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( )The classification of ternary ®apor-liquid equilibrium VLE diagrams is a key to
simple azeotropic distillation analysis. All ternary mixtures reported so far to be occur-
ring in nature can be qualitati®ely represented by a combination of only four elementary
cells. This greatly reduces the number of VLE diagram structures that need to be ana-
lyzed in order to re®eal the qualitati®e characteristics of any ternary azeotropic mixture.

Introduction

Ternary VLE diagrams provide a graphical tool to qualita-
tively predict the feasible separations for multicomponent
azeotropic mixtures before detailed simulation or experimen-
tal study of their distillation. The various graphical represen-

Žtations of the VLE residue curve and distillation line maps,
.isotherm map, and equilibrium vector field are closely re-

lated and are equally capable of characterizing the mixture.
ŽIn this article, we consider residue cur®es Schreinemakers,

1901; Ostwald, 1982; Zharov, 1967; Serafimov, 1968a; Do-
.herty and Perkins, 1978 and the topological classification of

Ž .ternary mixtures into 26 diagrams by Serafimov 1970 . Our
Žconsiderations apply equally well to distillation lines Zharov,

.1968; Stichlmair, 1988 . We refer to the review of Widagdo
Ž .and Seider 1996 and to the literature mentioned for a de-

tailed description of these tools and their application to dis-
tillation column profiles. Our contribution is to propose a set
of elementary topological cells which are constituents of all
feasible ternary VLE diagrams. We show that the ternary
mixtures reported until now include only four of these ele-
mentary cells.

Classification of Ternary VLE Diagrams
The number of feasible VLE diagram structures is limited

by topological and thermodynamical constraints. A complete
classification of these feasible structures for ternary mixtures

Ž . Žwas given by Serafimov 1970 and Serafimov et al. 1971,
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. Ž .1973 , and is more recently presented by Serafimov 1996 .
Serafimov’s classification results in the 26 classes of ternary
VLE diagrams presented in Figure 1.

The classification is based on the simplifying and common
assumption that there exists no more than one binary
azeotrope for each binary pair and no more than one ternary
azeotrope. Biazeotropes do exist in real mixtures but is rela-
tively rare, so this is not a very restrictive assumption. The
classification of Serafimov considers topological structures
and thus does not distinguish between antipodal diagrams
Ž .switching of minimum- and maximum-boiling azeotropes
since they have the same topology. Transition from one an-
tipode to the other can be made by simply changing the sign
of the nodes and inverting the direction of the arrows of in-
creasing boiling temperature.

Ž .Gurikov 1958 was actually the first to derive the rule of
azeotropy and propose a thermodynamic topological classifi-
cation of ternary mixtures. However, his classification was in-

Ž .complete, and Serafimov 1968b revealed four additional
feasible structures and established the 26 topological classes
presented in Figure 1. Later, Serafimov’s classification of
ternary mixtures was refined by distinguishing between an-
tipodes inside each structure class, based on the reasoning
that ‘‘minimum-and maximum-boiling azeotropes ha®e dissimi-
lar physical nature and dissimilar beha®ior during distillation’’
Ž .Zharov and Serafimov, 1975 . This refined classification in-
cludes a total of 49 types of ternary VLE diagrams. An even
more detailed classification is proposed by Matsuyama and

Ž .Nishimura 1977 who also rank the components in the order
Ž .of their boiling temperatures light, intermediate, and heavy .

This classification includes 113 diagram classes of which 87
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( )Figure 1. Serafimov’s 1970 topological classification
of ternary mixtures.

ŽStructural characteristics of residue curves or distillation
.lines are shown by dashed lines with the singular points in-

Ž . Ž .dicated by v stable unstable node, ` unstable stable
node, \ saddle, and the region boundaries given by bold
lines.

Ž .are graphically presented by Doherty and Caldarola 1985 .
Nevertheless, among these 113 classes, there are only the 26
topologically distinct structures of Serafimov. Actually, the
classification of Matsuyama and Nishimura adds some ambi-
guity as some of their classes with a ternary saddle azeotrope
have two or three possible topological structures. For exam-
ple, their classification code 112-S can be either of Serafimov’s
class 3.1-3a or 3.1-3b depending on whether there exists a
saddle-saddle separatrix or not. This is also pointed out by

Ž .Foucher et al. 1991 who recommended an extension of the
Matsuyama and Nishimura’s classification code name in these
cases.

