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Fig. 2. Scalar example. Bound on relative undershoot versus settling time for
several values of�.
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It follows from (17) that a plot ofr�us(T; �y) as a function ofT may
be obtained by plotting� againstT �es. Several of these plots are shown
in Fig. 2. Note that the bound on the relative undershoot increases for
fast settling times and smaller�y (slower zero dynamics). This is quali-
tatively similar to the linear case where the bound1=(e�T �1) is worse
for fast settling and slow zero dynamics.

IV. CONCLUSION

NMP behavior can be understood in the linear and nonlinear case
using the zero-dynamics formulation. In this formulation, the “con-
straints” imposed by plant NMP behavior can be examined. In partic-
ular, the permissible output behavior must drive the state of the zero
dynamics onto the stable manifold. Furthermore, in cases where we
wish to achieve this in a finite time, a lower bound on the required
output deviation is imposed. For the case of scalar nonlinear NMP zero
dynamics, we show fast settling and small undershoot are incompatible
requirements. This is consistent with linear system conclusions for real
NMP zeros.
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Selection of Variables for Stabilizing Control
Using Pole Vectors

Kjetil Havre and Sigurd Skogestad

Abstract—For a linear multivariable plant, it is known from earlier work
that the easy computable pole vectors provide useful information about in
which input channel (actuator) a given mode is controllable and in which
output channel (sensor) it is observable. In this note, we provide a rigorous
theoretical basis for the use of pole vectors, by providing a link to previous
results on performance limitations for unstable plants.

Index Terms—Actuator selection, control structure design, -infinity
control, -control, input usage, linear systems, performance limitations,
sensor selection.

I. INTRODUCTION

Most available control theories consider the problem of designing
an optimal multivariable controller for a well-defined case with given
inputs, outputs, measurements, performance specifications, and so on.
The following importantstructural decisions[14] that come before the
actual controller design are therefore not considered.

1) Selection of inputsu (manipulated variables, actuators).
2) Selection of primary outputsy1: controlled variables with spec-

ified reference values.
3) Selection of secondary outputs (measurements, sensors)y2:

Extra variables that we select to measure and control in order to
stabilize the plant and achieve local disturbance rejection.
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4) Selection of control configuration: Structure of the subcon-
trollers that interconnect the above variables.

5) Selection of controller type (control law specification, e.g., PID-
control, LQG, etc.)

Most industrial control systems are hierarchically structured with at
least two layers. In the lower (secondary, regulatory) control layer, we
have local control of the selected secondary controlled variablesy2.
The controllers at this level are in most cases single-input–single-output
(SISO) controllers. The reference values(r2) for these secondary
variables are degrees of freedom (inputs) for the upper (primary,
master, supervisory) control layer which deals with the control of the
primary outputsy1. The primary control layer may use multivariable
or decentralized controller. The relative gain array (RGA) [2] is a
simple and popular tool for evaluating whether to use multivariable
control, and to assist in the possible selection of input–output pairings
for decentralized control. Specifically, pairing on negative steady-state
RGA-elements should be avoided, because otherwise the sign of the
steady-state gain will change if a loop is somehow taken out of
service, which leads to instability if the loop contains integral action.
However, this note deals with the input–output pairing problem for
the secondarycontrol layer, with focus on stabilizing control. Here
the RGA is not usually a very useful tool, because: 1) interactions
in this layer are usually small; 2) stabilizing loops are not taken
out of service; and 3) output performance is not an important issue
in this layer.

