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Abstract

The V,i-diagram isintroduced to effectively visualize how the minimum energy consumption is related to
the feed component distribution for al possible operating points in a two-product distillation column with
amulticomponent feed. The classical Underwood equations are used to derive analytical expressionsfor the
ideal case with constant relative volatility and constant molar flows. However, the diagram can a so be used
for non-ideal mixtures. The V,,-diagram is very insightful for assessing multicomponent separation in a
single column, and iseven more powerful for complex column arrangements, such as Petlyuk columns (Part

Il and 111).

Keywords: Underwood equations, multicomponent distillation, separation, minimum energy, ideal mix-
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1 I ntroduction

We assume constant molar flows, constant relative volatilities and infinite number of stages and use the
classical Underwood equations to compute the distribution of all the componentsin the generalized multicompo-

nent feed as a function of the degrees of freedom in a two-product distillation column (Figure 1).

A main result is asimple graphical visualization of minimum energy and feed component distribution for

all possible operating points. We denote this the Minimum Energy Mountain Diagram or just the V,,,,-diagram.

The Vy,in-diagram can be used for quick determination of the minimum energy requirement in a single

binary column with a multicomponent feed, for any feasible product specification.

The equations of Underwood 1,234 have been applied successfully by many authors for analysis of multi-
component distillation, e.g. Shiras®, King®, Franklin and Forsyth’, Wachter et. al .2 and in acomprehensive review
of minimum energy calculations by Koehler?. Minimum energy expressions for Petlyuk arrangements with three
components have been presented by Fidkowski and Krolikowski® and Carlberg and Westerberg™12. However,
minimum energy requirements for the general multicomponent case, the topic of this paper, has so far not been

well understood.

Alternative methods for visualization of feed distribution regions for a single column have been presented

by Wachter et. al.8 based on a continuum model and by Neri et.al.13, based on equilibrium theory.

Our original derivation of the V,,;,-diagram was based on computing pinch zone compositions for columns
with infinite number of stages. However, the Underwood approach is simpler and may easily be extended to other
kinds of column section interconnections. Specifically, the methods presented can also be used for Petlyuk
arrangements and for arrangements with side strippers and side rectifiers. Thisistreated in detail in the thesis by
Halvorsen'* and in the succeeding papers on minimum energy consumption in distillation, part 111> and 11116, The
behaviour of composition profiles and pinch zones in a column, and how the required finite number of stages

depends on the component distribution is also treated in more detail in the thesis'*.



We may alternatively compute V,,,,-diagrams by other means, e.g. by afew simulations for area system
with a rigorous simulator. Thus, the insight provided by the V,,;,-diagram is not limited to ideal systems. How-
ever, with the Underwood equations and the ideal system assumption, we are able to deduce exact analytical

expressions for minimum energy calculations.

2 Problem Definition - Degrees of Freedom

With a given feed, a two-product distillation column normally has two steady-state degrees of freedom of
operation. For abinary feed, thisis sufficient to specify any product distribution. In the case of a multicomponent
feed, however, we cannot freely specify the compositions in both products. In practice, one usually specifiesthe
distribution of two key components, and the distribution of the non-key components is then completely deter-
mined for agiven feed. In some cases, the column pressure could be considered as athird degree of freedom, but
we will assume that the pressure is constant throughout this paper since the pressure has a limited impact on the

product distribution.

For every possible operating point we want to find the normalized vapour flow rate (V/F) and the overall
product split (D/F or B/F) and the distribution, here given by the set of recoveriesR = [rq, I, ..., Iy ]. Thiscan

be expressed for the top section as:

[\LT D RJ = f(Spec,, Spec,, Feed properties) D
F FE T e

It is sufficient to consider only one of the top or bottom sections as the recoveries and flows in the other
section can be found by a material balance at the feed stage. The feed properties are given by the composition
vector z flow rate F, liquid fraction g and relative volatilities o. . The recovery (r;) isthe amount of component i

transported in a stream or through a section divided by the amount in the feed. N, is the number of components.



