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Abstract

We consider separation of ideal multicomponent mixtures with constant relative volatility and constant

molar flows and at constant pressure. The exact analytical solution of minimum energy in a generalized Pet-

lyuk arrangement for separation of N-component feed into M products has been derived. Interestingly, the

minimum energy solution in a complex integrated Petlyuk arrangement is equal to the most difficult split

between any pair of the products, as if each single split was to be carried out in an ordinary 2-product col-

umn. This extends the results for the 3-product Petlyuk arrangement from Part II to a generalized

arrangement with any number of products and feed components. The solution is very simple to visualize in

the Vmin-diagram (Part I), simply as the highest peak. In addition, we obtain detailed flow rates and compo-

nent distribution inside the arrangement. We also conjecture that the minimum energy requirement for the

generalized extended Petlyuk arrangement is lower than the minimum energy requirement for any distilla-

tion configuration when we consider conventional adiabatic sections and no internal heat exchange. The

Vmin-diagram may thus be used to obtain a target value for the energy requirements.
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1 Introduction

What is the minimum energy requirement in multicomponent - multiproduct distillation? In this paper we

present an analytical expression for minimum energy requirement for the separation of N feed components into

M products (where normally ). We derive the expressions for a generalized extended Petlyuk arrangement,

where all columns are directly (fully thermally) coupled. The assumptions are constant relative volatility, constant

molar flows, constant pressure and infinite number of stages. We focus on a standard configuration shown in Fig-

ure 1. This configuration can be extended to any number of products by adding more arrays of directly coupled

columns. 

Analytical expressions for minimum energy in a ternary Petlyuk arrangement have been available for some

time 1,2. Carlberg and Westerberg3,4 presented solutions for an arbitrary number of intermediate components.

However, as mentioned by Christiansen5, the general analytic solution of minimum energy for distillation of a

multicomponent feed into multiple products have not been given in the literature for more than three products. 

The extension to any number of products is the main result of this paper. This is a direct extension of the

results for a 3-product Petlyuk column presented in Part II 6,7. The derivation is based on the Underwood

equations8,9,10,11 and as in Part II we use the Vmin-diagram to effectively visualize the minimum energy solution

also for the generalized Petlyuk column with more than three products. The Vmin-diagram was presented in Part

I12 and gives us a very simple tool to asses the properties of the solution. We obtain the detailed vapour flow

requirement in all column sections for general multicomponent feeds and arbitrary product specifications. A

review of the basic tools is given in Section 2.

The derivation of the minimum energy expression is divided into two parts. First, in Section 3, we deduce

an analytical vapour flow rate expression for separation of N feed components into N pure products for the case

when all internal columns are operated at their respective preferred splits13, and we discuss some of its properties.

Second, in Section 5 we verify that this solution is a minimum energy solution for the arrangement. Analytical

expressions are only shown for sharp M=N sharp split products. It is straightforward to apply the same approach

M N≤
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for nonsharp splits too. However, instead of presenting the more complicated analytic expressions we illustrate

the general M-product case (M>N) with both sharp and nonsharp product split specifications by an example in

Section 4.

Finally, in Section 6, we conjecture that the minimum vapour flow expression for the system in Figure 1

represent minimum energy for any possible distillation arrangement when we apply adiabatic column sections and

no internal heat exchange in the system. The term adiabatic refers to a typical column section where there is no

heat exchange along the section.

 

2 The Underwood Equations and the Vmin-diagram

The Underwood equations, and in particular how the Underwood roots carry over to succeeding directly

coupled columns3 are the main keys to the analytical solution. In addition, we use the Vmin-diagram to effectively

visualize the exact analytical solutions. A brief description of the basic equations is given below.

C21

C22

C1F,z,q

Figure 1:  The Petlyuk arrangement extended to four products. 
Vapour and liquid flow rates can be set individually in each internal 2-product column.
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Consider a two-product distillation column with a multicomponent feed (F) with liquid fraction q and com-

position vector z of N components. The net flow of components (wi) are defined positive upwards and into feed

junctions. The defining equation for the Underwood roots ( ) in the top and ( ) in the bottom are:

Top:  Bottom: (1)

There will be N solutions for each root, and the sets from the top and bottom equations are generally dif-

ferent. By subtracting the equations above, we obtain what we denote the feed equation, which gives us the set of

possible common roots :

(2)

Underwood showed, that for ordinary columns, the number of each set of roots is equal to number of com-

ponents (N), and they obey: , and there are (N-1) possible common roots.

Furthermore, for the case with infinite number of stages, minimum vapour flow solutions corresponds to that pairs

of Underwood roots in the top and bottom sections coincide with the common roots ( ). This

occurs only for the roots in the range between the relative volatility of the distributing components and we denote

these active roots. Observe that all the possible common roots from (2) depend only on feed composition and qual-

ity, and not on how the column is operated.

2.1 The Vmin-diagram

A two-product column has only two degrees of freedom in operation (e.g. D and V), and all possible oper-

ating points can be visualized in the D-V plane. This is the basic idea behind the Vmin-diagram presented in Part

I. For a given 4-component feed, an example is shown in Figure 2. Each peak and knot (Pij) represent minimum

vapour flow for sharp split between components i and j. The straight lines are distribution boundaries where one

component is at the limit of being distributing. Inside each region, a particular given set of components are dis-
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tributing and there is a corresponding set of active Underwood roots (θ). Thus, the exact component distribution

can then be calculated from the equation set obtained by applying the active roots in (1). All the possible minimum

energy solutions is found below the Vmin-boundary (bold), and there is a unique solution for every feasible pair

of key component recoveries. The peaks represent minimum energy operation for sharp split between adjacent

components. For sharp split between components j and j+1, only one common Underwood (which obeys

) is active and the peak (Pj,j+1) can be expressed by:

Pj,j+1: ,  (3)

The preferred split (PAD in Figure 2) is particularly interesting for directly coupled arrangements. Then all

possible common roots are active. The characteristic of the preferred split is that it is the minimum energy solution

when the heaviest component is removed from the top and the lightest component is removed from the bottom.

