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To enable the use of traditional tools for analysis of multivariable controllers such
as model predictive control (MPC), we develop a state space formulation for the
resulting controller for MPC without constraints or assuming that the constraints
are not active. Such a derivation was not found in the literature. The formulation
includes a state estimator.

The MPC algorithm used is a receding horizon controller with infinite horizon
based on a state space process model. When no constraints are active, we obtain
a state feedback controller, which is modified to achieve either output tracking,
or a combination of input and output tracking.

When the states are not available, they need to be estimated from the measure-
ments. It is often recommended to achieve integral action in a MPC by estimating
input disturbances and include their effect in the model. We show that to obtain
offset free steady state the number of estimated disturbances must equal the
number of measurements. The estimator is included in the controller equation,
and we obtain a formulation of the overall controller with the set-points and
measurements as inputs, and the manipulated variables as outputs.

One application of the state space formulation is in combination with the
process model to obtain a closed loop model. This can for example be used to
check the steady-state solution and see whether integral action is obtained or not.

1. Introduction

In this paper, we develop a state-space formulation for a MPC without constraints
or assuming that the constraints are not active. This state-space formulation of the
controller enables the use of traditional tools to get insight into how the controller
behaves. This is illustrated in Faanes & Skogestad, 2003a, b (or Faanes, 2003, Chapt.
4 and 7). Maciejowski (2002) (independently) uses a linear formulation for a MPC
controller to analyse its controller tuning for a paper machine headbox. He combines
the linear controller formulation with the process model, and calculates the singular
values of the sensitivity function and the complementary sensitivity function.

The main idea behind MPC is that a model of the process is used to predict the
response of future moves of the control inputs (the inputs that the controller can
manipulate to control the process). This prediction is used to find an optimal
sequence of the control inputs. Optimal means that a certain criterion containing an
output vector and the vector of the control inputs is minimized.

In most MPC implementations the control inputs are assumed to be held constant
within a given number of time intervals. At a given time, the first value in the
sequence of control inputs is implemented in the process. The prediction and the
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optimal sequence depend on the current state of the process. At the next time step,
the state being reached is therefore used in the calculation of a new optimal control
input sequence. This sequence will not necessarily be what was computed at the
previous time step, due to the effects of model errors and unmodelled disturbances.
So, at each time step we only implement the first step in the control input sequence,
and discard the rest.

Normally, we include constraints in the optimization problem. These are con-
straints that naturally occur in a process, like the range of control valves and pump
speeds (on control inputs), and safety-related constraints on the outputs. One may
also restrict the rate of change of the control inputs.

For a review of industrial MPCs we refer to Qin & Badgwell, 1996; Badgwell &
Qin, 2002.

In this paper, we consider the MPC formulation proposed by Muske & Rawlings
(1993). This MPC is based on a state-space model. Our assumption is that no
constraints are active, and this also covers the case when the same constraints are
active all the time and the degree of freedom is reduced. Bemporad et al. (2002) (first
appeared in Bemporad et al., 1999) have shown that the controller also for the case
with dynamic constraints is piecewise linear.

Since the models are not perfect, and there always are unmodelled disturbances,
the MPC needs some correction from measurements. The most common approach is
to estimate some output bias in the measurements, and correct for this bias. However,
for integrating processes or processes with long time constants, this method has
proved unsatisfactory (Muske & Rawlings, 1993; Lee et al., 1994; Lundström et al.,
1995). We therefore estimate input disturbances, which is straight forward when a
state-space model is applied in the MPC.

As known, MPC without constraints is a special case of optimal control, and in
Sections 2, 3 and 4 we will demonstrate how the control input can be expressed by
the current state and the previous control input. The first of these sections, Section
2, covers the simple case when the reference for the output vector is zero, whereas
Section 3 handles non-zero references. When the number of control inputs exceeds
the number of outputs, the extra degree of freedom may also be used to give
references to the control inputs (Section 4). Since the full state vector normally is not
measured, we include a state estimator, which also estimates input disturbances, in
Section 5. The total controller formulation, i.e. the control inputs as functions of the
reference and the measurements, is given in Section 6. In Section 7 we find the
number of estimated disturbances needed to obtain effective integral action. We
develop the closed loop model of the system in Section 8. The main conclusions are
summarized in Section 9.

