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Abstract

The Vmin-diagram is introduced to effectively visualize how the minimum energy consumption is related to

the feed component distribution for all possible operating points in a two-product distillation column with

a multicomponent feed. The classical Underwood equations are used to derive analytical expressions for the

ideal case with constant relative volatility and constant molar flows. However, the diagram can also be used

for non-ideal mixtures. The Vmin-diagram is very insightful for assessing multicomponent separation in a

single column, and is even more powerful for complex column arrangements, such as Petlyuk columns (Part

II and III).

Keywords: Underwood equations, multicomponent distillation, separation, minimum energy, ideal mix-

tures, shortcut calculations, Vmin-diagram



2

1 Introduction

We assume constant molar flows, constant relative volatilities and infinite number of stages and use the

classical Underwood equations to compute the distribution of all the components in the generalized multicompo-

nent feed as a function of the degrees of freedom in a two-product distillation column (Figure 1).

A main result is a simple graphical visualization of minimum energy and feed component distribution for

all possible operating points. We denote this the Minimum Energy Mountain Diagram or just the Vmin-diagram. 

The Vmin-diagram can be used for quick determination of the minimum energy requirement in a single

binary column with a multicomponent feed, for any feasible product specification. 

The equations of Underwood 1,2,3,4 have been applied successfully by many authors for analysis of multi-

component distillation, e.g. Shiras5, King6, Franklin and Forsyth7, Wachter et. al.8 and in a comprehensive review

of minimum energy calculations by Koehler9. Minimum energy expressions for Petlyuk arrangements with three

components have been presented by Fidkowski and Krolikowski10 and Carlberg and Westerberg11,12. However,

minimum energy requirements for the general multicomponent case, the topic of this paper, has so far not been

well understood. 

Alternative methods for visualization of feed distribution regions for a single column have been presented

by Wachter et. al.8 based on a continuum model and by Neri et.al.13, based on equilibrium theory.

Our original derivation of the Vmin-diagram was based on computing pinch zone compositions for columns

with infinite number of stages. However, the Underwood approach is simpler and may easily be extended to other

kinds of column section interconnections. Specifically, the methods presented can also be used for Petlyuk

arrangements and for arrangements with side strippers and side rectifiers. This is treated in detail in the thesis by

Halvorsen14 and in the succeeding papers on minimum energy consumption in distillation, part II15 and III16. The

behaviour of composition profiles and pinch zones in a column, and how the required finite number of stages

depends on the component distribution is also treated in more detail in the thesis14.
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We may alternatively compute Vmin-diagrams by other means, e.g. by a few simulations for a real system

with a rigorous simulator. Thus, the insight provided by the Vmin-diagram is not limited to ideal systems. How-

ever, with the Underwood equations and the ideal system assumption, we are able to deduce exact analytical

expressions for minimum energy calculations.

2 Problem Definition - Degrees of Freedom

With a given feed, a two-product distillation column normally has two steady-state degrees of freedom of

operation. For a binary feed, this is sufficient to specify any product distribution. In the case of a multicomponent

feed, however, we cannot freely specify the compositions in both products. In practice, one usually specifies the

distribution of two key components, and the distribution of the non-key components is then completely deter-

mined for a given feed. In some cases, the column pressure could be considered as a third degree of freedom, but

we will assume that the pressure is constant throughout this paper since the pressure has a limited impact on the

product distribution. 

For every possible operating point we want to find the normalized vapour flow rate (V/F) and the overall

product split (D/F or B/F) and the distribution, here given by the set of recoveries . This can

be expressed for the top section as:

(1)

It is sufficient to consider only one of the top or bottom sections as the recoveries and flows in the other

section can be found by a material balance at the feed stage. The feed properties are given by the composition

vector z, flow rate F, liquid fraction q and relative volatilities . The recovery ( ) is the amount of component i

transported in a stream or through a section divided by the amount in the feed. Nc is the number of components.

R r1 r2 … rNc
, , ,[ ]=

VT

F
------

D
F
---- RT, , f Spec1 Spec2 Feed  properties, ,( )=

α ri
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3 The Underwood Equations for Minimum Energy

3.1 Some Basic Definitions

The starting point for Underwood’s methods for multicomponent mixtures 1,2,3,4 is the material balance

equation at a cross-section in the column. The net material transport (wi) of component i upwards through a stage

n is the difference between the amount travelling upwards from a stage as vapour and the amount entering a stage

from above as liquid:

(2)

Note that at steady state, wi is constant through each column section. In the following we assume constant

molar flows (L=Ln=Ln-1 and V=Vn=Vn+1) and constant relative volatility ( ). 