3 The Underwood Equations for Minimum Ener gy

3.1 Some Basic Definitions

1,234 s the material balance

The starting point for Underwood’s methods for multicomponent mixtures
equation at a cross-section in the column. The net material transport (w;) of component i upwards through a stage
n isthe difference between the amount travelling upwards from a stage as vapour and the amount entering a stage

from above as liquid:
Wi = ViYin—Lln+1Xin+1 2

Note that at steady state, w; is constant through each column section. In the following we assume constant

molar flows (L=Lp=L.; and V=V,;=V,,, 1) and constant relative volatility (o, ).

The vapour liquid equilibrium (VLE) at an equilibrium stage is given by:

% = —— ®

In the top section the net product flowisD = V —L, 1 and:

n

W, 1 = X% pD =1 pzF (4)

In the bottom section, B = L -V, and the net materia flow is;

n+1

Wi g = X,

gB = ri,BZiF (5)

The positive direction of the net component flows is defined upwards, but in the bottom the components
normally travel downwards from the feed stage and then we have w, 5 < 0. With asinglefeed stream the net com-

ponent flow in the feed is given as:



W g = ziF.

A recovery can then be regarded as a normalized component flow:

N = w/w g = w/(zF)

(6)

(7)

Atthefeed stage, w; ¢ isdefined positiveinto the column. Note that with our definitionin (7) the recovery

isalso asigned variable.

3.2 Definition of Underwood Roots

The Underwood roots (¢ ) in the top section are defined as the N, solutions of:

Note that these equations are related via the material balance at the feed stage:

Wi t=Wi,B = Wi F = 4,

FF

(8)

9)

(10)

(whichisequivalent to -l = 1) and the changein vapour flow at the feed stage given by theliquid

fraction (q) of the feed (F):

(11)



Computation of the Underwood roots involves solving a straightforward polynomial root problem, but we
should be careful and make sure that the vector of component flowswy or wg isfeasible. Thisalso impliesthat in
the multicomponent case thereis a*hidden” interaction between the unspecified elements in wy and the Under-

wood roots.

3.3 The Underwood Roots for Minimum Vapour Flow

Underwood showed a series of properties of the roots (¢ and ) for atwo-product column with a single
reboiler and condenser. In this conventional column, all components flow upwards in the top section (w; 2= 0),

and downwardsin the bottom section (w; g < 0). With N componentstherearefor each of ¢ and y, N solutions

obeying:

0> 01> 05> 05> 03> ... > 0> One (12)

Y1> 0 > Yp> 0> Yo > 00p> o > Y > One (13)

When the vapour flow is reduced, the roots in the top section will decrease, while the roots in the bottom
section will increase. Underwood? showed that at minimum vapour flow for any given product distribution, one

or more pairs of roots coincide to acommon root (denoted 6, ,i.e.0; = y; , 1 = 6;).

Recall that V; - Vg = (1-0q)F . By subtracting the defining equations for the top and bottom sections (8)-
(9), we obtain the following equation which is valid for the common roots only (denoted 6 ):

07
1-qg-= Z(x-—e (19

We call thisexpression the feed equation since only the feed properties (q and z) appear. It hasalso N roots,

but one of these cannot be acommon root dueto (12) and (13), so there are N.-1 possible common roots that obey:

01>07>05>0,>...>0y._1> 0y - (15)



We will denote aroot 6, an active root for the case when ¢, = v, 1 = 0,.. Inserting the active root in

the top and bottom defining equations gives the minimum flow for a given set of component distribution (wy or

ro.

_ oW, T N tz4F
VTmin - z '_ek or VTmln Z o ek (16)

With N active roots, this represents a set of N, independent linear equations, which may be used to find

the exact set of the so-called distributing components that appear in both products.

Note that the subscript min indicates minimum vapour flow and then we use acommon root 6 from equa-

tion (14) as opposed to an actual root ¢ in equation (8).

34 Computational Procedure

Our task isto find the N, product recoveries (or component flows) and the vapour flow, given any pair of
feasible specifications. The procedure on how to apply Underwood's equations for this purpose has been

described by several authors, e.g. Shiras® and Carlberg and Westerberg™™.