2. Derivation of equivalent controller from receding horizon controller without active
constraints

Muske & Rawlings (1993) present a model predictive control algorithm based on
the following state-space model:
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invariant such that A, B, C and E
d

are constant matrices. The optimal control input
minimizes the following infinite horizon criterion:
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]T is a vector of N future moves of the control input,
of which only the first is actually implemented. The control input, u
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zero for all jPN. In the criterion it is assumed that the reference for y is zero. We
assume that the process is stable, and Muske & Rawlings (1993) show how this
formulation can be transformed into the following finite optimization problem:
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where H, G and F are time independent matrices expressed by the model matrices,
A, B and C, and the weight matrices, Q, R and S. Since d

k
is unknown in the future,

the term E
d
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from equation (1) is omitted in the derivation of equation (4). For
normal use of this MPC algorithm, the control input is found by optimizing equation
(4) subject to given constraints on the outputs, the control inputs and changes in the
control inputs. Assuming no active constraints, however, the optimum of equation
(4) can be found by setting the gradient equal to zero (Halvorsen, 1998):
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Only the first vector u
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is applied:
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where K and K
u

consist of the first r rows in ñH�1G and H�1F, respectively, and r
is the number of control inputs.

Since H, G and F are constant, also K and K
u

are constant matrices. The first
term can therefore be recognized as state feedback. The second term comes from the
weight on the change in control input from the original criterion. The matrix F only
contains S and zeros, so when no weight is put on the change in the control input, S
is zero, and K

u
ó0.

3. The steady-state solution

Here we consider tracking of outputs. If the output reference vector, y
r
, is nonzero,

equation (7) must be shifted to the steady-state values for the states and the control
inputs:

u
k
óK(x

k
ñx

s
)òK

u
(u

k�1
ñu

s
)òu

s
(8)

or

u
k
óKx

k
òK

u
u
k�1
ñ [K K

u
ñI ]�

x
s

u
s � (9)



234 A. Faanes and S. Skogestad
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and x
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can be found from the steady-state solver:
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where y
r

and u
r

are the references for the output and the control input, respectively.
Again, we assume that the limitations are never active, and that we have no extra
freedom for the control inputs (number of control inputs equals number of outputs),
in which case the problem reduces to solve equation (11).

Assuming square systems (i.e., equal number of control inputs and references),
no poles in the origin (which makes (IñA) invertible) and that C(IñA)�1B is
invertible (it is at least quadratic from the first assumption), we get the following
solution:
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Since we have no knowledge of future disturbances, we assume that it will keep its
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4. Generalization with tracking of inputs

In this section, we generalize the steady-state solution to include tracking of both
inputs and outputs. The total number of references that it is possible to track is
limited by the number of (independent) control inputs.

We collect the inputs that we want to give a reference into the vector u
1
, and

likewise the outputs we want to give a reference into y
1
. The rest of the inputs

and outputs are assembled into u
2

and y
2
, respectively. The model may now be

formulated as
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5. State and disturbance estimator

To calculate u
k

from equations (16) or (28) one must know the state, x
k
, and if it

is not measured, it must be estimated from the measurements. The same applies also
to the disturbance vector d

k
. If we assume that neither the states nor the disturbances

are measured, we extend the state variable with the disturbance vector
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As a basis for a state estimator the following model based on equations (1) and (2)
is introduced:
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are zero-mean, uncorrelated, normally distributed white stochastic
noise with covariance matrices of Q
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is the measured output vector, not necessarily the same as the output vector that
shall track a reference, and Cm is the corresponding matrix in the estimator model,
mapping from the states to the measured output vector. We have modelled the
disturbance as constant except for the noise.

The augmented state estimator is then formulated as
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where L is the estimator gain matrix, for example the Kalman filter gain. x̃x̄
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called the a priori estimate (since it is prior to the measurement), and x̃x̂
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posteriori estimate (after the measurement is available). For a Kalman filter, L is
given by the solution of a Ricatti equation:
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We want to express the estimator in a single expression, and this can be done in two
ways, depending on which of the two estimates one prefers to use.