The vapour liquid equilibrium (VLE) at an equilibrium stage is given by:

(3)

In the top section the net product flow is  and:

(4)

In the bottom section, , and the net material flow is:

(5)

The positive direction of the net component flows is defined upwards, but in the bottom the components

normally travel downwards from the feed stage and then we have . With a single feed stream the net com-

ponent flow in the feed is given as:

wi Vnyi n, Ln 1+ xi n 1+,–=

αi

yi

αixi

αixi
i 1=

Nc

∑
---------------------------=

D Vn Ln 1+–=

wi T, xi D, D ri D, ziF= =

B Ln 1+ Vn–=

wi B, x– i B, B ri B, ziF= =

wi B, 0≤
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. (6)

A recovery can then be regarded as a normalized component flow:

(7)

At the feed stage,  is defined positive into the column. Note that with our definition in (7) the recovery

is also a signed variable. 

3.2 Definition of Underwood Roots

The Underwood roots ( ) in the top section are defined as the  solutions of:

(8)

In the bottom there is another set of Underwood roots  given by the solutions of:

(9)

Note that these equations are related via the material balance at the feed stage:

 (10)

(which is equivalent to ) and the change in vapour flow at the feed stage given by the liquid

fraction (q) of the feed (F): 

(11)

wi F, ziF=

ri wi wi F,⁄ wi ziF( )⁄= =

wi F,

φ Nc

VT

αiwi T,
αi φ–
----------------

i 1=

Nc

∑=

ψ

VB

αiwi B,
αi ψ–
----------------

i 1=

Nc

∑=

wi T, wi B,– wi F, zi F, F= =

ri T, ri B,– 1=

VF VT VB– 1 q–( )F= =
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Computation of the Underwood roots involves solving a straightforward polynomial root problem, but we

should be careful and make sure that the vector of component flows wT or wB is feasible. This also implies that in

the multicomponent case there is a “hidden” interaction between the unspecified elements in wT and the Under-

wood roots.

3.3 The Underwood Roots for Minimum Vapour Flow

Underwood showed a series of properties of the roots (  and ) for a two-product column with a single

reboiler and condenser. In this conventional column, all components flow upwards in the top section ( ),

and downwards in the bottom section ( ). With Nc components there are for each of  and , Nc solutions

obeying:

(12)

(13)

When the vapour flow is reduced, the roots in the top section will decrease, while the roots in the bottom

section will increase. Underwood2 showed that at minimum vapour flow for any given product distribution, one

or more pairs of roots coincide to a common root (denoted , i.e. ). 

Recall that . By subtracting the defining equations for the top and bottom sections (8)-

(9), we obtain the following equation which is valid for the common roots only (denoted ):

(14)

We call this expression the feed equation since only the feed properties (q and z) appear. It has also Nc roots,

but one of these cannot be a common root due to (12) and (13), so there are Nc-1 possible common roots that obey:

. (15)

φ ψ

wi T, 0≥

wi B, 0≤ φ ψ

α1 φ1 α2 φ2 α3 … αNc φNc> > >> > > >

ψ1 α>
1

ψ2 α2 ψ3 α3 … ψNc αNc> > >> > > >

θi φi ψi 1+ θi= =

VT VB– 1 q–( )F=

θ

1 q–
αizi

αi θ–
--------------

i
∑=

α1 θ1 α2 θ2 … θNc 1– αNc> >> > > >
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We will denote a root  an active root for the case when . Inserting the active root in

the top and bottom defining equations gives the minimum flow for a given set of component distribution (wT or

rT). 

 or (16)

With Na active roots, this represents a set of Na independent linear equations, which may be used to find

the exact set of the so-called distributing components that appear in both products. 

Note that the subscript min indicates minimum vapour flow and then we use a common root  from equa-

tion (14) as opposed to an actual root  in equation (8). 

3.4 Computational Procedure

Our task is to find the Nc product recoveries (or component flows) and the vapour flow, given any pair of

feasible specifications. The procedure on how to apply Underwood’s equations for this purpose has been

described by several authors, e.g. Shiras5 and Carlberg and Westerberg11. 

The key to the general solution is to identify the distributing components. A component in the feed is dis-

tributing if it appears in both products, or is exactly at the limit of becoming distributing if the vapour flow is

reduced with an infinitesimal amount. 

The computation procedure is as follows:

Consider a set of Nd distributing components, denoted: . The recoveries in the top are triv-

ially  for all non-distributing light components ( ), and  for the non-distributing heavy

components ( ). Then, with a given distribution set we know the  recoveries of the non-distribut-

ing components.

θk φk ψk 1+ θk= =

VTmin

αiwi T,
αi θk–
----------------

i
∑= VTmin

αiri T, ziF

αi θk–
-----------------------

i
∑=

θ

φ

d1 d2 …, dNd,{ , }

ri T, 1= i d1< ri T, 0=

i dNd> Nc Nd–
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Then use another of Underwood’s results: For any minimum vapour flow solution, the active Underwood

roots will only be those with values in the range between the volatilities of the distributing components

( ). This implies that with Nd distributing components, the number of active roots is:

(17)

Thus, from Table 1, we see that by making two specifications we have enough information to determine

the solution completely.