The key to the general solution isto identify the distributing components. A component in the feed is dis-
tributing if it appears in both products, or is exactly at the limit of becoming distributing if the vapour flow is

reduced with an infinitesimal amount.
The computation procedure is as follows:

Consider aset of Ny distributing components, denoted: {d,, d,, ..., dy4 - Therecoveriesinthetop aretriv-
ialy r; + = 1 for al non-distributing light components (i <d, ), and r;, + = 0 for the non-distributing heavy
components (i > dy4)- Then, with agiven distribution set we know the N, — N, recoveries of the non-distribut-

ing components.



Then use another of Underwood's results: For any minimum vapour flow solution, the active Underwood
roots will only be those with values in the range between the volatilities of the distributing components

(oco|1 >0 > ochd). Thisimplies that with Ny distributing components, the number of active rootsis:
N, = Ny—1 a7)

Thus, from Table 1, we see that by making two specifications we have enough information to determine

the solution completely.

Define the vector X containing the recoveries of the N distributing components and the normalized

vapour flow in the top section:

X = [rdl’ T rd27 T -« rde’ T FJ

(18)

(superscript T denotes transposed). The equation set (16) can then be written as a linear equation set on

matrix form:

M-X =2 (19)
or
M X _ _
d, -1
oy z 0y Z oy Z ] S %i%
d,%d, d,%d, by o1 X oy,
ocdl—edl ozdz—edl ozdl—edl . C|i=11
25 1T
0Ldlzd1 adzzdz OCdeZde -1 L4 = _Z 07
0y —0q, 0g,—0g, oy —6g, fo 1 - 10% =04,
Nd> -
-1
V./F
adlzdl 0(dzzdz (dedszd -1 B B d -1 02
— — — z,
_adl ede—l adz ede—l OCd1 ede—l B _z W‘
i Ong-1




The elementsin each column of M arise from the termsin (16) related to the distributing components, and
we have one row for each active root. Z contains the part of (16) arising from the non-distributing light compo-
nents with recovery onein the top. The recoveries for the heavy non-distributing components are zero in the top,

so these terms disappear.

There are N;=Ng-1 eguations (rows of M and Z) and Ngt+ 1 variablesin X (columnsin M). Thus by speci-
fying any two of thevariablesin X asour degrees of freedom we areleft with Ng-1 unknowns which can be solved

from the linear equation set in (19).

To specify the product split we introduce D/F as an extravariablein X and the following extra equation:
D/F = Zri 1 (20)

Notethat equation (19) isonly valid in acertain region of the possible operating space, namely inthe region

where components numbered d; to dyg are distributing to both products.

For nonsharp key specifications, componentslighter than the light key, and heavier than the heavy key, may
or may not be distributing. Then we usually have to check several possible distribution sets. See Halvorsen!* for

more details.

For V>V, and an infinite number of stages there are no common Underwood roots. Thus, at most one
component may be distributing and its recovery isindependent of the actual value of V, but it is uniquely related

to D/F through (20):

D/F =2z,+z,... +14.24, (22)

4 TheVp-diagram (Minimum Energy M ountain)

A nice feature, since there are only two degrees of freedom, is that we can visualize the entire operating

range in two dimensions, even with an arbitrary number of feed components. We choose to use

* vapour flow per unit feed (V/F) and,



10
» product split, expressed by the distillate (D/F),
as degrees of freedom (when we in some places use V and D, then we are implicitly assuming F=1). The

choice of vapour flow rate on the ordinate provides a direct visualization of the energy consumption and column

load. We chose to use the vapour flow in the top (V1) on the ordinate when the feed quality g 1.

An important boundary is the transition from V>V, to V=V,. It looks like mountain peaks in the D-V-

plane, asillustrated in Figure 7, the V,,;,-diagram.

There is a unigue minimum energy solution for each feasible pair of product recovery specifications, and

the solution is always found below or at the V,,;,-boundary.

Above the V,,,;-boundary, the operation is not unique since we can aways reduce the vapour rate down to
the V,j,-boundary without changing the product specifications. Below the V,,;,-boundary we can identify a set
of polygon regions for each set of distributing components. For the ternary case in Figure 7, the regions where
AB, BC or dl of ABC aredistributing are indicated. The boundaries between regions of distributing components

are straight line segmentsin the D-V plane due to the linear properties of equation (19-20).