αj θj αj 1+< <

VTmin
j/j+1

αiziF

αi θj–
----------------

i 1=

j

∑= Dj/j+1 ziF

i 1=

j

∑=

PAC

D

VT
A/BCD

VTmin

ABC/D
VTmin

(1-q)F

0
Figure 2:  Vmin-diagram for a given 4-component feed (ABCD) to the prefractionator.
The set of distributed components and corresponding active Underwood roots are
indicated in each distribution region. The preferred split is at PAD.
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2.2 Carry Over Underwood Roots in Directly Coupled Columns. 

In Part II we showed that the possible common Underwood roots in a directly coupled succeeding column

are equal to the actual roots in the preceding column. For the arrangement in Figure 1 we have for column C21:

(4)

In C21 we only need to consider the roots between the relative volatilities of the components actually

appearing at the feed junction. When column C1 is operated at its preferred split, all common roots in C1 are

active and we simply obtain   . The possible common roots (θ) in C1 are given by the feed equation

(2). (In the following we omit the superscript C1 for the roots of column C1).

For the arrangement in Figure 1, with the four feed components ABCD, we have 3 common roots in column

C1 ( ). For C1 operated at its preferred split all of these roots will be active. Components ABC and the

corresponding roots  will carry over to C21 and Components BCD and the roots  will carry over to

C22. When both C21 and C22 are operated at their respective preferred splits, components AB will appear in the

feed to C31 and  carry over from C21. Similarly components BC and the root  will appear in C32 and com-

ponents CD and the root  will appear in C33. This is indicated in Figure 3. The mixing of flows from C21 and

C22 at the feed junction to C32 does not give any problems. It is shown in Halvorsen7 that the liquid and vapour

compositions are identical in the top of C22 and bottom of C21, and this is also confirmed by the simulation exam-

ple in section 3.2.2 

In Part II6 it was shown that the carry over of the common Underwood roots from column C1 to the suc-

ceeding columns also implicate that the Vmin-diagram for the succeeding columns overlap the diagram for the feed

into the first column. Thus, this Vmin-diagram contains information about all minimum flows in the succeeding

columns, providing that all preceding columns is operated at the preferred split. This is illustrated in Figure 4.
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3 Minimum Energy for N Components and N Products

We are now in position to compute the minimum vapour flow in a general extended Petlyuk arrangement

with any number of feed components (N) and any number of products (M). We will start from the basic 4-product

arrangement in Figure 3, which can be extended to any number of products by adding more sets of directly cou-

pled columns. There is only one reboiler and condenser, always at the outlets for the final bottom and top products,

respectively. 

For an M-product arrangement, there are  cross-sections that may have independent total vapour flow

requirements through all intersected columns. These intersections represent the product splits in the system. We

have chosen to use the particular set I1, I2 and I3 for M=4 which intersect all internal top sections as shown in

Figure 3. Note that only the A-product pass through intersection I1, thus I1 represent the A/BCD split. I2 represent

the AB/BC split since all of A and B but none of C and D pass here. Finally I3 represent the ABC/D split. This

can easily be extended to the general M-product case.

M 1–
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When each internal column operates at its preferred split, all the common Underwood roots (θA,θB and θC

for N=4) given by the feed equation (2) for the prefractionator feed will carry over to the succeeding columns as

indicated in Figure 3.

Then, note that in each column section, cut by each intersection line (I1,I2 or I3), there is one common

active Underwood root (e.g. θB is active in column C21 and C32 intersected by I2). We can apply this root in the

defining equation for each column cross-section and find the total vapour flow through the intersections. For sharp

product split, the net product flows are simply the amount of the main product component in the feed. The mini-

mum vapour flow through I1 is trivially:

(5)

F,z,q

Figure 3:  Extended 4-product Petlyuk
Arrangement showing the active
Underwood roots for preferred split
operation of all internal columns. 
The intersection lines represent the
product splits (I1:A/BCD, I2:AB/CD, 
I3:ABC/D).
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We recognize that this is the same minimum energy as if the separation A/BCD was to be performed in a

single column. At intersection I2 we know that all the light A component pass through the top of C21 too, and for

the B-component we have . None of the heavier C and D components are present. The mid-

dle Underwood root (θB) is active in both C21 and C32, thus we have:

(6)

At I3 we know that all of components A, B and C are passing, but none of the heavy D. The root (θC) is

active in all columns (C1, C22 and C33) and we get:

(7)

Again we recognize these expressions as the vapour flow at the three peaks in the Vmin-diagram for the pre-

fractionator feed (3). 

3.1 Vmin for N Feed Components and N Pure Products

The results for the 4-components and 4-product system given above is easily extended to any number of

products. Based on the same procedure we obtain that the maximum minimum vapour flow requirement through

any horizontal cross-section in a generalized Petlyuk arrangement with N feed components and M=N pure prod-

ucts is found directly as the highest peak in the Vmin-diagram for the feed. 

The expression for a peak is given in equation (3), so if we relate the vapour to the top of the Petlyuk

arrangement, the minimum vapour flow is given by:

(8)

where the N-1 common roots ( ) are found by the feed equation (2).
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Conclusion: The minimum energy solution for a generalized Petlyuk arrangement for N products and N feed

components is given by the highest peak in the Vmin-diagram. 

This is exactly the same as the most difficult binary split between two adjacent component groups in an

ordinary 2-product distillation column.

The result directly generalizes what was shown for the 3-product Petlyuk column in Part II. In Section 4,

we will show how to generalize this to any number of feed components (N) and products ( ) with possibly

nonsharp specifications. However, before we move on the general case, let us discuss some more properties of the

solution by the following example.

3.2 Example: 4 components and 4 pure products

Feed data for this example is given as: F=1, q=0.8, z=[0.25 0.25 0.25 0.25], α=[14, 7, 3, 1]. The feed com-

position (zi), relative volatilities (αi), and recoveries (ri,T in the table) are given for components A,B,C,D

respectively. 

3.2.1 Visualization in the Vmin-Diagram

We have applied the general procedure from Part I (Halvorsen and Skogestad 2001a) for computing the

numerical values for minimum energy for sharp split between each possible pair of key components (peaks and

knots), and the results are given in Table 1:

Observe in Figure 4 how the vapour flow in each individual column in Figure 1 appear as a difference

between the peaks and knots. Thus, for preferred split operation in each column, all internal flows and component

recovery can be found from the data in Table 1. The relations are quite trivial and come from the material balance

equations at the column junctions.

