows that a system is controllable (observable) if and only of every modepi is
controllable (observable). Furthermore, a modepi is controllable from an inputuj if the j’the element in
up,i is nonzero, and observable from an outputyk if the k’the element inyp,i is nonzero.

From the latter results it seems clear that the magnitudes of elements in the input pole vectorup,i

give information about from which input thei’th mode is most controllable, and that the magnitude of
the elements in the output pole vectoryp,i give information about in which output thei’th mode is most
observable. The objective of this paper is to confirm this intuition in terms of which input and output to
select for stabilizing control.

REMARK 1. The eigenvectorsti andqi, as well as the length of the pole vectors, depend on the realization (A,B, C, D).
However, for distinct poles the corresponding normalized pole vectors orpole directions, defined byup,i/‖up,i‖2 and
yp,i/‖yp,i‖2, are unique (independent of the realization) up to the multiplication of a complex scalarc of length 1
(|c| = 1). This implies that the relative magnitude of the elements in the pole vectors are independent of the realiza-
tion, so a ranking of inputs and outputs based on selecting large elements in the pole vectors is independent of the
realization.
REMARK 2. From (3), and even more so from the theorems below, we see that the inner productqH

i ti of the eigen-
vectors influences the magnitude of the transfer function and thus the magnitude input usage (although it does not
influence the relative ranking of alternative inputs and outputs). To include more directly this term, it is recommended
for practical applications to compute the followingscaled pole vectors:

ũp,i = up,i/
√

qH
i ti and ỹp,i = yp,i/

√
qH

i ti

REMARK 3. Above the pole directions were defined in terms of the state space matricesA, B andC. The pole
directions may alternatively be defined in terms of the transfer matrix, by evaluatingG(s) at the polepi = λi(A). The
matrix is infinite in the direction of the pole, and we may write

G(pi)upi = ∞ · ypi (4)

which gives insight into the significance of the pole directions. The pole directions may then in principle be obtained
from an SVD ofG(pi) = UΣV H . Thenupi is the first column inV (corresponding to the infinite singular value),
andypi the first column inU .

The following simple example illustrates the concept of pole vectors.

EXAMPLE 1 We consider the following parallel and series structures:
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(A) Systems in parallel: (B) Systems in series:

u2

u1

-

- 1
s−p1 x1

1
s−p2 x2

-

-

y2

y1

u2

u1

- 1
s−p2

-q dx2
+
+

-

?- 1
s−p1

-
x1

y1

y2

GA(s) =
[ 1

s−p1
0

0 1
s−p2

]
s=


p1 0 1 0
0 p2 0 1
1 0 0 0
0 1 0 0

 GB(s) =
[ 1

s−p1

1
(s−p1)(s−p2)

0 1
s−p2

]
s=


p1 1 1 0
0 p2 0 1
1 0 0 0
0 1 0 0


Normalized pole vectors (the first column corresponds top1 = 1 and the second top2 = 2):

Up = Q =
[

1 0
0 1

]
Up = Q =

[
−0.707 0
0.707 −1

]

Yp = T =
[

1 0
0 1

]
Yp = T =

[
1 0.707
0 0.707

]

For example, we see that in both cases modep2 is not state controllable fromu1 (sinceup,12 = 0), and in both
cases modep1 is not observable fromy2 (sinceyp,21 = 0). This also agrees with the block diagram representation of
the systems.

3 Stabilizing control with minimum input energy (H2-norm)

3.1 SISO control with minimum input energy

In this section we consider the following problem1:

PROBLEM 1 (SISO input energy, see Figure 1). Consider a plantG with a single modep ∈ C+ (Re p > 0)
and white measurement noisenk of unit intensity in each outputyk. Find the best pairinguj ↔ yk, such
that the plant is stabilized with minimum expected input energy

J(j, k) = E

{
lim

T→∞

1

T

∫ T

0

u2
j(t)dt

}
(5)

At first sight it is not clear that the output selection problem is included at all, since the outputs do not
enter into the objective (5) explicitly. However, the output selection problem is included implicitly through
the measurement noise and the expectation operatorE.
For this problem an analytical solution can be found in terms of the pole vectors:

1We consider a specific polep = pi and the subscripti is omitted in the following.
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Figure 2: State feedback with minimum input usage mirrors the pole from RHP to LHP

THEOREM 1 (Solution to Problem 1).The minimum input energyJ , for a specific inputj and outputk is

J(j, k)min =
8p3(qHt)2

u2
p,jy

2
p,k

(6)

wherep is the pole,up,j is thej’th element in the input pole vector,yp,k is thek’th element in the output
pole vector, andq and t are the left and right eigenvectors corresponding to the modep. The numerator
in (6) is independent of the selection of input and output. Hence, to minimize the input energy required for
stabilization with SISO control one should

• Select the inputj corresponding to the largest entry|up,j| in the input pole vectorup.

• Select the outputk corresponding to the largest entry|yp,k| in the output pole vectoryp.

Because of the separation theorem we may prove (6) by first finding the best input using state feedback
(LQR) under the assumption of perfect measurement of all states, and then constructing the optimal state
observer (LQE). For our LQR-problem, it is well-known (Kwakernaak and Sivan, 1972) that the minimum
input energy for stabilization is obtained when the state feedbacku(t) = −Kx(t) mirrors the unstable poles
across the imaginary axis, see Figure 2. Similarly, for our dual LQE-problem with zero process noise and
unit intensity measurement noise, the unstable observer pole is mirrored across the imaginary axis by the
use of the output to state estimate feedback.

Proof of (6).
LQR: Optimal state feedback to inputuj . In this case, the problem is to minimize the input usage due to non-zero

initial statesx0, i.e. minimize the deterministic cost

JLQR(j) =
∫ ∞

0
u2

j (t)dt

The corresponding Riccati equation with zero weight on the states and unity weight on the input becomes

AT X + XA−XBeje
T
j BT X = 0

whereej is a unit vector with 1 in positionj and 0 in the other elements. With a single real polep the solution is

X =
2p

u2
p,j

qqT ≥ 0

and the optimal state feedback gain becomes

Kj = eT
j BT X =

2p

up,j
qT (7)
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LQE: Kalman filter (state observer) based onyk. There is no process noise and the Riccati equation becomes

Y AT + AY − Y CT eie
T
i CY = 0

The solution isY = 2p
y2

p,k
ttT ≥ 0 so the optimal feedback gain from outputyk to the state estimate becomes

Kf,k = Y CT ek =
2p

yp,k
t (8)

Finally, to obtain the value of the expected input energyJ , we use (Kwakernaak and Sivan, 1972, Theorem 5.4 part (d)
page 394–395).

J(j, k) = tr
{
XKf,kK

T
f,k

}
= tr

{
2p

u2
p,j

qqT 2p

yp,k
t

2p

yp,k
tT

}
=

8p3

u2
p,jy

2
p,k

(qT t)2

2

3.2 MIMO control with minimum input energy

We here consider the same problem as above, but with multivariable (MIMO) control.

THEOREM 2 (MIMO input energy) . Consider a plantG with a single unstable modep ∈ C+ and with
white measurement noisenk of unit intensity in each outputyk. The minimal achievable input energy
required for stabilization,

J = E

{
lim

T→∞

1

T

∫ T

0

uT (t)u(t)dt

}
(9)

is given in terms of the pole vectors:

Jmin =
8p3 · (qT t)2

‖up‖2
2 · ‖yp‖2

2

(10)

By comparing the minimum value ofJ(j, k) (SISO control) with the minimum value ofJ (MIMO
control) we can quantify the extra input energy needed to stabilize the plant using SISO control compared
to full multivariable control. As expected, this is directly given by the relative magnitudes of the elements
in the pole vectors: √

J(j, k)min√
Jmin

=
‖up‖2 · ‖yp‖2

|up,j| · |yp,k|
≥ 1

3.3 Interpretation in terms of the H2-norm

The above theorems may alternatively be interpreted in terms of theH2-norm of the closed-loop transfer
functionKS from plant inputs to plant outputs. This follows since (e.g. (Zhouet al., 1996)):

min
Kjk

‖KjkSkk(s)‖2 =
√

J(j, k)min where Skk(s) = (1 + GkjKjk(s))
−1 (11)

min
K
‖KS(s)‖2 =

√
Jmin where S(s) = (I + GK)−1 (12)
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4 Stabilizing control with minimum input usage (H∞-norm)

Interestingly, almost identical results can be derived in terms of theH∞-norm. Thus, theH2- andH∞-
norms give the same the best input-output pairing for stabilizing a plantG with a single unstable mode.