Alternative 1: A posteriori estimate, x̃x̂
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Remark 1. Muske & Rawlings (1993) refer to Åström (1970) who used a priori
estimate (Alternative 2), (noting that their L corresponds to our ÃL). However,
according to Rawlings (1999) they actually used Alternative 1 (a posteriori) in their
work. Normally, that is if the computational time is not too long, the control input is
implemented directly after a new measurement has been sampled, in which case the
a posteriori estimate is preferred since it utilizes this new measurement. Thus, in this
paper we will use Alternative 1, the a posteriori estimate.

6. State-space representation of the overall controller

In this section, we will form the overall controller, containing the state feedback,
the stead-state solution and the estimator on state-space form.

With the extended state vector x̃
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where Āó(IñLC̃)(ÃòB̃K̃). This is not an ordinary discrete state-space formulation.
First, y

k�1
and x̃x̂

k
do not have the same index on the right side of equation (40). To

overcome this, we introduce the artificial state variable z
k
ó x̃x̂

k
ñLym

k
:

z
k�1
óĀz
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For SÖ0 we have not yet obtained the controller on ordinary state-space form.
We first express the controller as

z
k�1
óA

K
z
k
òB

K
ym
k
òE

K
ròG

K
u
k�1 (45)

u
k
óC

K
z
k
òD

K
ym
k
òF

K
ròH

K
u
k�1



238 A. Faanes and S. Skogestad

where in addition to the definitions above, G
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Again, we have ym
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k
ñ�

D
K

0
0 � ym

k
(50)

which yields

z̃
k�1
ó�

H
K

C
K

G
K

C
K

A
K

0 H
K

C
K

0 G
K

A
K
� z̃

k
ò�

H
K

D
K
òC

K
B

K
D

K
B

K
� ym

k
ò�

C
K

E
K
òF

K
F

K
E

K
� r (51)

For u
k

we obtain

u
k
ó [I 0 0] ẑ
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which yields the following expression for the total controller:
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In summary, we have shown that with no active constraints, the MPC controller
with augmented state estimator can be expressed on discrete state-space form.

If we instead use the a priori estimate (Alternative 2), we get a different controller
with other poles.

7. On the number of estimated disturbances

In this section, we will discuss the number of estimated disturbances (the dimen-
sion of d̂

k
) necessary to avoid stead-state offset. According to Muske & Rawlings

(1993), the number of elements in d̂
s

cannot exceed the number of measurements if
observability of the estimator shall be achieved. But what is the smallest number
required?

We first have to specify clearer what ‘no steady-state offset’ means. If the process
is perturbed by measurement noise and disturbances that change their value from
time step to time step, the control will never be offset free, and no steady state will
be obtained. Thus, we will consider the response when the noise, the model error and
the disturbances are constant. (Alternatively, one may model noise, model error and
disturbances as stochastic processes and consider a large number of experiments.)

Using as before the a posteriori estimate, the estimate of the measurement is
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In order to obtain an offset free steady state, the estimator must provide a correct
state estimate for the MPC despite model errors, constant measurement errors or
noise and a constant input disturbance at steady state. More precisely, the prediction
of the measured output must equal the actual one:
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We let index s to denote steady state.
We want to see what this condition means for our MPC and estimator, and first

we extract the expression for the estimate of x
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from the estimator equation (36):
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where L
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is the upper part of L, corresponding to the dimension of x̂
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To find u
s

we cannot use equations (13) or (20) since these include the actual state
and disturbance vectors and not their estimates. Instead we apply equation (39)
which yields for the steady-state control input

u
s
ó(IñK

u
)�1Kx̂

s
ò(IñK

u
)�1K

d
d̂
s
ò(IñK

u
)�1K

r
r (59)

since at steady state u
k�1
óu

k
óu

s
. We insert this into equation (58) and obtain

(Iñ(IñL
x
Cm)(AñB(IñK

u
)�1K))x̂

s
ó(IñL

x
Cm)(B(IñK

u
)�1K

d
òE

d
)d̂

s (60)
ò(IñL

x
Cm)B(IñK

u
)�1K

r
ròL

x
ym
s

To simplify the notation we introduce the matrices

M
1
ó(IñM

2
(AñM

3
K))�1 (61)

M
2
ó(IñL

x
Cm) (62)