M N≤



3 Minimum Energy for N Components and N Products 11

3.2.2 Composition Profile 

A composition profile from a simulation example is shown in Figure 5. There are 30 stages in each column

section (N=60 in each column), and in practice this is close to infinite number of stages for this case (with purity

requirements around 99.9%). The flow rates are taken from the Vmin-diagram in Figure 4 and are applied directly

in the simulator. This simulation is a practical confirmation of the analytical expressions for flows and pinch zones

and for the minimum energy behaviour.
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Figure 4: Vmin-diagram showing the minimum vapour flows and product splits for every
section in the Petlyuk arrangement in Figure 1 when each column C1, C21 and C22
operates at its preferred split (note that the subscript min should be on every vapour flow).
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Observe the characteristic of a preferred split pinch zone at all feed junctions, and that one component is

completely removed in the end of each column. Note also that the pinch zone composition in each column end is

identical to the feed stage composition in the succeeding column. In each section, the compositions of the remain-

ing components increase monotonously from the feed pinch to the end-pinch without any remixing. Note that if

a column had its own reboiler and condenser, remixing at the end is inevitable (ref. Section 4.2.3 and Figure 4.4)

.

0 molfraction 1
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D

α = [ 14 7 3 1]
z = [ 0.25 0.25 0.25 0.25]
q = [ 0.80]
Stages:60 in each column
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Figure 5: Composition profiles for the Petlyuk arrangement in Figure 1.
Each column is operated at its preferred split with vapour flows and product splits taken
from Table 1 data as shown in the Vmin-diagram in Figure 4. Observe the pinch zones in
all junctions and how one component is removed in each column end.

Junction pinch
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4 General Vmin for N Feed Components and M Products

For each extra product, we have to add another array of columns to the structure in Figure 3. The total

number of internal directly coupled two-product columns to separate M products is: (M-1)+(M-2)+...+2+1 =

M(M-1)/2. There are M-1 product splits, and these can be related to M-1 minimum energy operating points (peaks)

in the Vmin-diagram. 

However, we have often more components (N) in the feed than number of products (M). Thus, we have to

consider split between products, which may be specified as an aggregate of components. Fortunately, the charac-

teristic of minimum energy operation is unchanged. Each internal two-product column should only separate the

components belonging to the most extreme products in its feed (in terms of relative volatility). 

For example, in the case of non-sharp separation of the light A in column C21, the expression for the vapour

flow through intersection I1 becomes (ref. equation 5):

(9)

Here we need to express the product specifications in terms of net flows (w) for the components appearing

in each product stream. It is possible to continue with the other intersections and deduce the exact minimum

energy expression equivalent to equation (8), but it is much more simple to illustrate the solution in a Vmin-dia-

gram as in the example below.

4.1 Example: 4 Products and 8 Feed Components

A Vmin-diagram for M composite products can easily be drawn into the general N-component diagram. The

procedure is similar; we compute the peaks and knots in the diagram from the minimum energy operation given

by sharp split between each possible pair of products. Note that this does not mean sharp split between individual

components if some components are allowed in more than one product.

Vmin
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C31
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αBwB T,
C31
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In Figure 6 we illustrate for a given example how to use the Vmin-diagram to assess minimum energy oper-

ation when M<N. The diagram (solid) is drawn for a given 8-component feed (ABCDEFGH) which shall be

separated into four products (WXYZ) in an extended 4-product Petlyuk arrangement (Figure 3). The product

specifications are given in Table 2. Based on these we can specify the required two degrees of freedom for each

possible pair of product splits in a single two-product column. The resulting split specifications are given in Table

3, and the minimum energy solution for each split (I/J) gives us the peaks and knots (PIJ) in the Vmin-diagram for

the M products shown (bold dashed) in Figure 6

The highest peak determines the maximum minimum vapour flow requirement in the arrangement. In this

example this is the middle peak PXY, which is directly related to column C32 (note that VTmin-values in Table 3

are for the given split in a two-product column, and that the required flow in the individual columns appear as we

have shown in Figure 4). With a single reboiler, all the heat for vaporization has to be supplied in the bottom and
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since the other peaks are lower, columns C33 and C31 will get a higher vapour load than required. However, with

heat exchangers at the sidestream stage, we only have to supply heating for the requirement given by PYZ in the

bottom reboiler and heating for the difference between PYX and PYZ in the bottom of C32, which is at a lower

temperature. We may also take heat out due to the difference between PXY and PWX above C32.

Observe that PXY is of similar height as PAB. This implies that we are able to separate the light component

A as a pure product in the top with a similar vapour flow requirement as given by PXY. Thus, we can see directly

from the diagram that we may change specification of product W to be pure A without consuming any more

energy (but then we cannot take out any heat above C32 of course).

The diagram also illustrates that non-sharp product specifications can be handled quite easily. Note how the

peak PXY follows the contour lines for  and . 

The same example could be used for cases where M=N too. 

As a last comment on our example, observe that the “preferred” split is at PWZ. We put “preferred” in quotes

since we have earlier defined the preferred split at minimum energy for the most extreme component split which

would be A/H here. But since H never need to be separated from the other components, we do not need that split.

Instead we only separate products W and Z in the prefractionator (C1), which really is a split between components

A and G. Thus, we may say that PWZ represents the preferred split for our four aggregate products. 

5 Verification of the Minimum Energy Solution

In Section 3 we found the analytical expression for the vapour flow requirement for the generalized Petlyuk

arrangement when all internal columns are operated at their respective preferred splits, but we have yet not proved

that this expression really represents the minimum energy solution for the extended Petlyuk arrangement.

rE T, 0.1= rD T, 0.9=
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Here we formulate minimization of energy as an optimization problem and verify that the solution given in

equitation (8) (the highest peak), really is optimal for the extended Petlyuk arrangement. We will do this by two

steps. First by determining the feasible region of operation for the given product specifications, and second by

showing that no changes in any degrees of freedom within the feasible region may reduce the minimum vapour

flow requirement.

We will limit the presentation to N components and M=N pure products. However, the result will also be

valid for the general case, e.g. the example in section 4 above.