THEOREM 3 (Stabilizing SISO Control with minimum H2 and H∞input usage). Consider a plantG
with a single unstable modep ∈ C+. The minimum achievableH2- andH∞-norm of the closed-loop
transfer functionKjkSkk from outputyk to the inputuj is then

min
Kjk(s)

‖KjkSkk(s)‖∞ =
1√
|2p|

min
Kjk(s)

‖KjkSkk(s)‖2 = |(Gkj)
−1
s (p)| = |2p| · |qHt |

|up,j| · |yp,k|
(13)

whereup,j is thej’th element in the input pole vector,yp,k is thek’th element in the output pole vector,q
and t are the left and right eigenvectors ofA corresponding to the polep, Skk(s) = (1 + GkjKjk(s))

−1,
and the notation(Gkj)

−1
s (p) means: Find the stable version ofGkj with theRHP-pole ats = p mirrored

across the imaginary axis, i.e.,(Gkj(s))s = s−p
s+p

Gkj(s), take its inverse, i.e.(Gkj(s))
−1
s = ((Gkj(s))s)

−1,
and evaluate(Gkj(s))

−1
s at s = p.

REMARK 1. Note that the scalar|2p| · |qHt | in (13) is independent ofj andk.
REMARK 2. From (13) we see that the best inputj and the best outputk correspond to minimizing|(Gkj)−1

s (p)|, or
equivalently maximizing|(Gkj)s(p)|. Thus, an alternative to using the pole vectors, is to select the input-output pair
(j, k) corresponding to the element inGs(p) with the largest magnitude. Nevertheless, we recommend using the pole
vectors, because this allows for an individual evaluation of inputs and outputs, and also requires fewer evaluations
(a plant withm candidate inputs andl candidate outputs, hasm · l elements inGs(p), but onlym + l pole vector
elements).
REMARK 3. When minimizing the input usage, both in terms of theH2-norm and theH∞-norm, the unstable open-
loop polep is mirrored into the left half plane.
REMARK 4. In general, the values of theH2- andH∞-norms ofKS for a given system (with a given controller)
may be arbitrary far apart. It is then somewhat surprising that the minimum ofH2-norm andH∞-norms differ by a
constant factor of

√
2p (although the two controllers achieving these two minimum values are of course different).

REMARK 5. TheH∞-controller that achieves the bound in (13) is in general improper.

Proof of Theorem 3.
The identityminKjk(s) ‖KjkSkk(s)‖∞ = |(Gkj)−1

s (p)| follows from Havre and Skogestad (2001, Theorem 4
and eq.(26)) for the case with a single unstable mode. The last identity is proved as follows: Sincep is the only
unstable mode, it follows from (3) that a partial fraction expansion ofG contains the following two terms

G(s) =
1

qHt
·
ypu

H
p

s− p
+ N(s)

whereN(s) is stable. Also,(Gkj(s))s = eT
k

s−p
s+pG(s)ej and sinceyp,k = eT

k yp andup,j = uH
p ej we have

|(Gkj)s(p) =
∣∣∣∣ 1
qHt

yp,kup,j

s + p
+

s− p

s + p
Nkj(s)

∣∣∣∣
s=p

=
|yp,k| · |up,j |
|2p| · |qHt |

The relationship to theH2-norm follows from Theorem 1 and (11). 2

In the following example we design, for a simple SISO plant,H2- andH∞-optimal controllers that achieve
the lower bounds on the input usage.
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EXAMPLE 2 Consider the SISO plant

G(s) =
s− 2

(0.1s + 1)(s− 1)
s=

 −10 0
√

120/11
0 1

√
10/11√

120/11 −
√

10/11 0


with an unstable (RHP) pole atp = 1 and a RHP-zero atz = 2. With the above realization, the eigenvectors and pole
“vectors” corresponding to the unstable pole are

t = q =
[

0
1

]
, up = 0.9535 and yp = −0.9535

TheH2-norm ofKS is minimized with the following LQG controller:

KLQG(s) = −44
0.1s + 1

s2 + 13s + 78

The controller is strictly proper with LHP-poles at−6.5± 5.98j and a LHP-zero at−10 which cancels the open-loop
stable pole at−10 in the plant. With this controller the closed-loop poles of the minimal realization are located at
{−1, −1}, and we achieve:

‖KLQGSLQG(s)‖2 =
√

8p · |qHt |
|up| · |yp|

=
√

8 · 1 · 1
0.9535 · 0.9535

= 3.11

TheH∞-norm ofKS is minimized with the following controller

K∞(s) = −2.2
0.1s + 1

0.1s + 3.4

The controller is semi-proper, with a LHP-pole at−34 and a LHP-zero at−10 which cancels the corresponding stable
pole inG. With this controller the closed-loop pole of the minimal realization ofKS is located at−1, and we achieve:

‖K∞S∞(s)‖∞ = 2.2 =
3.11√

2p

which as expected is equal to

|G−1
s (p)| =

∣∣∣∣(0.1s + 1)(s + 1)
s− 2

∣∣∣∣
s=1

=
∣∣∣∣1.1 · 2
−1

∣∣∣∣ = 2.2

Note thatK∞S∞(s) = −2.2 s−1
s+1 is semi-proper (it remains flat at magnitude 2.2 at all frequencies) so itsH2-norm is

infinite.

We have the following generalization of Theorem 3 for multivariable control.

THEOREM 4 (Stabilizing MIMO Control with minimum H∞-norm input usage). Consider a plantG
with a single unstable polep ∈ C+. The minimum achievableH∞-norm of the closed-loop transfer function
KS from outputy to inputu is then

min
K(s)

‖KS(s)‖∞ = ‖uH
p (Gso(p))−1‖2 = ‖(Gsi(p))−1yp‖2 (14)

whereS(s) = (I + GK(s))−1, andGso andGsi are the stable versions ofG with theRHP-poles mirrored
across the imaginary axis and factorized at the output and input, respectively (see Havre and Skogestad
(2001) for details), and‖ · ‖2 denotes the usual Eucledian vector norm.

Note that this only generalizes part of (13), as it does not relate the minimumH∞-norm directly to the
pole vectors only or to the minimumH2-norm ofKS.
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5 Actuator/measurement selection for stabilizing control

Theorem 3 has the following implication for actuator/measurement selection for a plant with a single un-
stable mode:

The required input usage for stabilization, both in terms of theH2- andH∞-norms, is min-
imized by selecting the output (measurement)yk corresponding to the largest element in the
output pole vectoryp, and the input (actuator)uj corresponding to the largest element in the
input pole vectorup.

More precisely, we propose the following procedure for designing a SISO stabilizing controller, assum-
ing that input usage is a concern:

1. Scale the plant inputs and outputs such that a unit change in each inputuj is of equal importance, and
a unit change in each outputyk is of equal importance. Specifically , we have

G = D−1
y ĜDu

whereĜ denotes the original (unscaled) model, and the diagonal scaling matrices are

Dy = diag{ŷk,max}, Du = diag{ûj,max}

Typically, ûj,max denotes the maximum allowed input deviation, for example, the distance from the
nominal input value to its saturation limit. Typically,ŷk,max denotes the magnitude of the measure-
ment noise (n) plus the expected output deviation due to disturbances (process noise) (Gdd).

2. Compute the pole vectors (or pole directions).

3. Select an inputuj corresponding to a large element in the input pole vectorup.

4. Select an outputyk corresponding to a large element in the output pole vectoryp.

5. Design a controller for this input/output pairing.

Obviously, the input magnitude is not the only concern when it comes to selecting an input/output-
pairing for stabilizing control, and this is the reason for using the term “large” rather than “largest” in step
3 and 4.