The objective of this note is to find a simple tool for selecting inputs
u (actuators) and outputsy (sensors) for stabilizing control, which is a
subproblem of decisions 1) and 3) as listed earlier. Intutively, the clas-
sical concepts of state controllability and observability seem useful,
since we want to select inputs such that the unstable states are easily
controlled (excited), and select outputs such that the unstable states are
easily observed. This leads one to consider the easily computable input
pole vectors (directions)uuup and output pole vectorsyyyp as a tool for
selecting inputs and outputs for stabilizing control. This approach also
makes it possible to consider the inputs (state controllability) and out-
puts (observability) separately. Such ideas have been around in the liter-
ature since the 1960s, and, although we could not find it clearly stated, it
has surely been used by practicioners. The basis for our work, was an at-
tempt to design a stabilizing control system for the Tennessee–Eastman
challenge problem [4], where we found that the pole vectors provided
very useful information for selecting inputs and outputs. This led us
to search for a more rigorous basis for the use of pole vectors, and
we were able to derive a direct link between the pole vectors and the
minimum norm of the transfer functionKS from plant outputs (noise,
disturbances) to plant inputs, both in terms theH2- andH1-norms.
This is clearly relevant, since an important issue for stabilizing con-
trol is to find an input–output pairing such that the input usage is min-
imized. First, this reduces the likelihood for input saturation (which
most likely will result in instability), and second, it minimizes the “dis-
turbing” effect of the stabilization of the remaining control problem.
More specifically, for a planty = Gu + Gdd with feedback control
u = �K(y + n � r) the closed-loop input signal is

u = �KS( n+Gdd

unavoidable

�r)

whereS = (I+GK)�1. Thus, to minimize the required (unavoidable)
input usage(u) due to measurement noise(n) and disturbances(d), we
should choose input–output pairings for stabilizing control such that
we minimize the resulting magnitude of the stabilized transfer func-
tion [KS]jk from the selected outputyk to the selected inputuj . Note
that the transfer functionKS should also be minimized in order to
maximize the robustnes with respect to additive uncertainty (e.g., [7]).
However, the presence of an unstable [right-half plane (RHP)] pole im-

poses limitations on the achievable control performance [19], [7], [6],
[5], [10], including a bound on the minimum norm ofKS. The min-
imum value of theH1-norm ofKS is equal to its Hankel singular
value [7], [6].

In summary, the main contribution of this note is to provide a rig-
orous link between the concept of pole vectors and previous work on
control performance limitations. The presentation in this note is brief
in places, and for detailed proofs and additional examples we refer to
[8, Ch. 6].

Notation is fairly standard. We consider a linear plant with state-
space realization

dx(t)

dt
= Ax(t) +Bu(t) y = Cx(t) +Du(t)

t time;
x(t) 2 n state;
u(t) 2 m input;
y(t) 2 l output;
A;B;C;D real matrices of appropriate dimensions.

The corresponding transfer function matrix from inputsu to outputs

G(s) = C(sI �A)�1B +D
s
= A B

C D

:

We will use the following indexes (subscripts):i for the states,x, j for
the inputsu, andk for the outputsy. We letpi = �i(A) denote the
i’th pole ofG(s), where�i(A) is thei’th eigenvalue ofA. When we
refer to the “mode”pi we mean the dynamic response associated with
pi. TheH1-norm of the systemM is

kM(s)k1 = sup
!

��M(j!)

and theH2-norm ofM is

kM(s)k2 =
1

2�

1

�1

tr(M(j!)HM(j!))d!:

II. POLE VECTORS

For a polepi the corresponding right eigenvectorttti (“output state
direction”) and left eigenvectorqqqi (“input state direction”) are defined
by

Attti = pittti; qqq
H
i A = piqqq

H
i :

We usually normalize the eigenvectors to have unit length, i.e.,ktttik2 =
1 andkqqqik2 = 1. The input pole vectorassociated with the polepi is
defined as

uuup;i = B
H
qqqi (1)

and theoutput pole vectoris defined as

yyyp;i = Cttti: (2)

For a given realization(A;B;C;D) and normalized eigenvectors, the
pole vectors corresponding to a distinct polepi are unique up to the
multiplication of a complex scalarc of length 1(jcj = 1). For a re-
peated polepi (not distinct) there may be more than one linearly inde-
pendent eigenvector, in which case the eigenvectors and pole vectors
associated withpi are matrices. (These technical issues are not impor-
tant for this note, since all theorems are for distinct poles). To motivate
the introduction of pole vectors, consider for the case when alln poles
are distinct the following dyadic expansion of the transfer function:

G(s) =

n

i=1

1

qqqHi ttti
�
Ctttiqqq

H
i B

s� �i
+D

=

n

i=1

1

qqqHi ttti
�
yyyp;iuuu

H
p;i

s� �i
+D: (3)
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Note here thattttiqqqHi is a rank-onen�nmatrix andyyyp;iuuu
H
p;i is a rank-one

l�m matrix, whereas the inner productqqqHi ttti is a scalar. Douglas and
Athans [3] note thatuuup;i = BHqqqi is “an indication of how much the
i’th mode is excited by the inputs”, and thatyyyp;i = Cttti is “an indi-
cation of how much thei’th mode is observed in the outputs.” Indeed,
the pole vectors may be used for checking the state controllability and
observability of a system, and from linear system theory we have the
following [20, p. 52].