Define the vector X containing the recoveries of the  distributing components and the normalized

vapour flow in the top section: 

 (18)

(superscript T denotes transposed). The equation set (16) can then be written as a linear equation set on

matrix form:

(19)

or

αd1
θk αdNd

> >

Na Nd 1–=

Nd

X rd1 T, rd2 T, … rdNd T,
VT

F
------, , , ,

T
=

M X⋅ Z=

M

αd1
zd1

αd1
θd1

–
---------------------

αd2
zd2

αd2
θd1

–
--------------------- …

αdNd
zdNd

αd1
θd1

–
--------------------- 1–

αd1
zd1

αd1
θd2

–
---------------------

αd2
zd2

αd2
θd2

–
--------------------- …

αdNd
zdNd

αd1
θd2

–
--------------------- 1–

… … … … 1–

αd1
zd1

αd1
θdNd 1–

–
-----------------------------

αd2
zd2

αd2
θdNd 1–

–
----------------------------- …

αdNd
zdNd

αd1
θdNd 1–

–
----------------------------- 1–

X

rd1 T,

rd2 T,

…
rdNd T,

VT F⁄

•

Z

αizi

αi θd1
–

------------------

i 1=

d1 1–

∑–

αizi

αi θd2
–

------------------

i 1=

d1 1–

∑–

…

αizi

αi θdNd 1–
–

--------------------------

d1 1–

∑–

=
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The elements in each column of M arise from the terms in (16) related to the distributing components, and

we have one row for each active root. Z contains the part of (16) arising from the non-distributing light compo-

nents with recovery one in the top. The recoveries for the heavy non-distributing components are zero in the top,

so these terms disappear.

There are Na=Nd-1 equations (rows of M and Z) and Nd+1 variables in X (columns in M). Thus by speci-

fying any two of the variables in X as our degrees of freedom we are left with Nd-1 unknowns which can be solved

from the linear equation set in (19).

To specify the product split we introduce  as an extra variable in X and the following extra equation:

(20)

Note that equation (19) is only valid in a certain region of the possible operating space, namely in the region

where components numbered d1 to dNd are distributing to both products.

For nonsharp key specifications, components lighter than the light key, and heavier than the heavy key, may

or may not be distributing. Then we usually have to check several possible distribution sets. See Halvorsen14 for

more details.

For V>Vmin and an infinite number of stages there are no common Underwood roots. Thus, at most one

component may be distributing and its recovery is independent of the actual value of V, but it is uniquely related

to  through (20): 

(21)

4 The Vmin-diagram (Minimum Energy Mountain) 

A nice feature, since there are only two degrees of freedom, is that we can visualize the entire operating

range in two dimensions, even with an arbitrary number of feed components. We choose to use 

• vapour flow per unit feed (V/F) and, 

D F⁄

D F⁄ ri T, zi∑=

D F⁄

D F⁄ z1 z2… rd1
zd1

+ +=
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• product split, expressed by the distillate (D/F), 

as degrees of freedom (when we in some places use V and D, then we are implicitly assuming F=1). The

choice of vapour flow rate on the ordinate provides a direct visualization of the energy consumption and column

load. We chose to use the vapour flow in the top (VT) on the ordinate when the feed quality . 

An important boundary is the transition from V>Vmin to V=Vmin. It looks like mountain peaks in the D-V-

plane, as illustrated in Figure 7, the Vmin-diagram. 

There is a unique minimum energy solution for each feasible pair of product recovery specifications, and

the solution is always found below or at the Vmin-boundary. 

Above the Vmin-boundary, the operation is not unique since we can always reduce the vapour rate down to

the Vmin-boundary without changing the product specifications. Below the Vmin-boundary we can identify a set

of polygon regions for each set of distributing components. For the ternary case in Figure 7, the regions where

AB, BC or all of ABC are distributing are indicated. The boundaries between regions of distributing components

are straight line segments in the D-V plane due to the linear properties of equation (19-20).

Feasible operation requires positive vapour and liquid flows in all sections:

(22)

In an ordinary two product column we must also require  and

 (note that this is not a feasibility requirement for directly coupled sections) which with a single

feed translates to (see Figure 3):

 and (23)

The procedure for computing points to draw the Vmin-mountain-diagram for a general multicomponent case

(Nc components) is given in Table 2.

