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CONTROL LIMITA TIONSFOR UNSTABLE PLANTS
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Abstract: This paper discusses for linear systems the performance limitations imposed
when the plant to be controlled is unstable (with RHP-poles). The first limitation is
that the plant needs to stabilized using feedback control, and this requires the active
use of manipulated inputs. The instability imposes a lower bound on the H,- and H -
norms of the transfer function K'S from outputs to inputs. Stabilization may thus be
impossible if the input usage, due to measurement noise or disturbances, exceeds
the saturation limits. These limitations are independent of the presence of RHP-
zeros, but the combination of RHP-poles and RHP-zeros implies further performance
deterioration. For a stabilized plant, the instability will manifest itself by the presence
of a RHP-zero in the transfer function K'S from the output to input used for control,
which again imposes performance limitations in terms of the input movemert.
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1. INTRODUCTION

It is well understood that minimum-phase charac-
teristics (RHP-zeros, time delays) impose funda-
mental performance limitations on the achievable
control qualit y.It has also been clear that the
presence of unstable (RHP) poles in combination
with RHP-zeros implies further performance dete-
rioration. Boyd and Desoer (1985) quantified this
in terms of a low er bound on theH .-norm of the
sensitivit yS (a somewhat improved bound is pre-
sented in (4) below). Middleton (1991) reviewed
the limitations for unstable plants, including limi-
tations on the time response. His main conclusion
is that the presence of RHP-poles imposes a lower
limit on the system bandwith wg, which may be
incompatible with the upper limit on wp imposed
by RHP-zeros and time dela ys. Results leading
to similar conclusions are given by Doyle (1986),
Doyle et al. (1992), Kwak ernaak (1995), Sloges-
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tad and Postleth w aite (1996), Seroret al. (1997)
and Astrém (1997).

How ever,the low erlimit on the bandwidth im-

posed by instabiliy is not by itself a limitation,

and led the first author of this paper to state

the following (Skogestad and Postleth w aite, 1996,
p. 140): R ecallthat for “perfect control” we undt

S ~ 0 and T ~ I. We note that a RHP-zero

imposes constr aintswhich are incompatible with

perfect ontrol. On the other hand, the constr aints
imposed by the RHP-pole are consistent with what

we would like for perfect control. Thus the pres-

ence of RHP-poles mainly impose problems when

tight (high gain) control is not possible.

The statement is misleading as it seems to indi-
cate that RHP-poles do not by themselves impose
performance limitations. How ev er, this is not cor-
rect as shown more recently by (Havre and Sko-
gestad, 2001). In short, whereas unstable (RHP)
zeros impose limitations at the plant outputs, the
unstable (RHP) poles impose limitations at the
plant inputs, and in particular on the transfer



function K S from outputs to inputs The main
objective of this paper is to review and extend
these results and put them into perspective.

Notation is fairly standard. The multivariable
linear plant model is G(s) and we have y =
Gu + G4d where y is the output vector, u the
input vector and d the disturbance vector. The
negative feedback controller is K (s), and we have
u = —K(y + n —r) where r is the reference for
y and n is the measurement noise. For a system
z = M(s)w the Hoo-norm of M is

-y [ELQIIP
1M (s)lloc = sup oM (jw) = sup
w w(t)#0 ||’LU(t)||2

where here t is time and ||z(¢)||2 is the usual
Eucledian vector norm. The Hs-norm of M is
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2. POLES AND POLE VECTORS

Consider a multivariable plant with state-space
matrices A, B, C' and D, and transfer function
matrix G(s) = C(sI — A)"'B + D. The poles of
the plant are the eigenvalues of A, and the plant
is unstable if it has poles located in the RHP
plane. By the right-half plane (RHP) we mean the
closed right half of the complex plane, including
the imaginary axis (jw-axis).