• The modepi is controllable if and only ifuuup;i = BHqqqi 6= 0 (for
all left eigenvectorsqqqi associated withpi).

• The modepi is observable if and only ifyyyp;i = Cttti 6= 0 (for all
right eigenvectorsttti associated withpi).

It follows that a system is controllable (observable) if and only if every
modepi is controllable (observable). Furthermore, a modepi is con-
trollable from an inputuj if the j ’th element inuuup;i is nonzero, and
observable from an outputyk if the k’th element inyyyp;i is nonzero.

From the latter results it seems clear that the magnitudes of elements
in the input pole vectoruuup;i give information about from which input
the i’th mode is most controllable, and that the magnitude of the ele-
ments in the output pole vectoryyyp;i give information about in which
output thei’th mode is most observable. The objective of this note is to
confirm this intuition in terms of which input and output to select for
stabilizing control.

Remark 1: The pole vectors are easy to compute as part of an
eigenvalue computation, but one needs to be a bit careful to get the
same order for the left and right eigenvectors. Matlab routines for
their calculation are available from the home page of S. Skogestad:
http://www.chemeng.ntnu.no/~skoge.

Remark 2: The inner productqqqHi ttti of the eigenvectors influences
the magnitude of the transfer function and thus the magnitude of the
input usage, but does not influence the relative ranking of candidate
inputs and outputs.

The following example illustrates how the pole vectors may be useful
for practical applications.

Example 1: The Tennessee Eastman chemical process [4] was in-
troduced as a challenge problem to test methods for control structure
design. The process has 12 manipulated inputs and 41 candidate mea-
surements, of which we here consider 11. The open-loop process is
unstable, and the first step in a control system design for this process
is to design a stabilizing control system. To assist in this step, we com-
pute the pole vectors. The model has six unstable poles in the operating
point considered

pi = [ 0 0:001 0:023� 0:156j 3:066� 5:079j ] :

The inner products of the left and right eigenvectors corresponding to
the unstable modes are

q
H
i ti = [ 0:3209 0:0467 0:0210 0:0074 ] :

The output pole vectors are

jYpj =

0:000 0:001 0:041 0:112

0:000 0:004 0:169 0:065

0:000 0:000 0:013 0:366

0:000 0:001 0:051 0:410

0:009 0:580 0:488 0:315

0:000 0:001 0:041 0:115

1:605 1:192 0:754 0:131

0:000 0:001 0:039 0:107

0:000 0:001 0:038 0:217

0:000 0:001 0:055 1:485

0:000 0:002 0:132 0:272

where we have taken the absolute value to avoid complex numbers in
the vectors, and we have combined eigenvector pairs corresponding to

a complex eigenvalue into a single column. The first column corre-
sponds to the polep1 = 0, the second column corresponds to the pole
p2 = 0:001, the third column corresponds to the complex conjugate
pairp3;4 = 0:023� 0:156j, and the fourth column corresponds to the
complex conjugate pairp5;6 = 3:066� 5:079j. From the output pole
vectors, we see that the pole atp1 = 0 is observable in output 7,p2
in outputs 5 and 7,p3;4 mostly in outputs 5 and 7, andp5;6 mostly in
output 10. The input pole vectors are

jUpj =

6:815 6:909 2:573 0:964

6:906 7:197 2:636 0:246

0:148 1:485 0:768 0:044

3:973 11:550 5:096 0:470

0:012 0:369 0:519 0:356

0:597 0:077 0:066 0:033

0:132 1:850 1:682 0:110

22:006 0:049 0:000 0:000

0:007 0:054 0:009 0:013

0:247 0:708 1:501 2:020

0:109 0:976 1:446 0:753

0:033 0:094 0:201 0:302

:

From the input pole vectors, we see that the pole atp1 = 0 is most
easily controllable from input 8,p2 from input 4,p3;4 from input 4,
andp5;6 from input 10.