Ž .In this article, we use Serafimov’s 1970 classification of
Ž .the topological classes and Zharov and Serafimov’s 1975 re-

Žfinement of the antipodal structure types referred to as the
.ZS-type . The relationships between the classifications of
Ž . Ž .Gurikov 1958 , Serafimov 1970 , Zharov and Serafimov

Ž . Ž .1975 , and Matsuyama and Nishimura 1977 will be pre-

sented in Table 2. The table is useful when relating publica-
tions where the different classifications are used.

Elementary Cells
There is a great diversity of VLE diagrams for ternary mix-

tures caused by the variety in physical properties of the com-
ponents and their molecular interaction. As mentioned, if we
assume no biazeotropes and consider only topological differ-
ences, there are 26 distinct types, as presented in Figure 1.
Furthermore, there is a far greater diversity in possible shapes
Ž .geometry of the simple-phase transformation trajectories
such as residue curves and distillation lines. It is possible to
reduce this complexity to a combination of a few topological

Ž .building blocks ‘‘elementary cells’’ and some basic internal
Žstructures shapes of the simple-phase transformation trajec-

.tories . We use residue curves to represent the simple-phase
transformation trajectories in this article.

We find that, among Serafimov’s 26 topological classes,
Žthere are eight elementary topological cells denoted I, II,

X X X .III, IV, II , III , IV , and V that constitute all the ternary
diagrams, where a cell is defined as one residue curve region

Žtaken with its boundaries that is, a subspace of the composi-
tion space constrained by residue curve boundaries, if any,

.and the composition simplex . From these eight elementary
cells, we may construct all the 26 diagrams, as shown in Fig-
ure 2. Each cell has one unstable and one stable node and a
set of saddle points. There are four ‘‘primary’’diagrams where

Žthe composition triangle consists of a single cell one residue
.curve region; Serafimov’s class 0.0-1, 1.0-1a, 1.0-1b and 2.0-1 ,

Ž .and these elementary cells denoted I, II, III, IV are also
those reported so far for naturally occurring mixtures. Cells
IIX, IIIX, and IVX are modifications of the primary cells II, III,

Ž .and IV, respectively with internal nodes , for which there
are no reported physical mixtures. Cell V only occurs as an
element in Serafimov’s class 3.1-1b, and also, for this class,
there is so far no physical mixture reported.

The four primary diagrams and the corresponding elemen-
tary cells I, II, III, IV are shown in Figure 3. Each elemen-
tary cell is characterized by a certain set and order of the

Ž .singular points nodes and saddles along the contour of its
Ž .border that is, by its topology . Accordingly, we can name

them as given in Figure 3.
There is an important difference between an elementary

Ž .cell of the ‘‘primary’’ diagrams one residue curve region and
an elementary cell incorporated into more complex diagrams.
If an elementary cell is a primary diagram, the saddle point is
a pure component point. The borders of the cell are the edges

Ž . Žof the composition triangle linear . The stable and unsta-
.ble nodes are pure component points or points of binary

azeotropes. If an elementary cell is a constituent of a com-
plex diagram, at least one of its saddles is a binary or a ternary
azeotrope, and therefore, at least one of the borders of the

Ž .cell is a residue curve boundary curved shown by the thick
solid lines in Figure 2. One of the nodes can be a point of a
ternary azeotrope. In general, the composition space is bro-

Ž .ken into several residue curve regions cells if there are more
than one unstable node or more than one stable node.

Despite these differences, a single elementary cell and an
elementary cell incorporated into a complex diagram are
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( X X X )Figure 2. Elementary cells I, II, III, IV, II , III , IV and V
within Serafimov’s 26 topological classes.

Ž .Physical occurrence % of azeotropic mixtures reported in
Žthe literature according to Reshetov’s statistics based on

.data from 1965 to 1988 .

topologically equivalent. Note, however, that inside similar
topological cells there may be various shapes of the residue

Ž .curves simple-phase transformation trajectories .

Occurrence in Nature
Even though all the classified diagrams in Figure 2 are

topologically and thermodynamically feasible, their occur-
rence in nature is limited by the probability of certain combi-
nations of molecular interactions. In this section, we present
data on the occurrence of the different classes among the
mixtures reported in the literature. This permits us to ex-
clude rare or improbable diagram classes from consideration.