In multivariable system poles have directions as-
sociated with them. To quantify this we define for
a pole p; the input and output pole vectors (Havre
and Skogestad, 2002)

Yp. = Cti, u,, = BHq; (1)
where t; and ¢; are the corresponding right and
left eigenvectors of A, respectively. The closely
related pole directions are the pole vectors scaled
to have unit length, vy,

P

To motivate the introduction of pole vectors, con-
sider for the case when A has n distinct eigenval-
ues, the following dyadic expansion of the transfer
function,

- Ctiq/'B : Yp; Up;
Gl) =3 o5 +D=) 5 +D
=1 § ¢ =1 § ¢

From this we see that the ¢’the input pole vector
up, is an indication of how much the #’th mode
is excited (and thus may be “controlled”) by the
inputs. Similarly, the i’the output pole vector yp,
indicates how much the i’th mode is observed in
the outputs. Thus, the pole vectors may be used
for checking the state controllability and observ-

ability of a system. Indeed, if u,; = B¥¢; = 0 then

the corresponding pole is not state controllable,
and if y,; = Ct; = 0 the corresponding pole is not
state observable (Zhou et al., 1996, p.52).

In (1) we defined the pole directions in terms of
the state space matrices A, B and C. The pole
directions may alternatively be defined in terms of
the transfer matrix, by evaluating G(s) at the pole
p; and considering the directions of the resulting
complex matrix G(p;). The matrix is infinite in
the direction of the pole, and we may somewhat
crudely write

G(pi)ul)i = 00 " Yp; (2)

where up, is the input pole direction, and y,, is
the output pole direction. (2) gives useful insight
into the significance of the pole directions. The
pole directions may then in principle be obtained
from an SVD of G(p;) = USVH. Then u,, is the
first column in V' (corresponding to the infinite
singular value), and yp, the first column in U.

3. FUNDAMENTAL ALGEBRAIC
LIMITATIONS

Let us recall some fundamental properties for an
unstable plants. Consider a plant G with an un-
stable pole p which is stabilized with the feedback
controller K. For internal stability, all closed-loop
transfer functions such as S = (I + GK) ™}, T =
GKS, KS = K(I + GK)™! etc. must be stable.
But if T = GKS (complementary sensitivity) is
stable, and G has a RHP-pole located at p, then
it follows for internal stability that the transfer
function KS = K(I + GK)~! must have a RHP-
zero located at p. This fundamental requirement
is used repeatedly in the following.

Furthermore, since K cannot have a RHP-zero
located at p (this would imply a RHP-pole can-
cellation between G and K resulting in internal
instability) it follows that S = (I+GK) ™! (sensi-
tivity) must have a RHP-zero located at p. Thus,
S(p) is zero in the output direction of the pole,
S(p)yp = 0, and since T' = I — S, the presence
of an ustable pole p in the plant G requires for
internal stability (Zames, 1981)

T(P)yp = yp (3)

where y,, is the output pole direction. This inter-
polation constraints forms the basis for several of
the results presented below.

4. RHP-POLES COMBINED WITH
RHP-ZEROS

Let us start by presenting a result that confirms
the well-known fact that stabilization is very diffi-
cult if there is a RHP-zero close to the RHP-pole.



Here “close” in a multivariable systems means
both close in the complex plane as well as close
with respect to its direction.

In theory, stabilization of a rational linear system
is always possible, provided the unstable (RHP)
poles are state controllable and observable. How-
ever, in practice the presence of RHP-zeros may
limit possibility to stabilize the plant. First, sta-
bilization may require an unstable controller. Sec-
ond, and more importantly, performance will be
poor if the plant has a RHP-pole located close
and in the same directions as a RHP-zero. For
example, for a MIMO plant with single RHP-zero
z and single RHP-pole p we have that (Havre
and Skogestad, 1998a)(Skogestad and Postleth-
waite, 1996)

1Slloe > ¢

1Tl = €

2
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where ¢ = cos !|yfy,| is the angle between
the RHP-zero and RHP-pole. We see that if the
RHP-pole and RHP-zero are located close in the
complex plane (z—pis small), and they are located
in the same direction (i.e., cos? ¢ is not close to
0, i.e. ¢ is not close to £90°), then the peaks ¢
on S and T will be large, and stabilization is in
practice impossible.

5. LIMITATIONS AT THE INPUTS: SOME
PRACTICAL EXAMPLES

In the rest of the paper we turn to some more
important and less well known results that do not
depend on the presence of RHP-zeros, but before
considering these let us consider some practical
examples in order to develop some insight.