Since we assume constant relative volatility only adjacent groups of components can be distributing. 

q 1≠

VT 0 VB 0 LT 0 LB 0>,>,>,>

D VT LT– 0≥=

B LB V–
B

0≥=

VT max 1 q–( )F D,( )≥ 0 D F⁄ 1≤ ≤
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In the Vmin-diagram, each peak represents minimum energy operation for sharp splits between adjacent

components (  and ). Then there is only a single active Underwood root, and the minimum

vapour flow and the corresponding distillate flow solved from equation (16) is simplified to:

Peaks:  and (24)

4.1 Binary Case

Before we explore the multicomponent cases, let us look closer at a binary case. Consider a feed with light

component A and heavy component B with relative volatilities , feed composition , feed

flow rate F=1 and liquid fraction q. In this case we obtain from the feed equation (14) a single common root 

obeying . The minimum vapour flow is found by applying this root in the defining equation (16):

(25)

We also have from (20):

(26)

The procedure in Table 2 becomes very simple in the binary case since there is only one possible pair of

key components (A,B). We obtain the following results as illustrated in Figure 3. There is one sharp split (between

A and B):

PAB:  =>

The two asymptotic points are:

rj T, 1= rj 1 T,+ 0=

VTmin
j/j+1

F
--------------

αizi

αi θj–
----------------

i 1=

j

∑=
D
F
---- zi

i 1=

j

∑=

αA αB,[ ] z zA zB,[ ]=

θA

αA θA αB> >

VTmin

F
--------------

αArA T, zA

αA θA–
------------------------

αBr
B T, zB

αB θA–
------------------------+=

D
F
---- rA T, z

A
rB T, zB+=

rA T, rB T,,[ ] 1 0,[ ]= D VTmin,[ ] zA

αAzA

αA θA–
-------------------, F=
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P0 :  =>

P1 :  =>

These three points make up a triangle as shown in Figure 3. Along the straight line P0-PAB we have V=Vmin

for a pure top product ( ), and from (25) the line can be expressed by the recovery  or D/F:

 since (27)

Similarly, along the straight line PAB-P1, we have V=Vmin for a pure bottom product ( ), and the

line can be expressed by the recovery  or D/F:

 where (28)

Inside the triangle, we may specify any pair of variables among (VT,D,rA,rB) and use the equation set (25-

26) to solve for the others. This is exactly the same equation set as given in (19-20) for the general multicompo-

nent case when both components are distributing. 

Above the triangle (Vmin-mountain), where V>Vmin, we have no active Underwood roots, so (25) no longer

applies. However, since only one component is distributing, we have either  or . This implies

that the recoveries are directly related to D, and we have:

 for  or  for (29)

which is equivalent to (21) in the general multicomponent case. Anywhere above the triangle we obviously

waste energy since the same separation can be obtained by reducing the vapour flow until we hit the boundary to

region AB.

rA T, rB T,,[ ] 0 0,[ ]= D VTmin,[ ] 0 0,[ ]=

rA T, rB T,,[ ] 1 1,[ ]= D VTmin,[ ] 1 1 q–( ),[ ]F=

rB T, 0= rA T,

VT

F
------

αArA T, zA

αA θA–
------------------------

αA

αA θA–
-------------------

D
F
----= =

D
F
---- rA T, zA=

rA T, 1=

rB T,

VT

F
------

αAzA

αA θA–
-------------------

αBr
B T, zB

αB θA–
------------------------+=

D
F
---- zA rB T, zB+=

rA T, 1= rB T, 0=

D
F
---- rA T, z

A
=

D
F
---- zA≤ D

F
---- zA rB T, zB+=

D
F
---- zA≥



13

VT>D and VT>(1-q)F are required for feasible operation of a conventional two-product distillation column.

The shaded area represents an infeasible region where a flow rate somewhere in the column would be negative.

Note that the asymptotic points (P0 and P1) are infeasible in this case.

We may also visualise the non-sharp split solutions with specified component recoveries. This is illustrated in Fig-

ure 4 for the example  and  (dashed lines). Note that for V>Vmin these become

vertical lines. The unique solution with both specifications fulfilled is at the intersection inside region AB denoted

“Solution” in Figure 4. 

4.2 Ternary Case

Figure 5 shows an example of the Vmin-diagram, or “Minimum Energy Mountain” for a ternary feed (ABC).

To plot this diagram we apply the procedure in Table 2 and identify the following five points:

The peaks, which give Vmin for sharp splits A/B and B/C (no distributing components):

PAB:  =>

PBC:  =>

The preferred split, which gives Vmin for sharp A/C-split (B is distributing):

PAC: =>

where  is the recovery of B: 

and the trivial asymptotic points:

P0 :  =>

P1 :  =>

VT rA 0.85= D( ) VT rB 0.25= D( )

rA T, rB T,,[ ] 1 0,[ ]= D VTmin,[ ] zA

αAzA

αA θA–
-------------------, F=

rB T, rC T,,[ ] 1 0,[ ]= D VTmin,[ ] zA zB+
αAzA

αA θB–
-------------------

αBzB

αB θB–
-------------------+, F=

rA T, rC T,,[ ] 1 0,[ ]= D VTmin,[ ] zA βzB+
αAzA

αA θB–
-------------------

αBβzB

αB θB–
-------------------+, F=

β β rB T,
A C/

αAzA

αBzB
------------–

αB θA–( ) αB θB–( )
αA θA–( ) αA θB–( )

------------------------------------------------= =

rA T, rB T,,[ ] 0 0,[ ]= D VTmin,[ ] 0 0,[ ]=

rA T, rB T,,[ ] 1 1,[ ]= D VTmin,[ ] 1 1 q–( ),[ ]F=
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The two peaks (PAB and PBC) give us the minimum vapour flow for sharp split between A/B and B/C,

respectively. The valley, PAC, gives us the minimum vapour flow for a sharp A/C split and this occurs for a spe-

cific distribution of the intermediate component B, known as the “preferred split” (Stichlmair19).