M
3
óB(IñK

u
)�1 (63)

and obtain for the a posteriori state estimate

x̂
s
óM

1
M

2
M

3
K

r
ròM

1
M

2
(M

3
K

d
òE

d
)d̂

s
òM

1
L

x
ym
s

(64)

Thus equations (54) and (55) yields

ym
s
óCmx̂

s
óCmM

1
M

2
M

3
K

r
ròCm M

1
M

2
(M

3
K

d
òE

d
)d̂

s
òCm M

1
L

x
ym
s

(65)

which leads to the following matrix equation

C
m

M
1

M
2

M
3

K
r
ròCm M

1
M

2
(M

3
K

d
òE

d
)d̂

s
ò(Cm M

1
L

x
ñI)ym

s
ó0 (66)

In equation (66) the number of scalar equations equals the number of measurements
(the number of rows in Cm). The only free variables are the elements of d̂

s
. To obtain

an offset free steady-state solution of the control problem there must exist a solution
of equation (66), which implies that the number of elements in d̂

s
must be equal or

greater than the number of measurements (independent of the size of the reference,
r, and the number of control inputs, u). Thus, since the number of estimated
disturbances cannot exceed the number of measurements (see above), we may
conclude that:

If offset free steady state shall be obtained, the number of estimated disturbances
must be equal to the number of measurements.

This was, independent, also found by Muske & Badgwell (2002), except that they do
not distinguish between outputs to be controlled by the MPC and the measurements,
and Pannocchia & Rawlings (2003). Åkesson and Hagander (2003) propose to
combine input disturbance and output bias estimates, and they also find that the
total number must equal the number of measurements. In Faanes & Skogestad
(2003b) or Faanes (2003, Chapt. 7) an experimental illustration is given.

Remark 2. In the general case equation (66) cannot be used to determine d̂
s

given r
and ym

s
. It will often be many d̂

s
that fulfills equation (66), and the value of d̂s will

depend on the disturbance, measurement or model error that is present.

Example 1. In the neutralization example in Faanes & Skogestad (2003a) or Faanes
(2003, Chapt. 4) we use three measurements, and thus estimation of three disturbances
is required. For the ‘original’ MPC we only estimate two input disturbances, and the
result is insufficient integral action, as expected. The modified MPC with three
disturbance estimates gets full integral action.
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8. Closed loop model

The combination of the process model with the controller yields the closed loop
model of the system. The process is expressed by the discrete model equation (1) and
(2), which we repeat for the actual process, marked with a prime:

x
k�1
óA@x

k
òB@u

k
òE @

d
d
k

kó0, 1, 2, . . . (67)

y
k
óC @x

k
(68)

The vector of measurements, ym , is expressed by

ymóC @mx
k
òm

k
(69)

where C @m is the matrix mapping from the states to the measured output vector, and
m

k
is the measurement error. The controller is expressed by equations (44) or (53). u

k
and ym are then eliminated from the equations by combining the controller equation
with equations (67), (68) and (69). We then get the following closed loop model
(where we have omitted the tilde in the controller matrices from equation (53)):

x
k�1
ó(A@òB@D

K
C@m)x

k
òB@C

K
z
k
òB@D

K
m

k
òB@F

K
ròE @

d
d
k

(70)

z
k�1
óB

K
C @mx

k
òA

K
z
k
òB

K
m

k
òE

K
r (71)

y
k
óC @x

k
(72)

We combine the process states, x
k
, and the controller states, z

k
, into t

k
ó [xT

k
zT
k

]T
and obtain the following model

t
k�1
ó)t

k
ò*rò"d

k
ò!m

k
(73)

y
k
ó(t

k
(74)

where

)ó�
A@òB@D

K
C @m B@C

K

B
K

C @m A
K
� (75)