We found above that if the plant is unstable,
then for the stabilized system, the closed-loop
transfer function K'S from outputs (e.g. r) to
inputs (u) will have a RHP-zero located at the
original RHP-pole p. This limits the achievable
input performance. It also provides a method for
detecting if the underlying plant G is unstable.

We consider three practical examples:

(1) Consider riding a bicycle, which is obviously
an open-loop unstable plant. Here we use
the tilt of our body (u) to stabilize the
plant and, for example, keep the bicycle in
a certain angle (y) relative to its vertical
position. (By “tilt” we here mean that our
body is not in a vertical position). If we,
for example, want the bicycle to lean more
over (increase the angle y), then we must first
tilt (lean over) our body in that direction to
start the movement (see Figure 1b), but we
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Fig. 1. Inverse response for bicycle caused by underlying
instability

must eventually move it back to counteract
the resulting “off-balance” of the bike. Thus,
there will be an inverse response in the tilt
of our body (u).

(2) Consider the control of an exothermic chem-
ical reactor at an unstable operating point.
To stabilize the reactor, we may, for example,
use cooling water flow (u) to control reactor
temperature (y). There will then be a RHP-
zero in the transfer function K .S from reactor
temperature setpoint (r) to cooling water
flow (u). For example, if we want to decrease
reactor temperature, then we must initially
increase reactor cooling. However, eventually
the reactor will approach its new steady-
state where cooling actually is decreased. The
physical reason is that the lower temperature
implies that less products are formed and less
heat is generated by the reaction. Thus, there
will be an inverse response in the cooling
water flow (u).

(3) Consider the control of a distillation column
in an unstable operating point (Jacobsen and
Skogestad, 1994). In this case reflux flow (u)
may be used to control column temperature
(y). If we want to decrease the column tem-
perature, then we must initially decrease the
colder reflux flow. However, eventually the
column will approach its new steady-state
where reflux is increased (Jacobsen and Sko-
gestad, 1994). Thus, there will be an inverse
response in the reflux flow (u).

6. STABILIZATION AND INPUT USAGE

The fact that there is RHP-zero in K'S, or more
precisely in S, may be used to derive a lower
bound on the norm of K S.

Theorem 1. (Havre and Skogestad, 1997)(Havre
and Skogestad, 2001) Consider a plant G with
a single unstable (RHP) pole p. The minimum
achievable H,,-norm of the closed-loop transfer



function K'S from plant outputs to plant inputs,
u=—KS(Gqd + n), is then

min ||KS(8)||ee =
min [IK5(5)]

lug (Gso @)~ 2 = 1(Gsi(@) " wpll2 - (5)

Here S(s) = (I + GK(s))™!, and G4, and G
are the stable versions of G with the RHP-poles
mirrored across the imaginary axis and factorized
at the output and input, respectively (see Havre
and Skogestad (2001) for details), and || - ||2
denotes the usual Eucledian vector norm. For a
plant with multiple RHP-poles we have inequality
instead of equality, but the bound the holds for
any RHP-pole p.

At least for a SISO plant, a very similar result
holds also for the Hz-norm, see Theorem 2 below.
If there are saturation limits on the inputs, and
the required inputs exceed these, then stabiliza-
tion is most likely not possible.

Example Consider a SISO plant G(s) = —5
with a single unstable pole p = 10. We obtain
Gs(s) = ﬁ. For any linear feedback controller
K, we then have that the lower bound

1K Sl > 1G5 (p)] = 2p = 20

must be satisfied. Thus, if we require that the
plant inputs are bounded with ||u||~ < 1, then we
cannot allow the magnitude of measurement noise
to exceed ||nl|e = 1/20 = 0.05.

7. POLE VECTORS AND STABILIZATION

We usually start the controller design by designing
a (lower-layer) controller to stabilize the plant.
The issue is then: Which outputs (measurements)
and inputs (manipulatons) should be used for
stabilization? We should clearly avoid saturation
of the inputs, because this makes the system effec-
tive open-loop and stabilization is impossible. A
reasonable objective is therefore to minimize the
required input usage of the stabilizing control sys-
tem. It turns out that this is achieved, for a single
unstable mode, by selecting the output (measure-
ment) and input (manipulation) corresponding to
the largest elements in the output and input pole
vectors (y, and u,), respectively.? More precisely,
this choice minimizes the lower bound on both the
Ho and Hoo-norms of the transfer function KS
from measurement (output) noise to input:

Theorem 2. (Stabilizing SISO Control with
minimum #, and Hinput usage). (Havre,

2 Notation: In the rest of the paper we consider a single
unstable pole p = p;, so to simplify we will drop the
subscript z.