Feasible operation requires positive vapour and liquid flowsin all sections:

V:>0,Vg>0,L+>0,Lg>0 (22)

In an ordinary two product column we must also require D = V;—L+>0 and
B=Lg- VB >0 (notethat thisisnot afeasibility requirement for directly coupled sections) which with asingle

feed translates to (see Figure 3):

Vizmax((1-q)F,D) and0<D/F<1 (23)

The procedure for computing pointsto draw the V,,,-mountain-diagram for ageneral multicomponent case

(N, components) is givenin Table 2.

Since we assume constant relative volatility only adjacent groups of components can be distributing.
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In the V,,;,-diagram, each peak represents minimum energy operation for sharp splits between adjacent
components(rj T =1and ey = 0). Then thereisonly asingle active Underwood root, and the minimum

vapour flow and the corresponding distillate flow solved from equation (16) is simplified to:

J
CVTmin _ 07 D _
Peaks: = = Za-—e andE = ZZi (24)

41 Binary Case

Before we explore the multicomponent cases, let uslook closer at abinary case. Consider afeed with light
component A and heavy component B with relative volatilities [o,, og], feed composition z = [z,, Z5], feed
flow rate F=1 and liquid fraction g. In this case we obtain from the feed equation (14) a single common root 6 ,

obeying a5 > 0 5 > .z . The minimum vapour flow isfound by applying this root in the defining equation (16):

Vi OAl p +Zx Opl, -Z
Tmin _ "AAT°A "BBTHB (25)
We a'so have from (20):
D - + 26
E - "aT%A" 8 1% (26)

The procedure in Table 2 becomes very simple in the binary case since there is only one possible pair of
key components (A,B). We obtain thefollowing resultsasillustrated in Figure 3. Thereisone sharp split (between

A and B):

%A%
Pag: [rA,T’rB,T] = [1,0] =>[D, Vil = ZA,m F
A A

The two asymptotic points are:



12

PO : [rA,Ta rB,T] = [Oa O] :>[DaVTmin] = [Oa 0]

Pl : [rA,Ta rB,T] = [13 1] :>[DaVTmin] = [13(1_q)]F

These three points make up atriangle as shown in Figure 3. Along the straight line Pg-Pyg we have V=V,

for apure top product (rB, 1 = 0), and from (25) the line can be expressed by the recovery r ATOr D/F:

V. Oplpy +Z o
T_PAATA _ A D D_
= D, p—OAF smceF ' T2Zp (27)

Similarly, along the straight line Pyg-P;, we have V=V, for a pure bottom product (r, + = 1), and the
line can be expressed by the recovery rg + or D/F:
Vi apZy  %Bfg %8

D
— = + where = = z, +r 2 28
F 0p—0, O0g—0, F A" B TB (28)

Inside the triangle, we may specify any pair of variables among (V1,D,r a,r'g) and use the equation set (25-
26) to solve for the others. Thisis exactly the same equation set as given in (19-20) for the general multicompo-

nent case when both components are distributing.

Abovethetriangle (Vyj,-mountain), where V>V, We have no active Underwood roots, so (25) no longer
applies. However, since only one component is distributing, we have either ry + = 1 or rg + = 0. Thisimplies
that the recoveries are directly related to D, and we have:

D
F

Zp+rg 12 for D> z (29)

F F
which isequivalent to (21) in the general multicomponent case. Anywhere above the triangle we obviously
waste energy since the same separation can be obtained by reducing the vapour flow until we hit the boundary to

region AB.
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V+>D and V> (1-0)F arerequired for feasible operation of aconventional two-product distillation column.
The shaded area represents an infeasible region where a flow rate somewhere in the column would be negative.

Note that the asymptotic points (P, and P,) areinfeasible in this case.