When designing a stabilizing control system, we normally start by
stabilizing the “most unstable” (fastest) mode with the largest absolute
value, i.e., polep5;6 in this case. From the pole vectors, this mode is
most easily stabilized by use of input 10 (reactor cooling water flow) to
control output 10 (the reactor cooling water outlet temperature). We de-
signed a simple PI-controller for this loop and recomputed the poles. In
addition to stabilizing the mode corresponding top5;6, the recomputa-
tion of the system poles shows that the closing of this single loop also
stabilizes the mode corresponding top3;4, which is reasonable since
the the pole vectors show that this mode is observable in output 10 and
controllable from input 10. The stabilization of the two remaining in-
tegrators (p1 andp2) requires the closing of two additional loops (two
liquid level loops). For more details, see [8] and [9].

The above example demonstrates the practical usefulness of pole
vectors. The objective of the remaining of this note is to rigorously
link the pole vectors to existing results on achievable performance.

III. STABILIZING CONTROL WITH MINIMUM INPUT ENERGY

(H2-NORM)

A. SISO Control

A critical issue is usually to avoid saturation of the input used
for stabilization, because otherwise the system effectively becomes
open-loop and stability is lost. More generally, it is desirable to
minimize the input usage required for stabilization, and this motivates
the following problem:

Problem 1 (SISO Input Energy for Stabilization; see
Fig. 1): Consider a plantG with a single1 modep 2 + (Re p > 0)
and white measurement noisenk of unit intensity in each outputyk.
Find the best pairinguj $ yk, such that the plant is stabilized with
minimum expected input energy

J(j; k) = E lim
T!1

1

T

T

0

u
2

j (t)dt : (4)

At first sight, it is not clear that the output selection problem is in-
cluded at all, since the outputs do not enter into the objective (4) ex-
plicitly. However, the output selection problem is included implicitly

1We consider a specific pole = and the subscript is omitted in the
following.
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Fig. 1. Plant with stabilizing control loop .

through the measurement noise and the expectation operatorE. This
important problem has attracted little attention in the system theory lit-
erature, although there is some related work [1], [13], [16]–[18]. For
this problem, an analytical solution can be found in terms of the pole
vectors.

Theorem 1 (Solution to Problem 1):The minimum input energyJ ,
for a specific inputj and outputk is

J(j; k)min =
8p3(qqqHttt)2

u2p;jy
2
p;k

(5)

wherep is the pole,up;j is thej ’th element in the input pole vector,
yp;k is thek’th element in the output pole vector, andqqq andttt are the
left and right eigenvectors corresponding to the modep. Stabilization is
impossible for the pair(j; k), even with infinite input energy, ifup;j =
0 (the modep is not controllable from inputj) or yp;k = 0 (the modep
is not observable from outputk). The numerator in (5) is independent of
the selection of input and output. Hence, to minimize the input energy
required for stabilization with SISO control, one should

• select the inputj corresponding to the largest entryjup;j j in the
input pole vectoruuup;

• select the outputk corresponding to the largest entryjyp;kj in the
output pole vectoryyyp.

Proof of (5): Because of the separation theorem we may prove
(5) by first finding the best input using state feedback (LQR) under the
assumption of perfect measurement of all states, and then constructing
the optimal state observer (LQE).

LQR: Optimal state feedback to inputuj . In this case, the problem
is to minimize the input usage due to nonzero initial statesx0, i.e.,
minimize the deterministic costJLQR(j) =

1

0
u2j (t)dt. The cor-

responding Riccati equation with zero weight on the states and unity
weight on the input becomesATX+XA�XBeje

T
j B

TX = 0, where
ej is a unit vector with 1 in positionj and 0 in the other elements. With
a single real polep the solution isX = (2p=u2p;j)qqqqqq

T � 0 and the
optimal state feedback gain becomes

Kj = eTj B
TX =

2p

up;j
qqqT : (6)

LQE: Kalman filter (state observer) based onyk. There is no process
noise and the Riccati equation becomesY AT+AY �Y CT eie