One part of the Vmin-boundary, namely the V-shaped PAB-PAC-PBC curve, has been presented by several

authors, e.g. Fidkowski10, Christiansen and Skogestad17. It gives the minimum vapour flow for a sharp split

between A and C as a function of the distillate flow, or the distribution of the intermediate component (B). Figure

5, however, gives the complete diagram for all feasible operating points. In every region where more than one

component may be distributing to both products (AB, BC and ABC), at least one Underwood root is active and

we may find the actual flows and component distribution using equation (19). Note that at the boundaries one of

the components is at the limit of being distributing: 

At boundaries B/AB and ABC/BC: rA,T=1 (rA,B=0)

At boundary A/AB: rB,T=0 (rB,B=1)

At boundary  C/CB: rB,T=1 (rB,B=0)

At boundaries B/BC and AB/ABC: rC,T=0 (or rC,B=1)

4.3 Five Component Example

A 5-component example is shown in Figure 6. Here we also plot the contour lines for constant values of

the recoveries in the top for each component in the range 0.1 to 0.9 and we clearly see how each component recov-

ery depends on the operating point (D,V)

Note that the boundary lines (solid bold) are contour lines for top recoveries equal to zero or one and that

any contour line is vertical for V>Vmin. The contour lines for different recovery values of a certain component are

parallel in each region.
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To draw the Vmin-diagram for Nc components, we must identify the  points (Pij) given in the

procedure in Table 2, corresponding to the following distribution regions: AB, BC, CD, DE, ABC, BCD, CDE,

ABCD, BCDE, ABCDE. Note that the behaviour in a region where only two components are distributing is very

similar to the simple binary case described in section 4.1 and can be expressed by the single active common under-

wood root in the actual region.

Figure 6 also illustrates that some combinations of recovery specifications can be infeasible, e.g. rA,T=0.9

and rC,T=0.6. Observe that combined specification of D and an intermediate recovery may have multiple solu-

tions, e.g. D=0.2 and rB,T=0.3. The specification of V and a recovery will be unique, as will the specification of

D and V. The specification of two (feasible) recoveries will also be unique, and the solution will always be a min-

imum energy solution (V=Vmin).

5 The Vmin-diagram by Rigorous Simulation

So far, we have used analytic expressions to compute the Vmin-diagram for ideal mixtures with constant

molar flows and constant relative volatility. However, for real mixtures we may replace the analytic Underwood

equations with numerical property calculations and draw the Vmin-diagram. To approximate the vapour flow with

infinite number of stages, we should use at least 4xNmin stages in the simulations, where Nmin is the minimum

number of stages for the separation (with infinite flows).

In the example described below we applied the Hysys process simulator, using the Peng-Robinson equation

of state, for an equimolar feed mixture of n-Pentane (A), n-Hexane (B) and n-Heptane (C) at 745kPa with 80%

liquid fraction. The results are visualized in Figure 7 and the numerical values are listed in Table 3. The main dia-

gram can be constructed by three simulations at the three characteristic points of the diagram (PAC,PAB,PBC). In

addition we have also simulated some additional operating points to verify the internals of the diagram. 

The Vmin-diagram for the real mixture (solid), drawn through the results of the rigorous the simulations (cir-

cles), is very close to the ideal Vmin-diagram (dashed) computed with the assumption of constant relative volatility

(α=[1.683, 0.9266, 0.5234], which are the K-values at the feed stage from simulation no. 3 in Table 3). The con-

Nc Nc 1–( ) 2⁄
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tour lines for constant recovery rA,T=0.8 and rC,T=0.222 for the constant relative volatility case are also shown

(dotted). The match in region ABC is very good, as expected, since the pinch zone composition and thereby the

relative volatilities will be constant for the real mixture too. Further away from region ABC we observe a certain

deviation between the real and ideal diagrams. The explanation is that the pinch-zone composition at the feed

stage will change a little outside region ABC and so will also the real relative volatility. 

However, we conclude that the Vmin-diagram can be applied for assessment of real mixtures too. Obviously

there can be some non-linearities of the distribution boundaries and some deviations in the height of the peaks for

the real mixture due to that the relative volatility and molar flows are not constants, but the main picture is very

similar. 

Note that the vapour flow is the amount leaving the feed stage. In order to get an exact prediction of the

reboiler and condenser flows, we have to take into account the difference in heat of vaporization for the mixture

at the feed stage and in the respective column ends. We also expect that the pinch zone compositions in each of

the column ends will be slightly different from the ideal case since the relative volatilities and molar flows will

not be completely constant along the column.