5.1 Minimum Vapour Flow as an Optimization Problem

We formulate the criterion function as the maximum of the minimum vapour flow requirements through

any of the intersections I1, I2,.... I(M-1).

(10)

Here u represents our degrees of freedom in operation, and we have in general two degrees of freedom for

every column, e.g. expressed by (D,V) for each. Thus: 

(11)

The main constraints are given as the final product (Pi) specifications. We may also treat arrangements with

a lower number of degrees of freedom, by specification of a set of flow constraints, expressed as the equality

g(u)=0. An example is if we restrict the feed to column C32, in the 4-product column in Figure 1, to be a single

liquid stream; then  expresses the constraint.

With given feed properties, (F, α, z, q) and sharp product split specification, the optimization criterion can

be expressed as:

J u( ) max V
I1

V
I2 … V

I M 1–( ),, ,( )=

dim u( ) M M 1–( )=

g u( ) VB
C21 VT

C22– 0= =
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(12)

Here Pi denote product number i. 

5.2 Requirement for Feasibility

The feasible region is the operation region where we have fulfilled the operational constraints in (12). Here

we only consider the pure products specifications, and no additional constraints (no g(u)=0).

Then feasible operation requires operation on, or above the V-shaped boundary in the Vmin-diagram for each

column. For example in the 4-component example, the feasible region for the prefractionator is on or above PAB-

PAC-PAD-PBD-PCD. Note that the Vmin-diagram for the succeeding columns only overlap the prefractionator dia-

gram when this is operated at its preferred split. In other cases we must find the new Vmin-diagram for each

column, given by the actual Underwood roots for the proceeding columns (ref. Chapter 4). 

This is easy to show by the following argumentation for the 4-product column:

Assume first close to preferred split operation in all columns. Then change the operation of C1 so we allow 

some light A to be transported downwards in C1 and into C22. This A have to be transported upwards in 

C22 since it is more volatile than B which also is transported upwards, and then some amount of A have to 

be present at the feed junction to C32. A portion will have to enter C32, and since A still is more volatile 

than B, it will also be transported upwards in C32 and will appear in the product stream from the junction 

C31/C32 where we have specified a pure B product. 

We may do this “experiment” with a sloppy split for any of C1, C21 and C22. In all these columns, the most

heavy feed component for every column has to be fully removed in the top, and the most volatile have to be fully

removed from the bottom in order to obtain sharp product splits in the final columns of the sequence. 

Jopt J u( )
u

min =

subject to constraints  

 ri
Pi 1=

 ri
Pj 0=

g u( ) 0=

i j≠( )∀
 
 
 
 
 
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5.3 Verification of The Optimal Solution

In the following we will show that it is not possible to obtain any reduction in minimum vapour flow by

changing the operation in away from the preferred split (inside the feasible region).

An important characteristic of the direct coupling is that the actual Underwood roots in a column section

(φ in tops and ψ in bottoms) carry over as a common root (θ) to the succeeding column (Halvorsen and Skogestad

2001b), (Carlberg and Westerberg 1989). We combine this with Underwood’s minimum energy results which

states that for a given column . 

Consider now the top of the 4-product arrangement. It is clear that the first roots in the columns C1, C21

and C33 have to obey:

(13)

The vapour flow in the top of C31 is generally expressed by , thus we obtain:

(14)

This expression shows that there is no way to operate columns C1, C21 or C31 so that the vapour flow

requirement in the top of C31 is reduced below the minimum which is given by the peak PAB in the Vmin-diagram.

The minimum solution is only obtained when we operate column C1 in a region where  is active. This is only

obtained along the curve PAD-PAC (really also along PAC-PAB, but then we remove component C and not only D

in the top of C1, and then we might remove column C21 completely). In addition C21 must also keep  active,

which is obtained along PAC-PAB, and at last, C31 must be operated exactly at PAB. This line of argumentation is

easy to extend to the general N-component N-product case.

Operation of columns C22, C32 and C33 have no direct impact on PAB, thus there is no way to operate these

columns to reduce the peak PAB. This shows that the peak PAB represent the absolute minimum vapour flow for

the top of the Petlyuk arrangement also for other operation points than preferred split for each internal column.

φi θi ψi 1+≥ ≥

φA
C31 θA

C31≥ φA
C21 θA

C21≥ φA
C1 θA

C1≥ θA= = =

φA
C31

VT
C31

αAzAF

αA φA
C31–

-------------------------
αAzAF

αA φA
C21–

------------------------
αAzAF

αA φA
C1–

----------------------
αAzAF

αA θA–
-------------------≥ ≥ ≥ VTmin

A B/= =

θA

θA
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Similarly, in the bottom of columns C1, C22 and C33 we have:

(15)

which gives:

(16)

Thus, all the bottom columns have to be operate with  active in order to keep the minimum requirement

in the bottom of C31 at peak PCD. For sharp split, this is only obtained for C1 along PAD-PBD, C22 along PBD-

PCD and C33 at PCD. Thus PCD represents the minimum vapour flow in the bottom of the Petlyuk arrangement

for any operation of the arrangement.

It is important to note that we have to operate column C1 exactly at its preferred split (PAD) to avoid

increased vapour requirements in C31 or C33. Thus operation of C1 in the region above the preferred split will

increase the vapour requirement represented by the peaks PAB or PCD. 

However, column C1 have no such direct impact on the middle peak PBC. The only requirement is that the

root  is active, since this root has to carry over to C33 via both C21 and C22. This is trivial as long as both B

and C are distributed to both products. However, it is a bit more complicated if C21 or C22 is operated outside

the region where  is active. Then the resulting root in C32 will be different from the corresponding root in C21

and the expression for the total flow through intersection I2 will be more complicated than for the case in equation

(6).

Assume now that we keep the vapour flows and product splits constant in columns C1 and C22. Thus, any

change in vapour flow through intersection I2 must come through the bottom of C32 so:

(17)

ψD
C31 θC

C33≤ ψD
C21 θC

C21≤ ψD
C1 θC

C1≤ θC= = =

VB
C33

αDzDF

ψD
C31 αD–

--------------------------
αDzDF

ψD
C21 αD–

--------------------------
αDzDF

ψD
C1 αD–

-----------------------
αDzDF

θC αD–
--------------------≥ ≥ ≥ VBmin

ABC/D= =

θC

θB

θB

Vmin
I2∆ VBmin

C32∆=
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This can be expressed by the common Underwood root in C32 and the amount of C-component into the

feed junction of this column.