We may also visualise the non-sharp split solutions with specified component recoveries. Thisisillustrated in Fig-

ure 4 for the example VT‘rA - 0ss(D) and VT‘rB - 0.25(D) (dashed lines). Note that for V>V, these become

vertical lines. The unique solution with both specificationsfulfilled is at the intersection inside region AB denoted

“Solution” in Figure 4.

4.2 Ternary Case

Figure 5 showsan example of the V,,;,-diagram, or “Minimum Energy Mountain” for aternary feed (ABC).

To plot this diagram we apply the procedure in Table 2 and identify the following five points:

The peaks, which give V,,, for sharp splits A/B and B/C (no distributing components):

OaZp
[1,0] =>[D, Vyminl = {ZA’OL _ }F
A~ 9

OAZp OgZg
Pec: [rg 1 'c, 7l = [1,01 =>[D, V] = {ZA-FZB’ ' "

ap—0g og—0g

The preferred split, which gives V,,,, for sharp A/C-split (B is distributing):

apZy  0gPzg
Paci[Ta 1 e, 7l = [1,01=>[D, Vypnl = {ZAJ'BZB’ ocA—GB+OcB—OB "

opZp(0g —6,4)(0g —6p)
0gZg (0 —6,4)(0y —6p)

i . R = (AIC =
where B istherecovery of B: B = rB7/$ =

and the trivial asymptotic points:
Po : [rA,T’rB,T] = [0,0] =>[D, V14 = [0, 0]

Py [rA,T’rB,T] = [1,1] =>[D, Vi) = [L(1-q)]F
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The two peaks (Pag and Pgc) give us the minimum vapour flow for sharp split between A/B and B/C,
respectively. The valley, Pa ¢, gives us the minimum vapour flow for a sharp A/C split and this occurs for a spe-

cific distribution of the intermediate component B, known as the “preferred split” (Stichimair'®).

One part of the V,;,-boundary, namely the V-shaped Pyg-Pyc-Pgc curve, has been presented by several
authors, e.g. Fidkowski9, Christiansen and Skogestad®’. It gives the minimum vapour flow for a sharp split
between A and C asafunction of the distillate flow, or the distribution of the intermediate component (B). Figure
5, however, gives the complete diagram for all feasible operating points. In every region where more than one
component may be distributing to both products (AB, BC and ABC), at least one Underwood root is active and
we may find the actual flows and component distribution using equation (19). Note that at the boundaries one of

the componentsis at the limit of being distributing:

At boundaries B/AB and ABC/BC: rp 1=1 (ra g=0)
At boundary A/AB:rg1=0 (rgg=1)
At boundary C/CB: rg1=1 (rgg=0)

At boundaries B/BC and AB/ABC: r t=0 (or rc g=1)

4.3 Five Component Example

A 5-component example is shown in Figure 6. Here we also plot the contour lines for constant values of
therecoveriesin thetop for each component in the range 0.1 to 0.9 and we clearly see how each component recov-

ery depends on the operating point (D,V)

Note that the boundary lines (solid bold) are contour lines for top recoveries equal to zero or one and that
any contour lineisvertica for V>V, The contour linesfor different recovery values of a certain component are

parallel in each region.
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To draw the Vy,,-diagram for N components, we must identify the N (N, —1)/2 points (P;) givenin the
procedure in Table 2, corresponding to the following distribution regions. AB, BC, CD, DE, ABC, BCD, CDE,
ABCD, BCDE, ABCDE. Note that the behaviour in aregion where only two components are distributing is very
similar to the simple binary case described in section 4.1 and can be expressed by the single active common under-

wood root in the actual region.

Figure 6 also illustrates that some combinations of recovery specifications can be infeasible, e.g. r 1=0.9
and rc 1=0.6. Observe that combined specification of D and an intermediate recovery may have multiple solu-
tions, e.g. D=0.2 and rg t=0.3. The specification of V and arecovery will be unique, as will the specification of
D and V. The specification of two (feasible) recoverieswill also be unique, and the solution will always be amin-

imum energy solution (V=Vi,)-

5 The V,,i,-diagram by Rigorous Simulation

So far, we have used analytic expressions to compute the V,,,-diagram for ideal mixtures with constant
molar flows and constant relative volatility. However, for real mixtures we may replace the analytic Underwood
equations with numerical property calculations and draw the V,,,-diagram. To approximate the vapour flow with
infinite number of stages, we should use at least 4xNy;,, stages in the simulations, where N, is the minimum

number of stages for the separation (with infinite flows).