In the example Fenske’s minimum reflux formula gives , which is

the stage number used in the simulations. Note that with a finite number of stages we reach an approximate dis-

tribution boundary by specifying a small composition (here ε=0.001) of the component to be removed in the

appropriate product instead of zero recovery. In practice,  can be regarded as close to infinite

number of stages in a simulation. 

6 Discussion

In the thesis by Halvorsen14, some points on the usage of the Vmin-diagram, and further analysis are dis-

cussed in more detail. Here we only summarize a few of these results.

1. Behaviour of all the Underwood roots as a function of operating point (pp 83-84). 

4Nmin 4 ε 2–log min αij( )log⁄ 100≈ ≈

N 4 Nmin⋅=
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The Vmin-diagram is also very well suited to illustrate the behaviour of the Underwood roots in each section 

( ) as we change the operating conditions. Recall that Underwood showed that as the vapour flow (V) 

is reduced, a certain pair of roots will coincide, and we get V=Vmin. But how do we find which pair, and 

what happen to the other roots?

2. Relation to composition profiles and pinch zones (pp 85-90 and 101-102)

It can be shown for the ternary case that the pinch zone composition (subscript P) when one component is 

removed completely somewhere in one of the column ends, depends only on the actual Underwood root 

between the volatilities of the remaining components. In the top we obtain14:

 , (30)

Thus, in the minimum energy regions (AB, ABC) where  this result tells that the pinch zone com-

position above the feed stage is constant. This is extremely interesting when we consider the Petlyuk 

arrangement since the feed stage of the succeeding column is “connected” to this pinch zone.

3. Finite number of stages (pp 90-92, 126-129 and 42-48).

It is straightforward to determine minimum number of stages in a section from the product purity specifi-

cations with Fenske’s formula. The largest number of real stages in order to carry out a sharp split between 

the two most extreme components is required close to the preferred split. Away from the preferred split, the 

number of required stages in one of the sections above or below the feed stage is reduced. Thus, if the col-

umn is designed for operation on one side of the preferred split, this can be taken advantage of by reducing 

number of stages in the appropriate section. However, if the column is to be operated at, or on both sides 

of the preferred split, both sections have to be designed with its maximum number of stages.

φ ψ,

xA PT,
αB αA φA–( )
φA αA αB–( )
-------------------------------= xB PT, 1 xA PT,–=

φA θA=
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7 Conclusion

The distribution of feed components and corresponding minimum energy requirement is easily found by

just a glance at the Vmin-diagram. The characteristic peaks and knots are easily computed from Underwood’s

equations for infinite number of stages. The heights of the peaks, and thereby the energy requirement for sharp

splits, are determined by the relative volatilities and the feed composition. The highest peak characterise the most

difficult binary split.

The Vmin-diagram can be computed for non-ideal systems too. E.g. by using a commercial rigorous simu-

lator with a large number of stages. Thus, this graphical tool is not limited to the ideal system assumptions.

However, for ideal systems, we provide exact analytical expressions for minimum energy calculations for

the entire feasible operating range of a distillation column.

Although the theory has been deduced for a single conventional column, the simple Vmin-diagram for a two-

product column contains all the information needed for optimal operation of a complex directly (fully thermally)

coupled arrangement, such as the Petlyuk column. This is the subject of Part II and III of this series.



19

8 References

(1) Underwood, A.J.V. et. al., Fractional Distillation of Ternary Mixtures. Part I. J. Inst. Petroleum, 31, 111-

118, 1945

(2) Underwood, A.J.V. et. al., Fractional Distillation of Ternary Mixtures. Part II. J. Inst. Petroleum, 32, 598-

613, 1946

(3) Underwood, A.J.V. Fractional Distillation of Multi-Component Mixtures - Calculation of Minimum reflux

Ratio. Inst. Petroleum, 32, 614-626, 1946

(4) Underwood, A.J.V. , Fractional Distillation of Multi-Component Mixtures. Chemical Engineering

Progress, Vol. 44, no. 8, 1948

(5) Shiras, R.N., Hansson, D.N. and Gibson, C.H. Calculation of Minimum Reflux in Distillation Columns.

Industrial and Engineering Chemistry, Vol. 42, no 18, p 871-876, 1950

(6) King, C.J. Separation Processes. McGraw-Hill, Chemical Engineering Series,  New York 1980.

(7) Franklin, N.L. Forsyth, J.S. ( The interpretation of Minimum Reflux Conditions in Multi-Component

Distillation. Trans. IChemE, Vol. 31, 1953. (Reprinted in Jubilee Supplement - Trans. IChemE, Vol. 75,

1997).

