

Problem Motivation

Controller design for complex unstable systems

Simplified approach using division of objectives

- Q: Which outputs and inputs be used for stabilization?
- \mathcal{A} : Choose variables which minimize input usage.
- Q: Why minimize input usage?
- Likelihood of input saturation is reduced
- \mathcal{A} : Stabilized system is least affected by stabilization layer.

Cyclic behavior of CSTR due to input saturation (Marlin, 1996)

Approach: Characterization of achievable input performance

Minimize effect of disturbances on inputs

Closed loop system

Results also useful for

- Studying interaction between design and control
- Formulation of optimal controller synthesis problem

System Stabilization using Minimum Energy Control Vinay Kariwala[†], Sigurd Skogestad[‡], J. Fraser Forbes[†] and Edward S. Meadows[†]

[†]{kariwala,fforbes,emeadows}@ualberta.ca

Achievable Input Performance

Assumptions

- FDLTI system, Controllability and Observability
- Distinct unstable poles, Strictly proper system

Sensitivity function

 $\|\mathbf{KS}\|_{2}^{opt} = \sum_{i=1}^{n_{p}} \frac{2|\operatorname{Re}(\bar{\mathbf{A}}_{ii})|}{2}$ $\sum_{i=1}^{\mathcal{L}} \sigma_{Hi}^2(\mathcal{U}[\mathbf{G}]^*)$ $\|\mathbf{KS}\|_{\infty}^{opt} = \underline{\sigma}_{H}^{-1}(\mathcal{U}[\mathbf{G}]^{*})$

 $\|\mathbf{KS}\|_2^{op}$

State matrix of balanced realization of $\mathcal{U}[\mathbf{G}]$ Similar results - Time delay systems, Colored noise

Limiting Factors

 $\mathbf{G} = \frac{(s - \alpha)}{(s - p_1)(s - p_2)}$

 $\|\mathbf{KS}\|_{2}^{opt} \propto \frac{(\alpha^{2} - f(p_{1}, p_{2}))^{0.5}}{|(p_{1} - \alpha)(p_{2} - \alpha)|}$

Obstacles to detectability and stabilizability \Rightarrow Poorly separated (oriented) unstable poles and zeros

American Institute of Chemical Engineers Annual Meeting 2003, San Francisco

[‡] skoge@chemeng.ntnu.no

[‡]Department of Chemical Engineering Norwegian University of Science and Technology N-7941 Trondheim, Norway

Unstable part Hankel singular values

Effect of pole-zero location

$$\mathbf{G} = \frac{e^{-\theta s}}{(s-p)}$$
$$\|\mathbf{KS}\|_{\infty}^{opt} = 2pe^{p\theta}$$

Decentralized Stabilization

Q: Stability with independent designs of loops - feasible? A: If μ interaction condition is satisfied.

Philosophy of μ -IM

Modified μ Interaction Measure

• Allow G_{bd} to be different than the diagonal elements of G • Treat excess poles also as uncertainty

When input performance of each loop is maximized

Hankel singular value

Variable selection

Optimal combination depends on choice of norm.

 \mathcal{H}_{∞} norm addresses input saturation closely (preferred)

Tennessee Eastman Process (base case)

Havre's recommendation - Avoid using feed streams

CV $\|\mathbf{KS}\|_{\infty}^{opt}$ MV 0.11 y_{22} u_{10} 0.077 y_{21} u_8 , u_{11} 0.0235 y_{12} , y_{21} u_{10} 0.0222 u_{10} , u_{11} y_{12} , y_{21} Alternatives for stabilization using MIMO controller

Trade off between number of variables used and input usage

off-diagonal elements

G_{*I*} treated as uncertainty \mathbf{G}^{bd} , \mathbf{G} - same unstable poles Limited to stable systems

 $\|\mathbf{KS}\|_{\infty}^{opt} \leq |\underline{\sigma}_{H}(\mathcal{U}[\mathbf{G}_{bd}]) - \|\mathbf{G}_{I}\|_{\infty}|^{-1}$

Unstable part