(18)

When the product splits in C21 and C22 are kept constant, this vapour rate depends only on the behaviour

of the common Underwood root in C32, which is given as the solution of its feed equation:

(19)

Note that the net component feed rates to C32 is given directly from the material balance at the junction:

. We assume that C22 is operated at its preferred split. Thus  is active in C22. In C21,

we may have operation outside the active  region, thus we have to use the actual root . The right hand side

of (19) can now be written as:

(20)

By careful inspection of the structure of the feed equation (19-20), we observe that we always have

 and that the solution have to obey:

(21)

Thus, we have that for suboptimal operation of C21, the actual Underwood root  decreases from its

original optimal value . Due to the structure of equation (20), the important Underwood root 

also decrease, and from equations (19) and (18) we see that the flow through the intersection I2 must increase.

We may similarly analyse the operation of C22 outside the region where  is active, and get to the con-

clusion that this will also increase the vapour rate through the cross-section I2. 

VBmin
C32

αCwC F,
C32

θB
C32 αC–
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VF
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αBwB F,
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C22 wC B,
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---------------------------------------+ VT

C22 VB
C21–= =
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It is clear that this result is independent of any changes in distribution of B and C components from column

C1, C21 and C32. For each distribution case, we may start with  active in both C21 and C22. Then any oper-

ation outside the active region in either C21 or C22 or both, will lead to an increase in the required flow through

intersection I2.

We have not carried out a detailed proof for the general N-component M-product case for other than the far

left and right peaks. But we expect that this can be done by the same line of argumentation as we used to state that

the middle peak cannot be reduced for any feasible operation of C21 and C22. Numerical evidence also supports

this.

If any part in the sequence of columns is operated away from the preferred split, the vapour flow require-

ment in some of the cross-sections have to increase, in other words; one or more of the peaks related to the

specified product splits have to increase. In general, if a column has its preferred split at PXY, and is operated

above this point, all succeeding columns with knots and peaks related to either X or Y will in general be affected.

Any sub optimal operation somewhere in the arrangement cannot be recovered in the succeeding columns. 

5.4 The Flat Optimality Region

When the peaks are of different height, we may operate some of the columns away from the preferred split

as long as the highest peak is not affected, and the other peaks do not grow above this one. This give rise to “flat”

regions in the plot for overall energy requirement, , as function of the degrees of freedom.

We illustrate this by an example in Figure 7. Since PCD is the highest peak, the optimality region for C1 is

along PAD-PBD. However, somewhere the actual Underwood root in the top of C1 related to the AB-split will get

a value which makes the peak PAB’ given by  equal the peak PCD. This line segment limits the optimality

region for both column C1 and C21, and this is very similar to the result from the ternary case discussed in Part

II 

θB

VB
Petl

φA Bal,
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Similarly, C22 has to be operated along PBD-PCD. This optimality region is limited by how C21 is operated,

since both affect the cross-section I2 through the Underwood root ( ) given by equation (19). In Figure 7 we

have indicated the operation at PBD. Then we may find the optimality region for C21 in the marked region above

PAC. Note how operation of C1 limits the lower part of the optimality region for C21 through the contour for con-

stant  through X.

6 Minimum Heat Supply for all Adiabatic Distillation Arrangements Without 

Internal Heat Exchange.

Petlyuk14 showed that it is possible to device a reversible Petlyuk arrangement with zero lost separation

work and thus requires minimum separation work compared to any other separation process. 

However, it has also been conjectured that the adiabatic Petlyuk arrangement, where all the heat is supplied

in the bottom reboiler at the maximum temperature, requires minimum energy for vaporization (Vmin) compared

to any other adiabatic distillation arrangement (without internal heat exchange). (We apply the term adiabatic col-

PBC
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D

VT
C1

PAB

C1

(1-q)F

C1
VT

C1
VB

=0

=0

Figure 7:  Vmin-diagram for 4-component feed ABCD with optimality regions for
operation of columns C1, C21 and C22. The contour lines for constant  and a given
constant  which makes  are shown (dashed).
These boundaries are the upper bounds for the optimality regions. 
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umn section, as used by Petlyuk et. al.15, to denote a column section with constant molar flows and no heat

exchange along the section. Thus, the directly coupled columns in Figure 1 and also typical conventional arrange-

ments contain adiabatic sections). However, no proof has been found in the literature16, except for the ternary

case. For the ternary case Fidkowski and Krolikowski17 showed that the 3-product Petlyuk arrangement always

has a smaller vapour flow than any arrangements with side-strippers or side-rectifiers and they showed that these

also performed better than the conventional direct and indirect split sequences. 

For the generalized adiabatic Petlyuk arrangement in Figure 1, the minimum energy requirement for sepa-

ration of a feed mixture of Nc components is given by equation (8). Note that all the heat can be supplied in the

bottom reboiler and be removed in the top condenser, but, in some cases, some of the heat may be supplied or

removed at the product outlets.

In the following we consider adiabatic column sections, and we conjecture that the adiabatic Petlyuk

arrangement is indeed the best distillation arrangement when we regard the total requirement for vaporization at

constant pressure, and when we do not consider any internal heat exchange within the arrangement. 

6.1 Direct Coupling Gives Minimum Vapour Flow

First we will show that the direct (fully thermal) coupling minimises the vapour flow requirement through

any column junction. 

Let us consider a general junction at the top of the prefractionator (C1) and the succeeding column (C21)

as illustrated in Figure 8. To simplify we assume a ternary feed, but similar results can be obtained for any number

of components and at any junction in an arrangement. 

We assume that the two degrees of freedom in column C1 (e.g. ) are fixed. In Halvorsen (2001)

we showed that the composition in the recycle flow ( ) from C21 to C1 normally has no effect on the net com-

ponent flows from C1 to C21. This is so unless a component which would have been removed in an ordinary

column (with a condenser) is not introduced in the recycle flow to the directly coupled column. For reasonable

operation of the system this will normally not be a problem.