���
��@@

Fin, zA, Tin

V, nA, nB, n
A(l) → B(l)

F , T

Figure 3: Chemical reactor (CSTR)
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EXAMPLE 3 Stabilization of chemical reactor. The objective is to design a stabilizing SISO controller for the
exotermic CSTR in Figure 3. The candidate inputs and outputs are

u =
[

F
Tin

]
, y =

[
V
T

]
whereF is the outflow from the reactor,Tin is the reactor inlet temperature,V is the reactor volume (level), andT is
the reactor temperature. The appropriately scaled linear model is

G(s) =
[ −20

s 0
−70

s(s−3.5)
20

s−3.5

]
s=


0 0 −1 0
70 3.5 0 20
20 0 0 0
0 1 0 0


The pole at the origin (p1 = 0) is due to the integrating level, and the unstable pole atp2 = 3.5 is due to the exothermic
reaction. The corresponding pole vectors are

up,2 =
[
−1
1

]
,yp,2 =

[
0
1

]
, up,1 =

[
1
0

]
,yp,1 =

[
−1
1

]
and the inner products of the corresponding eigenvectors areqH

1 t1 = 0.05 andqH
2 t2 = 0.05. Fromyp,2 we see

that the unstable mode atp2 = 3.5 is only observable in output 2 (this is also seen easily fromG(s)), and fromup,2

we see that the unstable mode is equally controllable in both inputs. Thus, to minimize the input usage required for
stabilization we should use output 2 and any of the two inputs.

Comment: We note fromup,1 that the pole at the origin (p1 = 0) is only controllable from input 1, but observable
in both outputs . This suggest that we may be able to move both the poles into the LHP if we design a controller using
input 1 and output 2. This is indeed confirmed, for example by designing a LQG-controller for elementg21(s).

REMARK. For this simple example, we reach the same conclusion easily by looking at the elements ofG(s), and
indeed, an evaluation of the poles and zeros of the transfer function elements yields invalueable insight. However, for
more complicated cases the use of pole vectors is simpler and more reliable numerically.

The theorems, and thus the above procedure for using pole vectors as a tool for selecting stabilizing pairings,
applies to one unstable pole at the time. For plants with more than one unstable poles (including plants
with a pair of complex unstable poles) it is not possible from the pole vectors to make any conclusive
recommendations on which stabilizing loop to close first. For example, as discussed in some more detail
below, if we have two RHP-poles close to each other (e.g. a pair of complex RHP-poles) with a real RHP-
zero nearby, then stabilization is very difficult, but this will not show up when we compute the pole vectors.

Nevertheless, the pole vectors have proven themselves useful in several applications with more than one
unstable mode, including the stabilizing control of the Teneessee-Eastman process (Havre, 1998) (Havre
and Skogestad, 1998) with 6 unstable modes, and the selection of pressure sensor location for stabilization
of desired two-phase flow regimes in pipelines (Havreet al., 2000) (Storkaaset al., 2001) which has a pair
of complex RHP-poles. For such applications the pole vectors need to be interpreted with care and the
results need to be checked, for example, by designing controllers. It is recommended to start by using the
pole vectors ofG(s) to design a controller for the most unstable mode (furthest into the right half plane).
Next, obtain the transfer function for the “new” partially stabilized plant, and repeat steps 2-5 until the
plant is completely stabilized. In some cases, as illustrated in the reactor example, closing a single loop can
stabilize more than one unstable mode.
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6 Discussion

6.1 Multiple unstable poles

As just noted, the main limitation with the theoretical results presented in this paper is that they only apply
for cases with a single RHP-pole. For cases with multiple RHP-poles, the pole vectors associated with a
specific RHP-pole give the input usage required to move this RHP-pole assuming that the other RHP-poles
are unchanged. This is of course unrealistic and may lead to misleading results, as is illustrated in the
following simple SISO example.

EXAMPLE 4 Complex RHP-poles with nearby RHP-zero. Consider the SISO plant

G(s) =
s− p

s2 − 2ps + p2 + ε2

s=

 p −ε 1
ε p 0
1 0 0


Forp > 0 the plant has two unstable (RHP) complex poles atp1,2 = p± εj and a RHP-zero atp. Independent of the
value ofε 6= 0, the left and the right eigenvector matrices for this realization are