1998)(Havre and Skogestad, 1998b) (Havre and
Skogestad, 2002) Consider a plant G with a single
unstable pole p. The minimum achievable -
and Ho-norm of the closed-loop transfer function
K Ski, from output y; to the input u; is then

1
Kr?kig) | Kk Sk (5) |00 = N Kr?kig) 1K Skr (3)]2
1 12p] - 1a™¢]
(@@= 2ot
where u, ; is the j’th element in the input pole
vector, Yy, is the k’th element in the output
pole vector, v and t are the normalized left and
right eigenvectors of A corresponding to the pole
P, Ske(s) = (1 4+ GijKjr(s))™!, and the nota-
tion (Gk;);'(p) means: Find the stable version
of G; with the RHP-poles mirrored across the
imagninary axis, i.e., (Gk;(s))s = 55EGr;(s), take
its inverse, i.e. (Gr;(5));* = ((Ggj(s))s)™*
evaluate (Gj(s)); ' at s = p.

, and

Remarks.

(1) When minimizing the input usage, both in
terms of the Hs-norm and the H,.-norm, the
unstable open-loop pole p is mirrored into the
left half plane.

(2) In general, the values of the Ha- and Heo-
norms of K'S for a given system (with a given
controller) may be arbitrary far apart. It is
then somewhat surprising that the minimum
of Hy-norm and Hs.-norms differ by a con-
stant factor of 1/2p (although the two con-
trollers achieving these two minimum values
are of course different).

(3) The Hoo-controller that achieves the bound
in (6) is in general improper.

In the following example we design for a simple
SISO plant Hs- and Ho-optimal controllers that
achieve the lower bounds on the input usage.

Example. Consider the SISO plant

-10 0 |v120/11
G(s) = 0 1 V/10/11
V120/11 —/10/11] 0
s—2

(0.1s +1)(s — 1)
with an unstable (RHP) pole at p =1 and a RHP-
zero at z = 2. With the above realization, the
eigenvectors and pole “vectors” corresponding to
the unstable pole are

1

The Ha-norm of K S is minimized with the follow-
ing LQG controller:

Kiqa(s) =

t=q= (0> ,  up=0.9535 and y,=—-0.9535

a4 0.1s+1
524135+ 78



The controller is strictly proper with LHP-poles
at —6.5 £ 5.985 and a LHP-zero at —10 which
cancels the open-loop stable pole at —10 in the
plant. With this controller the closed-loop poles of
the minimal realization are located at {—1, —1},
and we achieve:

V8P - lg"t|

IKLQeSLqa(s)|lz =
|Up| ’ |yp|

__v8-1-1 3.11
©0.9535-0.9535
The Hoo-norm of KS is minimized with the fol-
lowing controller

0.1s+1
Ko (s)=—22 —5T2%
(s) 015+ 3.4

The controller is semi-proper, with a LHP-pole at
—34 and a LHP-zero at —10 which cancels the cor-
responding stable pole in G. With this controller
the closed-loop pole of the minimal realization of
KS is located at —1, and we achieve:

3.11

1Ko Soe()lle = T
which as expected is equal to
— 0.1s+1)(s+1) 1.1-2
G )l = | =|—|=22
| S (p)| s — 2 st _1

Note that K Seo(s) = —2.2% is semi-proper (it
remains flat at magnitude 2.2 at all frequencies)
so its Ha-norm is infinite.

Note that the scalar |2p| - |¢f’t| in (6) is inde-
pendent of j and k. We then have the following
important result:

The input usage required for stabiliza-
tion, both in terms of the - and
‘Hoo-norms, is minimized by selecting
the input (actuator) u; corresponding
to the largest element in the input pole
vector u,, and the output (measure-
ment) y corresponding to the largest
element in the output pole vector.