DC1 VT
C1,

LT
C1
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At the interconnection to C21 we allow for supply or removal of heat (still with fixed ). This will

then only affect the effective liquid fraction ( ) to column C21 and have no impact on the component flows

( ). Recall that direct coupling implies that the reflux in C1 is taken directly as a side-draw from C21 and that

the vapour flow from C1 is fed directly to C21. In this case the external heat exchange is zero, and we obtain an

equivalent liquid fraction given by:

(22)

Note that we always have  with direct coupling, which is equivalent to a superheated vapour feed.

Heat removal (e.g. a condenser) will increase  and heat supply (superheater) will decrease its value

.

The most important effect of the direct coupling is that the Underwood roots in the top of C1 “carry over”

as the common (minimum energy) Underwood roots for C21. Thus, , which is vital in the following

analysis.
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Figure 8: General column interconnection junction. The direct (full
thermal) coupling gives  which implies 
and a zero external heat exchange at the interconnection (Q=0). 
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For a given operation of the first column (not necessarily at minimum energy), the vapour flow, and net

component flows in the top can be related to a certain Underwood root ( ), here given by the defining equation

in column C1 (we omit the superscript C1 on w and ):

 (note ) (23)

Consider now any type of interconnection to the succeeding column (C21). At minimum energy operation

in C21 the flow rates are determined by the component distribution and the common Underwood roots. Thus:

(24)

The common Underwood roots can be found from the feed equation of C21 (25) and will depend on the

external heat through the feed quality. The net component flow and net distillate flow in C1 are constants.

(25)

Note that for any reasonable operation of columns, all net component flows are positive in the top sections

and negative in the bottom sections. This implies that the minimum vapour flow in the top section will increase

as the common Underwood root increase and the vapour flow in the bottom section will decrease.

In the following we fix the operation of column C1 such that  and all , and thereby all  are con-

stant, and we want to find the value of the common Underwood root in C21 ( ) which minimize the maximum

vapour flow rates through any of the intersections above or below the feed junction (see Figure 8):

 where (26)
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 and (27)

A typical dependency of  and  as a function of  is shown in Figure 8, and we see that the ana-

lytical solution is given by:

arg( ) = (28)

Proof 

For normal operating conditions, we have  and .

This implies that  is found when . 

By applying  in equations (23-27) we obtain .

Q.E.D.

In conclusion, minimization of the vapour rate through any intersection (I1 or I2) is found when the com-

mon Underwood roots in column C21 equal the actual roots in the top section of C1. This is exactly what we

obtain with a direct coupling. Note that the proof does not require the first column to be operated at minimum

energy and that it is valid for any distribution of components in C1.

6.2 Implications for Side-Strippers and Side-Rectifiers

A direct implication of the result in Section 6.1 above is that arrangements with side-strippers (like in Fig-

ure 8 with a direct coupling) or side-rectifiers, will always have a lower total need for vaporization than the

corresponding indirect split or direct split configurations. This was also shown by Fidkowski and Krolikowski 17

for the ternary case, but it is straightforward to extend the result in Section 6.1 to the general multicomponent case. 
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6.3 The Adiabatic Petlyuk Arrangement is Optimal

The result in Section 6.1 gives rise to the following conclusion:

We assume constant relative volatilities, constant molar flows, constant pressure and no internal heat inte-

gration. Then the generalized adiabatic Petlyuk arrangement has the lowest need for vaporization 

compared to any other adiabatic distillation arrangement for separation of an arbitrary feed mixture into 

its pure components. 

This result is based on the simple argument that at any junction where we might consider another type of

connection than the direct coupling, the required vapour flow through the junction, and thereby through a cross-

section of the whole arrangement, will increase. 

We have not presented a complete proof, so the above conclusion is a conjecture. However, for the ternary

case, it has been proved by Fidkowski and Krolikowski17, when considering conventional arrangements and side-

strippers as alternative configurations.

A qualitative explanation is that the direct (full thermal) coupling can be regarded as ideal heat integration.

For example when a side stripper configuration is used instead of an indirect split configuration, the direct cou-

pling replaces a condenser (which in practice has an inevitable loss). This is probably the background for the term

“full thermal coupling” used by many authors. However, here we use the term “direct coupling” which relates to

that both the vapour and liquid flows are coupled directly between two columns. In addition, we obtain reversible

mixing at the junctions when we keep the vapour and liquid flows in the junctions at equilibrium.

7 Discussion

7.1 Alternative Configurations

There exist a very large variety of possible realisations for extended Petlyuk arrangements18, which are

equivalent in terms of energy requirement. For example in a recent article19 it is shown that for a 4-product col-

umn, sections can be arranged together in 32 different configurations. For the 5-product column the number is
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448 configurations which are equivalent in terms of minimum energy requirement. There are of course many

important differences, i.e. in how easy it is to set individual vapour and liquid flow rates in practice, how the col-

umn arrangement behaves for non-optimal operation, how easy it is to control, possibility for operation at more

than one pressure level, practical construction issues, etc.

7.2 Practical Petlyuk Arrangements (4-product DWC). 

In the Petlyuk arrangement in Figure 1 we assume that we can adjust the vapour and liquid flow individu-

ally in all columns. The more practical arrangement in Figure 9 is a bit less flexible since all the vapour flow has

to come from the bottom reboiler, and similarly, the liquid flow comes from the top condenser. It will generally

have a higher energy requirement although it may be the same in some cases (see example). Since we extract only

liquid sidestream products, also in the junction into the feed of C32. We get a simpler configuration, which also

may be implemented as a dividing wall column (DWC) in a single shell, as indicated in Figure 9b

.

C21

C22

C1F,z,q

Figure 9: Practical 4-product Petlyuk arrangements with some flow restrictions:
We allow only liquid feed to C32 and liquid intermediate side products B and C.
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However, operation is by no means simple and we still have 9 manipulated inputs left, and when 4 are used

for product purity, there are 5 left. These must be set properly in order to achieve the optimal operation given by

the highest peak in the Vmin-diagram.

The cross-sectional area is usually designed for a maximum vapour load. We know that there may be large

differences between each section, e.g in C31 from Figure 2. However, in cases where the peaks are similar, we

know that the total vapour requirement is similar in any cross section (I1,I2 or I3). Thus as indicated in Figure 9b,

the DWC can be implemented in a single shell with a constant diameter, and with quite different, but suitable

cross-sectional areas for the internal columns. This is one issue which makes DWC implementations attractive.