In the example described bel ow we applied the Hysys process simulator, using the Peng-Robinson equation
of state, for an equimolar feed mixture of n-Pentane (A), n-Hexane (B) and n-Heptane (C) at 745kPa with 80%
liquid fraction. Theresults are visualized in Figure 7 and the numerical valuesarelisted in Table 3. Themain dia-
gram can be constructed by three simulations at the three characteristic points of the diagram (Pac,Pag,Pgc)- In

addition we have also simulated some additional operating pointsto verify the internals of the diagram.

TheV,,,-diagram for thereal mixture (solid), drawn through the results of the rigorousthe simulations (cir-
cles), isvery closeto theideal V,,,-diagram (dashed) computed with the assumption of constant relative volatility

(0=[1.683, 0.9266, 0.5234], which are the K-values at the feed stage from simulation no. 3 in Table 3). The con-
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tour lines for constant recovery ra 1=0.8 and rc 1=0.222 for the constant relative volatility case are also shown
(dotted). The match in region ABC is very good, as expected, since the pinch zone composition and thereby the
relative volatilitieswill be constant for the real mixture too. Further away from region ABC we observe acertain
deviation between the real and ideal diagrams. The explanation is that the pinch-zone composition at the feed

stage will change alittle outside region ABC and so will also the real relative volatility.

However, we conclude that the Vi ,-diagram can be applied for assessment of real mixturestoo. Obviously
there can be some non-linearities of the distribution boundaries and some deviationsin the height of the peaks for
the real mixture due to that the relative volatility and molar flows are not constants, but the main picture is very

similar.

Note that the vapour flow is the amount leaving the feed stage. In order to get an exact prediction of the
reboiler and condenser flows, we have to take into account the difference in heat of vaporization for the mixture
at the feed stage and in the respective column ends. We also expect that the pinch zone compositions in each of
the column ends will be slightly different from the ideal case since the relative volatilities and molar flows will

not be completely constant along the column.

In the example Fenske’'s minimum reflux formula gives 4N, = 4loge=2/logmi n(ocij) =~ 100, which is
the stage number used in the simulations. Note that with a finite number of stages we reach an approximate dis-
tribution boundary by specifying a small composition (here €=0.001) of the component to be removed in the

appropriate product instead of zero recovery. In practice, N = 4- N, can be regarded as close to infinite

n

number of stagesin asimulation.

6 Discussion

14

In the thesis by Halvorsen™, some points on the usage of the V,;,-diagram, and further analysis are dis-

cussed in more detail. Here we only summarize afew of these results.

1. Behaviour of al the Underwood roots as a function of operating point (pp 83-84).
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TheV,,-diagramisalso very well suited to illustrate the behaviour of the Underwood rootsin each section
(0, v) aswe change the operating conditions. Recall that Underwood showed that as the vapour flow (V)
isreduced, a certain pair of roots will coincide, and we get V=V,;,. But how do we find which pair, and

what happen to the other roots?
. Relation to composition profiles and pinch zones (pp 85-90 and 101-102)

It can be shown for the ternary case that the pinch zone composition (subscript P) when one component is
removed completely somewhere in one of the column ends, depends only on the actual Underwood root

between the volatilities of the remaining components. In the top we obtain*:

_ og(oa=0p)

X = ———— X = 1-X 30
APT = & (ar—0g) ' BPT A PT (30)

Thus, in the minimum energy regions (AB, ABC) where ¢, = 0, thisresult tellsthat the pinch zone com-
position above the feed stageis constant. This is extremely interesting when we consider the Petlyuk

arrangement since the feed stage of the succeeding column is“connected” to this pinch zone.
. Finite number of stages (pp 90-92, 126-129 and 42-48).