(8) Wachter, J.A. and Ko, T.K.T. and Andres, R.P.,  Minimum Reflux Behaviour of Complex Distillation

Columns.  AIChE J. Vol. 34, no 7, 1164-84, 1988

(9) Koehler, J. and Poellmann, P. and Blass, E. A Review on Minimum Energy Calculations for Ideal and

Nonideal Distillations.  Ind. Eng. Chem. Res, Vol. 34, no 4, p 1003-1020, 1995

(10) Fidkowski, Z. and Krolikowski, L. Thermally Coupled System of Distillation Columns: Optimization

Procedure, AIChE Journal,  Vol. 32, No. 4, 1986.

(11) Carlberg, N.A. and Westerberg, A.W. Temperature-Heat Diagrams for Complex. Columns. 3. Under-

wood’s Method for the Petlyuk Configuration. Ind. Eng. Chem. Res. Vol. 28, p 1386-1397, 1989.



20

(12) Carlberg, N.A. and Westerberg, A.W. Temperature-Heat Diagrams for Complex. Columns. 2. Under-

wood’s Method for Side-strippers and Enrichers. Ind. Eng. Chem. Res. Vol. 28, p 1379-1386, 1989.

(13) Neri, B. Mazzotti, M. Storti, G. Morbidelli, M. Multicomponent Distillation Design Through Equilibrium

Theory. Ind. Eng. Chem. Res. Vol. 37, p 2250-2270, 1998

(14) Halvorsen, I.J. Minimum Energy Requirements in Complex Distillation Arrangements. NTNU Dr. ing.

Thesis, 2001:43. Available from the web page of Sigurd Skogestad, Dept. of Chemical Engineering, NTNU

(May 2002: http://www.chembio.ntnu.no/users/skoge/publications/thesis/2001/halvorsen/)

(15) Halvorsen I.J. and Skogestad S. Minimum Energy Consumption in Multicomponent Distillation, II:

Three-product Petlyuk Arrangements. Submitted for publication, October 2001

(16) Halvorsen I.J. and Skogestad S. Minimum Energy Consumption in Multicomponent Distillation, III: More

than Three Products and Generalized Petlyuk Arrangements. Submitted for publication, October 2001

(17) Christiansen, A.C. and Skogestad S. Energy Savings in Integrated Petlyuk Distillation Arrangements.

Importance of Using the Preferred Separation,  AIChE Annual meeting,  Los Angeles, November 1997.

Paper 199d, updated version as found in as found in Christiansen18.

(18) Christiansen, A.C. “Studies on optimal design and operation of integrated distillation arrangements. Ph.D

thesis , 1997:149, Norwegian University of Science and Technology (NTNU).

(19) Stichlmair, J. Distillation and Rectification,  Ullmann’s Encyclopedia of Industrial Chemistry, B3, 4-1 -4-

94, VCH, 1988.



21

LIST OF FIGURES

Figure 1: Two-product distillation column with reboiler and total condenser

Figure 2: The Vmin-diagram for ternary feed (ABC)

Figure 3: The Vmin-diagram, or minimum energy mountain for binary separation between components A 

(light) and B (heavy). Visualization of the regions of distributing components.

Figure 4: Solution for a given pair of recovery specifications visualized in the Vmin-diagram

Figure 5: Vmin-diagram for a ternary feed mixture (ABC). V>Vmin above the Vmin-boundary (the 

“mountain” P0-PAB-PAC-PBC-P1). All minimum energy solutions, (V=Vmin (spec 1, spec 2)) 

are found in the distribution regions AB, BC and ABC. The active Underwood roots are also indi-

cated in each region (when ).

Figure 6: The Vmin-diagram for a 5-component feed (F=1). Contour lines for constant top product recov-

eries are included.

Figure 7: Vmin-diagram based on numerical simulations (solid) and constant relative volatility (dashed). 

Each numerical simulation from Table 3 are indicated (circles). The contour lines for the selected 

constant (nonsharp) recoveries (dotted) are computed with constant relative volatility. (Constant 

α-values are from the simulation at PAC)



22

Figure 1: Two-product
distillation column with
reboiler and total condenser

LT

VT

LBVB

F,q

z

D

B



23

Vmin-boundary

Distribution
regions

AB

ABC
BC

V

D

Figure 2: The Vmin-diagram for
ternary feed (ABC)

V>Vmin

Distribution
boundaries



24

0 F
D

only B is distributing

A+B are distributing

Figure 3: The Vmin-diagram, or minimum energy mountain for binary separation between
components A (light) and B (heavy). Visualization of the regions of distributing
components.

(1-q)F

PAB: VTmin

VT

V>Vmin
V=Vmin(rA,rB)

V>Vmin

P0

P1

only A is distributing

r B,
T

=
0

r
A,T =

1
Infeasible region: (V<D or V<(1-q)F

A at the boundary of
becoming distributing

B at the boundary of
becoming distributing

θA active

Region (B) where

Region (A) where 

Region (AB) where both

=> no active roots

A/B

Vmin for
sharp A/B-split

zAF

(no B in distillate).

(no A in bottoms).