We assume the same feed and Vmin-diagram as in Figure 4. We start by determining the requirement of the

prefractionator (C1). The original diagram is of course valid for C1 and we chose to operate C1 at its preferred

split, which is at PAD. Then all the common roots from C1 carry over to C21 and C22. However, in Figure 9 we

have the restriction: . Here column C22 controls the vapour requirement since . Thus

minimum vapour for column C21 is somewhere on the line between the points X,Y in Figure 10. First we try to

operate C21 in X. Then the root  carries over all the way to C31, and the vapour flow requirement will be given

by PAB. However,  will not carry over to C22. Instead a larger root will carry over and the requirement for C32

will be given by P”BC. But as illustrated in the figure, this gives a higher vapour flow requirement than PCD, which

was our original highest peak. However, here we may increase the net product flow from C21 and move operation

to Z. In this case V>Vmin in C21, and none of the common roots are active. Both C31 and C32 will be affected,

and the new minimum vapour requirements are given by P’AB and P’BC respectively. In this example, we get a

resulting diagram where PCD still is the highest peak, and the minimum vapour flow requirement for this less flex-

ible Petlyuk arrangement is the same as the fully flexible arrangement. It is quite clear, however, that we may use

another feed and find cases where the less flexible arrangement can never reach the minimum requirement of the

fully flexible configuration. For example if the peak PCD were at the same height as PBC in Figure 10. Then either

of the peaks P’AB or P’BC would be higher than the original three peaks for any operation of C21 along the line

Y-Z. 

VB
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22= VBmin
21 VTmin
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In summary, the solution is still simple to find by the Vmin-diagram, but we get new peaks for the columns

where the preceding column cannot operate at its preferred split. This can be done accurately by Underwood’s

equations, but we can also look directly at the diagram and find an approximate solution graphically. Note how

the peak P’AB rise and P’BC fall as the operation of C21 is moved on the line from X towards Y. 

Another important lesson is that we may change operation in some parts of the arrangement within the opti-

mality region, without affecting the highest peak. The extent of this region is dependent on how different the peaks

are and the practical impact is that some of our degrees of freedom do not need to be set accurately, only within

a certain range.
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7.3 The Kaibel column or the “  column” 

The Kaibel column20 is a directly coupled arrangement for separating 4 components as shown in Figure 11.

The interesting part is the extra column section (C2x where L=V) for separating B/C in the main column. How-

ever, the sharp B/C split is performed already in the prefractionator (C1), so section C2x is really not needed, and

can be replaced by heat-exchange between bottom of C21 and top of C22, denoted the “¾  column” by (Chris-

tiansen 1997). 

The minimum vapour flow requirement in the Kaibel column is always outperformed by the full Petlyuk

arrangement in Figure 1. This is simple to see from the Vmin-diagram (e.g. in Figure 2). In the Petlyuk arrange-

ment, the overall vapour requirement is given by the highest peak. In the Kaibel column, C1 is not operated at the

preferred split, but at a sharp B/C split, which is given by the middle peak (PBC). If this is the highest peak, it is

obvious that the Kaibel column requires a higher reboiler vapour rate, since it require this vapour rate for C1, and

we must in addition have some vapour flow for the separation of C/D in the top of C22. If PBC is not the highest

peak, we observe that when C1 is operated at PBC, none of the common roots  and  are active in C1 and

cannot carry over to C21 or C22. Then, as shown in Section 5.3, the expressions for minimum vapour in each of

C21 and C22 have to be higher than the peaks PAB and PCD. 

A

C

D

C21

C22

C1

Figure 11: The Kaibel
arrangement for separation
of a 4-component feed

ABCD

B

C2x

AB

CD

θA θB
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However, in cases when the B/C split is simple (PBC much lower than PAB and PCD), the difference in

energy requirement can be small, and the simpler configuration may be preferable with respect to capital cost and

more simple operation. 

7.4 Required Number of Stages - Simple Design Rule

The proposed stage design for ternary Petlyuk arrangements given in Part II an be applied for the extended

arrangements too. We can calculate the pinch zones in all junctions for all columns at preferred split. This is trivial

when we know all flow rates and component distribution from the Vmin diagram. Then a minimum number of

stages (Nmin) can be found from the Fenske equation for each section for a given impurity of the component to be

removed in that section. This impurity can be set according to the impurity requirement in the products. The sim-

ple design rule:  will typically give a real minimum vapour flow (VRmin) in the range between 5-10%

above Vmin found for infinite number of stages, for the same separation. 

This simple design rule may of course be adjusted by more rigorous column computations and cost

functions.

7.5 Control

M-product columns will of course be more complicated than the more familiar ternary Petlyuk arrange-

ments. However the characteristic of optimal operation is similar, and is given by keeping each individual column

at its preferred split. 

By keeping the impurities of the components to be removed in each section at setpoints fixed at small val-

ues we ensure that the operation is at the preferred split, even if we do not know the feed. The magnitude of the

allowed impurity setpoints in intermediate columns should be set according to the allowed impurities in the final

products. 

N 2Nmin≈
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7.6 Real Mixtures

The characteristic of the optimal solution, with the ideal assumptions about mixture and properties used in

this paper, is that every internal column have to be operated at their preferred splits. However, this is most likely

to be the characteristic of the optimal solution for real mixtures too. Then there will be pinch zones across every

feed junction and in the end of the preceding column, as shown in the simulation example for the ideal case in

Figure 5. The actual pinch zone compositions and the flow rates have to be calculated numerically since the rel-

ative volatilities and molar flows may change along the column sections. At the internal mixing junctions, e.g. at

the feed junction to column C32 in Figure 1, we may get some losses due to that there may be different composi-

tions of the flows into the junctions even for preferred split operation of every column. Thus the characteristic of

the real minimum energy solution may deviate a little from the ideal case, but it is expected to be close. It is also

possible that some of the alternative configurations for the same number of products (ref. Section 7.4) may be a

little better than the others for a particular case. 