Q = T =
[

0.707 0.707
−0.707j 0.707j

]
(which giveQHT = I) and the matrices consisting of the pole “vectors” are

Up = BHQ =
[

0.707︸ ︷︷ ︸
up,1

0.707︸ ︷︷ ︸
up,2

]
and Yp = CT =

[
0.707︸ ︷︷ ︸
yp,1

0.707︸ ︷︷ ︸
yp,2

]
The pole vectors thus indicate that stabilization requires only moderate input usage. However, because of the nearby
RHP-zero we expect in practice that stabilization of both RHP-poles becomes ingreasingly difficult for small values
of ε. This is confirmed by designing LQG-controllers that minimize the input energyJ for different values ofε. The
closed-loop poles becomep1,2 = −p± εj, and the following table gives forp = 2 the value ofJ as a function ofε:

ε 1.5 1 0.5 0.1 0.05 0.01
J 2838 14848 2.54 · 105 1.64 · 108 2.62 · 109 1.64 · 1012

As expected, the required input energy goes to infinity asε goes to zero. The pole vectors fail to identify this.

Similar problems occur if we have two real RHP-poles with a real RHP-zero close by.
In summary, the pole vectors are reliable indicators of input usage only for plants with a single real RHP-

pole (in this case they also correctly identify the problem with a close-by RHP-zero). For applications with
multiple RHP-poles, including cases with complex RHP-poles, the computation of pole vectors may provide
valueable insight, but they need to be interpreted with care. In particular, also the zeros and associated
directions need to be considered.

6.2 Stable poles: Pole placement with minimum feedback gains

The pole vector results in this paper in terms of minimum input usage apply only to an unstable (RHP)
pole, because for a stable plant the minimum input usage is zero. However, from (7) and (8) we note that an
alternative interpretation is that pairing on large elements in the pole vectors minimizes the required state
feedback gainKj and observer gainKf,k, and this result also generalizes to moving a stable (LHP) pole.
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6.2.1 State feedback to inputuj.

We want to move the distinct real open-loop polep to the closed-loop locationµ by the use of state feedback
from inputuj. The required state feedback gain vector is

Kj =
p− µ

up,j

qT (15)

whereup,j is thej’th element in the input pole vector corresponding to the polep andq is the corresponding
left eigenvector. Here only the scalarup,j depends on the choice of inputj, so it follows that any matrix
norm ofKj is minimized by selecting the inputj corresponding largest element magnitude in the input pole
vectorup.

6.2.2 State observer based onyk.

Similarly, we want to move the observer polep to the desired locationν by feedback from outputyk. The
required observer feedback gain vector is

Kf,k =
p− ν

yp,k

t (16)

whereyp,k is thek’th element in the output pole vector corresponding to the polep andt is the corresponding
right eigenvector. Thus, the norm ofKf,k is minimized by selecting the outputk corresponding largest
element magnitude in the output pole vectoryp.

The above results provide some theoretical basis for using the pole vectors as a tool selecting an in-
put/output pair for moving a stable pole, including a pole located at the origin.

7 Conclusion

The input and output pole vectors for a polep are defined asup = BHq (whereq is the left eigenvector of
A corresponding to the polep) andyp = Ct (wheret is the right eigenvector), or alternativelyG(p)up =
∞·yp. The element magnitudes of the pole vectors are inversely related to the minimum input usage needed
to stabilize one unstable mode using a SISO controller. This holds both in terms of minimum input energy
with white noise and for theH2- andH∞-norms of the closed-loop transfer functionKS from plant outputs
to plant inputs as given in Theorem 3:

min
Kjk(s)

‖KjkSkk(s)‖∞ =
1√
|2p|

min
Kjk(s)

‖KjkSkk(s)‖2 = |(Gkj)
−1
s (p)| = |2p| · |qHt |

|up,j| · |yp,k|

whereup,j is thej’th element in the input pole vector, andyp,k is thek’th element in the output pole vector.
The pole vectors thus provide a powerful tool for selecting actuators and sensors for stabilizing control. An
alternative interpretation of pole vectors, which also hold for a stable mode, is that large elements minimize
the required feedback gains for pole placement. The main limitation is that the theoretical results only hold
for moving a single mode.

Theorem 3 also provides, for a SISO plantG with a single unstable polep, a lower bound on theH2-
andH∞-norms ofKS that needs to be satisfied for any stabilizing controllerK:

min
K(s)

‖KS(s)‖∞ =
1√
|2p|

min
K(s)

‖KS(s)‖2 = |G−1
s (p)| (17)
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