*ó�
B@F

K
E

K � (76)

"ó�
E @

d
0 � (77)

!ó�
B@D

K
B

K � (78)

(ó [C @ 0] (79)

One possible use of the closed loop model is to study the steady state of input
steps. Introducing the time-shift operator zóeTs where T is the time step, gives

y(z)ó((zIñ))�1*r(z)ò((zIñ))�1"d(z)ò((zIñ))�1!m(z) (80)
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The z-transform of a unit step is z/(zñ1). We apply a unit step on one of the inputs
at a time. This may be formulated as

r(z)óo z
zñ1

; d(z)ód z
zñ1

; m
z

zñ1
(81)

where o, d and k are vectors with zeros except one element equal 1. From e.g. Phillips
& Harbor (1991), p. 452, we have

lim
k��

y
k
ó lim

z�1
(zñ1)y(z) (82)

and thus

lim
k��

y
k
ó lim

z�1
z[((zIñ))�1*oò((zIñ))�1"dò((zIñ))�1!k]

(83)
ó((Iñ))�1*oò((Iñ))�1"dò((Iñ))�1!k

Thus the matrices ((Iñ))�1*, ((Iñ))�1" and ((Iñ))�1! reveal the steady-
state effect of a unit step in each of the inputs on each of the outputs. For example,
element (2, 3) in matrix ((Iñ))�1" gives the steady-state effect of a unit step in
disturbance no. 3 on output no. 2 (when the controller is applied).

Example 2. For the neutralization example in Faanes & Skogestad (2003a) or Faanes
(2003, Chapt. 4), we get for the ‘original’ MPC with estimation of disturbances into
first tank only (resulting in insufficient integral action):

((Iñ))�1*óIò�
7 · 10�8 2 · 10�6 ñ8 · 10�9

4 · 10�8 1 · 10�6 ñ5 · 10�9

6 · 10�8 2 · 10�6 ñ8 · 10�9� (84)

((Iñ))�1"ó�
8 · 10�7

1 · 10�6

1 · 10�4� (85)

((Iñ))�1!óñIò�
ñ2 · 10�2 2 · 10�2 ñ1 · 10�4

ñ0.3 0.3 ñ2 · 10�3

1 ñ1 8 · 10�3 � (86)

We see that we get significant deviations from set point when measurement errors are
present. For example, a measurement error of 1 in measurement no. 1 gives a deviation
from set-point of 1 in output 3 (element 3, 1) in the matrix in (86)). With disturbances
in all outputs (and full integral action), we obtain

((Iñ))�1*óIò�
ñ1 · 10�6 ñ9 · 10�6 3 · 10�5

ñ5 · 10�7 ñ4 · 10�6 1 · 10�5

ñ9 · 10�8 ñ8 · 10�7 3 · 10�6� (87)

((Iñ))�1"ó�
5 · 10�6

8 · 10�7

ñ2 · 10�4� (88)
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((Iñ))�1!óñIò�
4 · 10�8 8 · 10�10 ñ6 · 10�12

ñ2 · 10�7 8 · 10�8 ñ6 · 10�10

ñ3 · 10�5 1 · 10�5 ñ8 · 10�8� (89)

and there are no significant steady-state errors. The small offsets are due to numerical
inaccuracies.

9. Conclusions

In this paper, we have developed a state-space formulation for a MPC (for stable
processes) without constraints or assuming that the constraints are not active. This
state-space formulation of the controller makes it possible to use traditional tools to
get insight into how the controller behave (see Faanes & Skogestad, 2003a,b or
Faanes, 2003 (Chapt. 4 and 7)). The controller can be extended with tracking of
inputs, and also include the state estimator necessary if not all the states are measured.
To obtain offset-free tracking, estimates of the input disturbances are included in the
estimator and in the calculation of the steady state. We show that the length of this
estimated disturbance vector must equal the number of measurements available to
the estimator.

Finally, a closed loop state-space formulation is derived, assuming a state-space
formulation of the process model.
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