T
i CY =

0. The solution isY = (2p=y2p;k)tttttt
T � 0 so the optimal feedback gain

from outputyk to the state estimate becomes

Kf;k = Y CT ek =
2p

yp;k
ttt: (7)

Finally, to obtain the value of the expected input energyJ , we use [12,
Th. 5.4 part (d), pp. 394–395]

J(j; k) =tr XKf;kK
T
f;k

=tr
2p

u2p;j
qqqqqqT

2p

yp;k
ttt
2p

yp;k
tttT =

8p3

u2p;jy
2
p;k

(qqqT ttt)2:

B. Multiple-Input–Multiple-Output (MIMO) Control

We here consider the same problem as before, but with multivariable
(MIMO) control.

Theorem 2 (MIMO Input Energy for Stabilization):Consider a plant
G with a single unstable modep 2 + and with white measurement
noisenk of unit intensity in each outputyk. The minimal achievable
input energy required for stabilization

J = E lim
T!1

1

T

T

0

uT (t)u(t)dt (8)

is given in terms of the pole vectors

Jmin =
8p3 � (qqqT ttt)2
kuuupk22 � kyyypk22

: (9)

By comparing the minimum value ofJ(j; k) (SISO control) with the
minimum value ofJ (MIMO control), we can quantify the extra input
energy needed to stabilize the plant using SISO control compared to full
multivariable control. As expected, this is directly given by the relative
magnitudes of the elements in the pole vectors

J(j; k)minp
Jmin

=
kuuupk2 � kyyypk2
jup;j j � jyp;kj � 1: (10)

C. Interpretation in Terms of theH2-Norm

The aforementioned theorems may alternatively be interpreted in
terms of theH2-norm of the closed-loop transfer functionKS from
plant inputs to plant outputs. This follows since (e.g., [20]):

min
K

kKjkSkk(s)k2 = J(j; k)min where

Skk(s) =(1 +GkjKjk(s))
�1 (11)

min
K

kKS(s)k2 =
p
Jmin where

S(s) =(I +GK)�1: (12)

IV. STABILIZING CONTROL WITH MINIMUM -INPUT USAGE

(H1-NORM)

Interestingly, almost identical results can be derived in terms of
the H1-norm. Thus, theH2- and H1-norms give the same best
input–output pairing for stabilizing a plantG with a single unstable
mode.

Theorem 3 (Stabilizing SISO Control With MinimumH2 andH1
Input Usage): Consider a plantG with a single unstable modep 2
+. The minimum achievableH2- andH1-norm of the closed-loop

transfer functionKjkSkk from outputyk to the inputuj is then

min
K (s)

kKjkSkk(s)k1 =
1

j2pj min
K (s)

kKjkSkk(s)k2

=j(Gkj)
�1
s (p)j

=
j2pj � jqqqHtttj
jup;j j � jyp;kj (13)

whereup;j is thej ’th element in the input pole vector,yp;k is thek’th
element in the output pole vector,qqq andttt are the left and right eigenvec-
tors ofA corresponding to the polep, Skk(s) = (1+GkjKjk(s))

�1,
and the notation(Gkj)

�1
s (p) means: Find the stable version of

Gkj with the RHP-pole ats = p mirrored across the imaginary
axis, i.e.,(Gkj(s))s = (s� p=s+ p)Gkj(s), take its inverse, i.e.,
(Gkj(s))

�1
s = ((Gkj(s))s)

�1, and evaluate(Gkj(s))
�1
s ats = p.

Remark 1: When minimizing the input usage, both in terms of the
H2- andH1-norms, the unstable open-loop polep is mirrored into the
left-half plane for the closed-loop system.

Remark 2: TheH1-controller that achieves the bound in (13) is in
general improper.
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Proof of Theorem 3:The identityminK (s) kKjkSkk(s)k1 =

j(Gkj)
�1
s (p)j follows from [10, Th. 4 and eq.(26)]. Similar and more

general results in terms of the Hankel singular value ofKS are given in
[6, Sec. 5.1]. The last identity is proved as follows: Sincep is the only
unstable mode, it follows from (3) that a partial fraction expansion of
G contains the following two terms:

G(s) =
1

qqqHttt
�
yyypuuu

H
p

s� p
+N(s)

whereN(s) is stable. Also,Gkj(s))s = eTk (s� p=s+ p)G(s)ej and
sinceyp;k = eTk yyyp andup;j = uuuHp ej we have

j(Gkj)s(p)j =
1

qqqHttt

yp;kup;j
s+ p

+
s� p

s+ p
Nkj(s)

s=p

=
jyp;kj � jup;j j

j2pj � jqqqHtttj
:

The relationship to theH2-norm follows from Theorem 1 and (11).