It is straightforward to determine minimum number of stages in a section from the product purity specifi-
cations with Fenske'sformula. The largest number of real stagesin order to carry out asharp split between
the two most extreme componentsisrequired closeto the preferred split. Away from the preferred split, the
number of required stages in one of the sections above or below the feed stage is reduced. Thus, if the col-
umn is designed for operation on one side of the preferred split, this can be taken advantage of by reducing
number of stages in the appropriate section. However, if the column is to be operated at, or on both sides

of the preferred split, both sections have to be designed with its maximum number of stages.
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7 Conclusion

The distribution of feed components and corresponding minimum energy requirement is easily found by
just a glance at the V,,,-diagram. The characteristic peaks and knots are easily computed from Underwood's
equations for infinite number of stages. The heights of the peaks, and thereby the energy requirement for sharp
splits, are determined by the relative volatilities and the feed composition. The highest peak characterise the most

difficult binary split.

The V,,j,-diagram can be computed for non-ideal systems too. E.g. by using a commercial rigorous simu-

lator with alarge number of stages. Thus, this graphical tool is not limited to the ideal system assumptions.

However, for idea systems, we provide exact analytical expressions for minimum energy calculations for

the entire feasible operating range of a distillation column.

Although the theory has been deduced for asingle conventional column, thesimple V,,;,-diagram for atwo-
product column contains all the information needed for optimal operation of a complex directly (fully thermally)

coupled arrangement, such as the Petlyuk column. Thisisthe subject of Part Il and 111 of this series.
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Table 1: Number of unknown variables and equations

Total number of variables (Vr,Ry) Ne+1
Number of non-distributing components N¢ - Ng
Remaining unknown variables Ng+1
Number of egquations=number of activerootsN; = | Ng-1
Degrees of freedom 2
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Table 2: Computation procedure for construction of a V,,,-diagram

Find all possible common Underwood roots[6,, 6,, ..., 6y__; ] from the feed

equation (14).

Use equations (19-20) to find the full solutions for sharp split between every pos-

sible pair of light (LK) and heavy key (HK) specifications. Each solution gives

the component recoveries (R), minimum vapour flow (V,/F) and product split

(D/F). These are the peaks and knots in the diagram (P;;), and there are

N.(N,—1)/2 such key combinations:

N¢-1 cases with no intermediates (e.g. AB, BC, CD,....)

These points are the peaks in the V,;,-diagram

N¢-2 cases with one intermediate (e.g. AC, BD, CE.,....)
These are the knots between the peaks, and the line segments between the

peaks and these knots forms the V,y;,-boundary

2 cases with N¢-3 intermediates (N.-1 components distribute)

1 case with N.-2 intermediates (The Preferred split)

Find the two asymptotic points where all recoveriesin the top are zero or one,

respectively: Vyyin=0 for D=0 and V1.;,=(1-q)F for D=F.
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Table 3: Rigorous simulation results for the given set of specifications

Specificationof 2 | Simulation | Constant o
DOFs (¢=0.001) D VT Vr
LPag [ Xg1=¢ [ Xap=t 0333 [1.30 [1.34
2 rg1=0.2 |Xap=¢ 0399 |1.14 |1.16
3:Pac | Xc7=E | Xap=t 0.467 |0.977 | 0.977
4 XcT=¢ |rg7=0.6 [0534 [1.21 |1.12
5 Xc1=¢ |rg7=0.8 [0.601 | 145 |1.42
6:Pgc [ XcT=¢ | Xgp=¢t 0667 |1.69 |1.63
7 ra7=0.8 |xg1=¢ 0.267 |1.04 |1.08
8 ra7=0.8 |Xc1=¢ 0.374 |0.783 | 0.783
9 ra7=0.8 | rc7=0.222 | 0.492 | 0.611 | 0.611
10 Xap=¢ |rc7=0.222 | 0.585 |0.806 | 0.806
1 rg1=0.8 |rc7=0.222 |0.674 | 112 |1.10
12 Xgp=¢ |rfc7=0.222 |0.740 |1.35 |1.32
13 ra71=0.5 |xg1=¢ 0.167 | 0.647 | 0.672
14 Xc71=0.2 | Xg g=¢ 0.833 |0.937 | 0.917
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