25

0 F D

Figure 4:  Solution for a given pair of recovery
specifications visualized in the Vmin-diagram

(1-q)F

PAB
VT rA,T=0.85

P0

P1

rB,T=0.25

Solution



26

0 1

VT/F

D/F

1-q

ABC

D

VT LT

VT=D (LT=0)

 “The preferred split”

Sharp A/BC split Sharp AB/C split

Infeasible region
VT=(1-q)F or VB=0

Fqz
Region A

zA

Region B

Region C

Region ABC 

Region AB Region BC

θA

θAθB

θΒ

P0

P1

V>Vmin
above the

VB LB

B

zB zC

r C,T
=0

r C,T
=0

rA,T =1

r
A,T =1

r B
,T

=
0

r
B

,T =
1

Figure 5: Vmin-diagram for a ternary feed mixture (ABC). V>Vmin above the Vmin-
boundary (the “mountain” P0-PAB-PAC-PBC-P1). All minimum energy solutions,
(V=Vmin (spec 1, spec 2)) are found in the distribution regions AB, BC and ABC. The
active Underwood roots are also indicated in each region (when ). φi θi=

PBC: VTmin
AB/B

PAB: VTmin
A/BC

PAC: VTmin
A/C

Vmin-boundary



27

.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.5

1

1.5

V
T

D

V
min

−diagram

r
A,T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

r
B,T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

r
C,T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

r
D,T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

r
E,T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

P
AB

AB

P
AC

ABC
P

AD

ABCD
P

AE

ABCDE

P
BC

BC

P
BD

BCD
P

BE

BCDE

P
CD

CD

P
CE

CDE

P
DE

DE

1−q

Infeasible region

Case:
α=[9           6         3.5           2           1]
z=[0.2         0.2         0.2         0.2         0.2]
q=0.8

Figure 6: The Vmin-diagram for a 5-component feed (F=1). 
Contour lines for constant top product recoveries are included.



28

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

D/F

V
T
/F

P
AB

P
AC

P
BC

r
AT

=0.800 r
CT

=0.222

AB

ABC

BC

Figure 7: Vmin-diagram based on numerical simulations (solid) and constant relative
volatility (dashed). Each numerical simulation from Table 3 are indicated (circles). The
contour lines for the selected constant (nonsharp) recoveries (dotted) are computed with
constant relative volatility. (Constant α-values are from the simulation at PAC)



29

Table 1:  Number of unknown variables and equations

Total number of variables (VT,RT) Nc +1

- Number of non-distributing components Nc - Nd

= Remaining unknown variables Nd +1

- Number of equations=number of active roots Na = Nd - 1

= Degrees of freedom 2
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Table 2:  Computation procedure for construction of a Vmin-diagram

1 Find all possible common Underwood roots [ ] from the feed 

equation (14). 

2 Use equations (19-20) to find the full solutions for sharp split between every pos-

sible pair of light (LK) and heavy key (HK) specifications. Each solution gives 

the component recoveries (R), minimum vapour flow (Vmin/F) and product split 

(D/F). These are the peaks and knots in the diagram (Pij), and there are 

 such key combinations:

- Nc-1 cases with no intermediates (e.g. AB, BC, CD,....)

These points are the peaks in the Vmin-diagram

- Nc-2 cases with one intermediate (e.g. AC, BD, CE,....)

These are the knots between the peaks, and the line segments between the 

peaks and these knots forms the Vmin-boundary

- ...

- 2 cases with Nc-3 intermediates (Nc-1 components distribute)

- 1 case with Nc-2 intermediates (The Preferred split)

3 Find the two asymptotic points where all recoveries in the top are zero or one, 

respectively: VTmin=0 for D=0 and VTmin=(1-q)F for D=F.

θ1 θ2 … θNc 1–, , ,

Nc Nc 1–( ) 2⁄
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Table 3:  Rigorous simulation results for the given set of specifications

Specification of 2 
DOFs (ε=0.001)

Simulation
D V T

Constant α
VT

1:PAB xB,T=ε xA,B=ε 0.333 1.30 1.34

2 rB,T=0.2 xA,B=ε 0.399 1.14 1.16

3:PAC xC,T=ε xA,B=ε 0.467 0.977 0.977

4 xC,T=ε rB,T=0.6 0.534 1.21 1.12

5 xC,T=ε rB,T=0.8 0.601 1.45 1.42

6:PBC xC,T=ε xB,B=ε 0.667 1.69 1.63

7 rA,T=0.8 xB,T=ε 0.267 1.04 1.08

8 rA,T=0.8 xC,T=ε 0.374 0.783 0.783

9 rA,T=0.8 rC,T=0.222 0.492 0.611 0.611

10 xA,B=ε rC,T=0.222 0.585 0.806 0.806

11 rB,T=0.8 rC,T=0.222 0.674 1.12 1.10

12 xB,B=ε rC,T=0.222 0.740 1.35 1.32

13 rA,T=0.5 xB,T=ε 0.167 0.647 0.672

14 xC,T=0.2 xB,B=ε 0.833 0.937 0.917
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