V. ACTUATOR/MEASUREMENTSELECTION FORSTABILIZING CONTROL

Theorem 3 has the following implication for actuator/measurement
selection for a plant with a single unstable mode.

The required input usage for stabilization, both in terms of the
H2- andH1-norms, is minimized by selecting the output (mea-
surement)yk corresponding to the largest element in the output
pole vectoryyyp, and the input (actuator)uj corresponding to the
largest element in the input pole vectoruuup.
More precisely, we propose the following procedure for designing a

SISO stabilizing controller, assuming that input usage is a concern.

1) Scale the plant inputs and outputs such that a unit change in each
inputuj is of equal importance, and a unit change in each output
yk is of equal importance. Specifically, we have

G = D�1y ĜDu

whereĜ denotes the original (unscaled) model, and the diagonal
scaling matrices are

Dy = diagfŷk;maxg Du = diagfûj;maxg:

Typically, ûj;max denotes the maximum allowed input deviation,
for example, the distance from the nominal input value to its
saturation limit. Typically,̂yk;max denotes the magnitude of the
measurement noise(n) plus the expected output deviation due
to disturbances (process noise)(Gdd).

2) Compute the pole vectorsuuup andyyyp.
3) Select an inputuj corresponding to a large element in the input

pole vectoruuup.
4) Select an outputyk corresponding to a large element in the output

pole vectoryyyp.
5) Design a controller for this input/output pairing.

Obviously, the input magnitude is not the only concern when it
comes to selecting an input–output pairing for stabilizing control, and
this is the reason for using the term “large” rather than “largest” in
steps 3) and 4).

Example 2 Stabilization of Chemical Reactor:The objective is to
design a stabilizing SISO controller for the exotermic continuously
stirred tank reactor (CSTR) in Fig. 2 using a SISO controller. The
candidate actuators (inputs) are the outflow and inlet temperature,

u =
F

Tin
, and the candidate measurements (outputs) are the

Fig. 2. Chemical reactor (CSTR).

reactor volume (level) and the reactor temperature,y =
V

T
. The

appropriately scaled linear model is

G(s) =
�20
s

0
�70

s(s�3:5)
20

s�3:5

s
=

0 0

70 3:5

�1 0

0 20

20 0

0 1

0 0

0 0

:

The pole at the origin(p1 = 0) is due to the integrating level, and
the unstable pole atp2 = 3:5 is due to the exothermic reaction. The
corresponding pole vectors are

Yp = [ yyyp;1 yyyp;2 ] =
0:9988 0

0:9988 1

Up = [uuup;1 uuup;2 ] =
�1 �0:9988

0 0:9988

and the inner products of the corresponding eigenvectors areqqqH1 ttt1 =
0:05 andqqqH2 ttt2 = 0:05. Fromyyyp;2 we see that the unstable mode at
p2 = 3:5 is only observable in output 2 (this is also seen easily from
G(s)), and fromuuup;2 we see that the unstable mode is equally con-
trollable in both inputs. Thus, to minimize the input usage required for
stabilization we should use output 2 and any of the two inputs.

Comment:We note fromuuup;1 that the pole at the origin(p1 = 0)
is only controllable from input 1, but observable in both outputs. This
suggest that we may be able to move both the poles into the LHP if we
design a controller using input 1 and output 2. This is indeed confirmed,
for example, by designing a LQG-controller for the elementg21(s).

Remark: For this simple example, we reach the same conclusion
easily by looking at the elements ofG(s), and indeed, an evaluation
of the poles and zeros of the transfer function elements yields valuable
insight. However, for more complicated cases the use of pole vectors
avoids the combinatorial complexity of considering input–output pairs
and is also more reliable numerically.