The pole vectors thus provide a very simple tool
for selecting inputs and outputs for stabilizing
control, and requires only a single calculation.
Also note that the input (actuator) and output
(measurement) are selected independently. The
correct use of the pole vectors assumes that the
plant has been scaled such that output noise is
similar in all outputs, and such that a given input
variation means the same for all inputs.

The main limitations in the use of the pole vectors
for stabilizing control is that only allows for the
consideration of one unstable pole at a time.
The implications for stabilizing complex poles
is therefore not clear, although the pole vectors
remain a useful tool (e.g. see the application to
the Tennessee-Eastman process in (Havre and
Skogestad, 1998b)).

8. PERFORMANCE LIMITATIONS FOR A
STABILIZED PLANT

Above we discussed the possible limitations in
stabilizing an unstable plant. Assume now that
we have managed to design a feedback controller
that stabilizes the original plant (G). That is, the
“new” plant (P) with these feedback loops closed
is stable. We want to answer the following ques-
tion: Does the presence of the original instability
in the orginal plant limit the control performance
of the “new” partially controlled plant?

First note that the there are some unavoidable
limitations on complementary sensitivity 7', for
example, the Hoo-norm of T must exceed 1 if
we want integral action and high-frequency roll-
off, and there are also time domain limitations
as discussed by Seron et al. (1997). However,
this does not imply a fundamental limitation in
terms of performance, since we may prefilter the
reference change, such that the resulting transfer
function T, = T'F from references r to outputs y
has any desired shape.

Again, we find that fundamental limitations only
appear when we consider the plant inputs. To
derive this, consider a case where the primary
objective is to use the plant inputs u to control
the primary outputs y;, and we have available the
secondary measurements y» for stabilizing control.
The transfer function of the original plant is then

()= (&) "

The plant (gl ) is unstable and we design a sta-
2

bilizing control system u = Ks(rs — y2) involving
the inputs v and outputs y,. The resulting closed-
loop system (the “new” plant) is then

Y1 = glKQ(I + GQKQ)_l 9 (8)

v

~"

P

Comment: The number of control degrees of free-
dom for the “new” plant P is the same as for
the original plant G, since the reference values
(setpoints) 7o for the stabilized outputs replace
the original plant inputs u as degrees of freedom.

The (rephrased) question is then: Does the pres-
ence of an unstable pole p in the original plant
G limit the achievable control performance of the
“new” (stable) plant P from ry to y, ¢

The answer is quite simple, and depends on
whether G; contains the unstable pole p or not
(Larsson, 2000):

o If the instability is detectable in the primary
outputs yy (i.e. if Gy contains the instability),



then the answer is no: there is no perfor-
mance limitations.

o If the instability is not detectable in the pri-
mary outputs y; (i.e. if Gy is stable), then
the answer is yes: The “new” plant P has
an unstable zero located at p which imposes
a performance limitation on how well y1 can
be controlled.

In summary, a performance limitation is intro-
duced if we want to use rs to control variables
not containing the instability. The reason for the
performance limitation is that the transfer func-
tion K2Ss = Ko(I + G2K5) ™! from 7y to u must
contain a RHP-zero at the location of the RHP-
pole p, and if G; does not contain this RHP-pole,
then the transfer function P = GG1 K555 from ry to
y1 must contain a RHP-zero at p which invariably
limits the achievable performance.

Special case: Control objective at the input
(i.e., y1 = v and G; = I). This is a fairly
common situation. For example, recall the bicycle
example, and assume that the main objective is
that the tilt u of the upper body should be in a
given position (y; = u and y» = y in Figure 1).
If we want to make a setpoint change in the
tilt (r = u), then there will be an unavoidable
inverse response with a time constant given by the
location of the (original) unstable pole. This will
set a definite limit on how well you can perform in
a possible World Championship in bicycle tilting.

9. CONCLUSION

Instability (RHP-poles) requires feedback control
with active use of the plant inputs. In the paper
we have reviewed some of the main limitation
imposed by the presence of a RHP-pole. The most
important is probably that there is a minimum
bound on the transfer function KS from plant
outputs (noise and disturbances) to plant inputs,
and this may result in instability if there are
constraints on the allowed inputs.
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