The Underwood roots will still carry over at the junctions, but due to the changes in relative volatility and

molar flows, the actual Underwood roots at any cross-section will also vary along the column, even for minimum

energy operation. This implies that the Vmin-diagram for the succeeding columns will not exactly overlap the

Vmin-diagram for the feed to the first column. However, we expect that the final solution for the internal flows will

not be very far from the ideal case as in the example illustrated in Figure 4.

8 Conclusion

We have shown that the minimum energy results for the 3-product Petlyuk arrangement can indeed be

extended to general multicomponent-multi product Petlyuk arrangements. An exact analytical expression, which

is based on the   Underwood equations, have been derived. The solution is very simple to visualize in the Vmin-

diagram for the feed, given by the following rule:

The minimum total vapour flow requirement in a multi-component, multi-product Petlyuk arrangement, is 

determined by the highest peak in the Vmin-diagram.
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Alternatively, since the Vmin-diagram originally just characterize a two-product column with a multicom-

ponent feed, this may also be expressed as:

The minimum total vapour flow requirement in a multi-component, multi-product Petlyuk arrangement is 

the same as the required vapour flow for the most difficult split between two of the specified products if that 

separation is to be carried out in a single conventional two-product column.

Note that the rule above applies to any feasible product specifications, both in cases with equal number of

feed components and products, and for any possible component grouping in the products in cases where the

number of products is less than the number of feed components. 

In addition to the overall vapour flow requirement, we find the individual vapour flow requirement for

every column section, directly from the same diagram. The Vmin-diagram is based on feed data only and was orig-

inally intended to visualize minimum energy regions and distribution regions for all possible operating points, in

an ordinary two-product distillation column with multicomponent feed. 

The characteristic of the optimal solution is that all internal columns are operated on their respective pre-

ferred splits. In general this requires that we can adjust two degrees of freedom in each internal column. However,

practical arrangements with less degrees of freedom may also reach the same minimum vapour flow. 

The results have been derived for ideal assumptions, but the main characteristics of the solution will be

valid for real mixtures too.

Although arrangements with more than 3 products may be feasible, the results for general M product sys-

tems have mainly theoretical interest. The most important result is that we can find the minimum target value for

the vapour flow required for separation of a multicomponent feed by distillation in directly coupled arrangements.

It is important to note that we have assumed constant pressure, and that we have not considered any internal heat

exchange inside the system. 

The latter may as shown in Halvorsen7, give some further energy savings.
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10 LIST OF FIGURES

Figure 1: The Petlyuk arrangement extended to four products. Vapour and liquid flow rates can be set indi-

vidually in each internal 2-product column. 

Figure 2: Vmin-diagram for a given 4-component feed (ABCD) to the prefractionator. The set of distributed 

components and corresponding active Underwood roots are indicated in each distribution region. 

The preferred split is at PAD. 

Figure 3: Extended 4-product Petlyuk Arrangement showing the active Underwood roots for preferred split 

operation of all internal columns. The intersection lines represent the product splits (I1:A/BCD, 

I2:AB/CD, I3:ABC/D). 

Figure 4: Vmin-diagram showing the minimum vapour flows and product splits for every section in the Pet-

lyuk arrangement in Figure 1 when each column C1, C21 and C22 operates at its preferred split 

(note that the subscript min should be on every vapour flow). 

Figure 5: Composition profiles for the Petlyuk arrangement in Figure 1. Each column is operated at its pre-

ferred split with vapour flows and product splits taken from Table 1 data as shown in the Vmin-

diagram in Figure 4. Observe the pinch zones in all junctions and how one component is removed 

in each column end. 

Figure 6: Assessment of minimum vapour flow for separation of a 8-component feed (ABCDEFGH) into 

4 products (WXYZ). The plot shows the Vmin-diagram for the feed components (solid) and the 

equivalent diagram for the products (bold dashed) is easily obtained from the product split spec-

ifications given in Tables 2 or 3. 

Figure 7: Vmin-diagram for 4-component feed ABCD with optimality regions for operation of columns C1, 

C21 and C22. The contour lines for constant and a given constant which makes are shown 

(dashed). These boundaries are the upper bounds for the optimality regions. 

Figure 8: General column interconnection junction. The direct (full thermal) coupling gives which implies 

and a zero external heat exchange at the interconnection (Q=0). 
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Figure 9: Practical 4-product Petlyuk arrangements with some flow restrictions: We allow only liquid feed 

to C32 and liquid intermediate side products B and C. 

Figure 10: Vmin-diagram for 4-component feed ABCD with the less flexible Petlyuk arrangement in Fig-

ure 9. Vertical arrows are vapour flow requirements in each column section. Feed data: z=[0.25 

0.25 0.25 0.25], α=[14,7 ,3,1],q=0.8 

Figure 11: The Kaibel arrangement for separation of a 4-component feed 
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Table 1:  Data for peaks and knots in the Vmin-diagram

PAB

sharp A/B

PBC

sharp B/C

PCD

sharp C/D

PAC

B distributing

PBD

C distributing

PAD

preferred split

VTmin 0.8975 0.9585 1.0248 0.6350 0.7311 0.5501

D 0.2500 0.5000 0.7500 0.3663 0.5839 0.4490

ri,T 1,0,0,0 1,1,0,0 1,1,1,0 1,0.47,0,0 1,1,0.34,0 1,0.57,0.22,0
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.

Table 2:  Specification of feed component recoveries in products W,X,Y and Z.

Product
Light key 
impurity 

specification
Components

Heavy key 
impurity 

specification
Comment

W - A,B 0% C all of A, any 

amount of B

X 0%A B,C,D,E <10% E the rest of B

Y <10.0%D D,E,F 0% G

Z 0% F G,H - Sharp F/G split
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Table 3:  All possible product split specifications, by two key recoveries

Split Col
Light key 

in top
Heavy 

key in top
VTmin Comment

W/X C31 100% A 0% C 0.9632 Sharp A/C split, B distributes.

X/Y C32 >90% D <10% E 1.3944 Nonsharp D/E split

Y/Z C33 100% F 0% G 1.2093 Sharp F/G split

W/Y C21 100% A <10% E 0.5569 Sharp bottom, nonsharp top

X/Z C22 >90% D 0% G 0.7477 Nonsharp top, sharp bottom

W/Z C1 100% A 0% G 0.4782 “Preferred split” A/G, not A/H
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