VI. DISCUSSION

A. Stable Poles: Pole Placement With Minimum Feedback Gains

The pole vector results in this note, in terms of minimum input usage,
apply only to an unstable (RHP) pole, because for a stable plant the
minimum input usage is zero. However, from (6) and (7), we note that
an alternative interpretation is that pairing on large elements in the pole
vectors minimizes the required state feedback gainKj and observer
gainKf;k, and this result also generalizes to moving a stable (LHP)
pole.

State feedback to inputuj . We want to move the distinct real
open-loop polep to the closed-loop location� by the use of state
feedback from inputuj . The required state feedback gain vector is

Kj =
p� �

up;j
qqqT (14)

whereup;j is thej ’th element in the input pole vector corresponding
to the polep andqqq is the corresponding left eigenvector. Here only
the scalarup;j depends on the choice of inputj, so it follows that any
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matrix norm ofKj is minimized by selecting the inputj corresponding
to the largest element magnitude in the input pole vectoruuup.

State observer based onyk. Similarly, we want to move the ob-
server polep to the desired location� by feedback from outputyk.
The required observer feedback gain vector is

Kf;k =
p� �

yp;k
ttt (15)

whereyp;k is thek’th element in the output pole vector corresponding
to the polep andttt is the corresponding right eigenvector. Thus, the
norm ofKf;k is minimized by selecting the outputk corresponding to
the largest element magnitude in the output pole vectoryyyp.

Our results thus provide some theoretical basis for using the pole
vectors as a tool selecting an input/output pair for moving a stable pole,
including a pole located at the origin.

B. Multiple Unstable Poles

The main limitation with the theoretical results presented in this
note is that they only apply for cases with a single RHP-pole. For
cases with multiple RHP-poles, the pole vectors associated with
a specific RHP-pole give the input usage required to move this
RHP-pole assuming that the other RHP-poles are unchanged. This
is of course unrealistic and may lead to misleading results for some
plants which are difficult to stabilize, for example, if we have a
complex pair of RHP-poles with a RHP-zero nearby [8, Ex. 6.5].

Nevertheless, the pole vectors have proven themselves useful in
several applications with more than one unstable mode, including the
stabilizing control of the Teneessee–Eastman process [8], [9] with
six unstable modes, and the selection of pressure sensor location for
stabilization of desired two-phase flow regimes in pipelines [11],
[15] which has a pair of complex RHP-poles. For such applications
the pole vectors need to be interpreted with care and the results
need to be checked, for example, by designing controllers. It is
recommended to start by using the pole vectors ofG(s) to design a
controller for the most unstable mode (furthest into the RHP). Next,
obtain the transfer function for the “new” partially stabilized plant,
and repeat steps 2)–5) until the plant is completely stabilized. In
some cases, as illustrated in the reactor example, closing a single
loop can stabilize more than one unstable mode.

VII. CONCLUSION

The input and output pole vectors for a polep are defined asuuup =
BHqqq (whereqqq is the left eigenvector ofA corresponding to the pole
p) andyyyp = Cttt (wherettt is the right eigenvector). The main contribu-
tion of this note is to show that the pole vectors provide a simple and
powerful tool for selecting inputs (actuators) and outputs (sensors) for
stabilizing control, for cases where input usage is an important con-
cern. More precisely, we show that the element magnitudes of the pole
vectors are inversely related to the minimum input usage needed to sta-
bilize one unstable mode using a SISO controller. This holds both in
terms of minimum input energy with white noise and for theH2- and

H1-norms of the closed-loop transfer functionKS from plant outputs
to plant inputs as given in Theorem 3

min
K (s)

kKjkSkk(s)k1 =
1

j2pj
min
K (s)

kKjkSkk(s)k2

= (Gkj)
�1
s (p) =

j2pj � jqqqHtttj

jup;j j � jyp;kj

whereup;j is thej ’th element in the input pole vector, andyp;k is the
k’th element in the output pole vector. Input usage is thus minimized
by selecting an actuator (input) with a corresponding large value of
jup;j j and a sensor (output) with a corresponding large value ofjyp;kj.
Furthermore, if one element in the pole vector dominates [see (10)],
there is little loss imposed by selecting only one actuator or one sensor.
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