Ž .Serafimov 1968b analyzed the occurrence of different
Ž .types of VLE diagrams among 418 reported experimental
Ž .data on ternary azeotropic mixtures. Reshetov 1998 made a

Žsimilar study for 1,609 ternary mixtures in which 1,365 are
.azeotropic based on thermodynamic data that were pub-

lished during the period from 1965 to 1988. To the best of

Figure 3. Generalization of the four elementary topolog-
ical cells I, II, III, IV from the diagrams with
one residue curve region.
Each cell is characterized by the set and order of the nodes
Ž . Ž .N and saddles S along the contour of its border. The sin-

Ž .gular points are also indicated by v stable unstable node,
Ž .` unstable stable node, \ saddle. The dashed lines indi-

cate the qualitative paths of the residue curves.

our knowledge, there are no other publications that address
this issue. The occurrence of the various classes as reported

Žby Serafimov and Reshetov are given in Table 1. Reshetov’s
.statistics are also presented in Figure 2. Note that Reshetov

Ž .1998 found that the three mixtures reported for class 3.1-1a
Ž .in the statistics by Serafimov 1968b actually was of another

structure class. From Reshetov’s data, we see that only 16 of
Searfimov’s 26 classes are reported to occur in nature. If we
also differentiate between minimum- and maximum-boiling

Ž .azeotropes ZS-type , then we find that 27 of the 48 classes
are reported. The distribution reported in these studies does
not necessarily reflect the real occurrence in nature. The
azeotropic data selection is small and occasional. Moreover,
the distribution can be distorted compared to the unknown
natural distribution since the published mixture data are re-
sults of deliberate searches for entrainers for specific indus-
trial separation problems. Nevertheless, these data are inter-
esting and can be used for some deductions:

v Serafimov’s class 3.1-2 with three minimum-boiling bi-
nary azeotropes and one minimum-boiling ternary azeotrope
has the largest number of reported mixtures. About 26% of
the 1,365 ternary azeotropic mixtures in the study by Reshetov
are in this class.

v Elementary cells I and II cover more than 90% of all the
reported ternary azeotropic mixtures. The three most com-

Ž .mon structures are Serafimov’s classes 1.0-1a 21.6% , 2.0-2b
Ž . Ž .21.0% , and 3.1-2 26.0% . Among these three classes, only
cells I and II occur.
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Table 1. Occurrence of Ternary VLE Diagram Structures Found in Published Mixture Data

Occurence Occurrence
Serafimov Reshetov

UŽ . Ž .Serafimov’s Class until 1968 ZS-type Set of azeotropes 1965-1988

0.0]1 ] 1 zeotropic 244

1.0]1a 13 3a min 283
7a max 12

1.0]1b 2 3b min 4
7b max 1

1.0]2 20 4 min 95
8 max 21

1.1]1a None 2a minqmin Az None3
6a maxqmax Az None3

1.1]1b None 2b minqmin Az None3
6b maxqmax Az None3

1.1]2 7 5 minqS 8
9 maxqS 83

2.0]1 1 15 minqmax 9
2.0]2a None 17 minqmax 2

18 maxqmin 3
2.0]2b 77 11a minqmin 280

21a maxqmax 6
2.0]2c 2 11b minqmin 10

21b maxqmax 2

2.1]1 None 13 minqmaxqmin Az None3
14 minqmaxqmax Az None3

2.1]2a None 16a minqmaxqmin Az None3
16b minqmaxqmax Az None3

2.1]2b 3 10 minqminqmin Az 553
20 maxqmaxqmax Az None3

2.1]3a 14 19 minqmaxqS 373
2.1]3b 5 12 minqminqS 23

22 maxqmaxqS 13

3.0]1a None 29 minqminqmax None
33 maxqmaxqmin None

3.0]1b None 28 minqminqmax 9
34 maxqmaxqmin 3

3.0]2 85 24 minqminqmin 114
37 maxqmaxqmax None

3.1]1a 3 27b minqminqmaxqmin Az None3
32b maxqmaxqminqmax Az None3

3.1]1b None 26 minqminqmaxqmin Az None3
31 maxqmaxqminqmax Az None3

3.1]1c None 27a minqminqmaxqmax Az None3
32a maxqmaxqminqmin Az None3

3.1]2 171 23 minqminqminqmin Az 3553
36 maxqmaxqmaxqmax Az None3

3.1]3a None 25a minqminqminqS None3
38a maxqmaxqmaxqS None3

3.1]3b None 25b minqminqminqS None3
38b maxqmaxqmaxqS None3

3.1]4 15 30 minqminqmaxqS 413
35 maxqmaxqminqS 43

Umin-minimum boiling binary azeotrope; max-maximum boiling binary azeotrope; Az -ternary node azeotrope; S -ternary saddle azeotrope.3 3

v Ternary azeotropes are common in nature. About 38%
of the reported ternary mixtures have a ternary azeotrope.
These are Serafimov’s classes 1.1-2, 2.1-2b, 2.1-3a, 2.1-3b, 3.1-
2 and 3.1-4.

For each of the reported classes, one may find a great
Ž .number of similar mixtures in nature. However, for those

classes with no reported mixtures, and with a structure that
requires a set of molecular interactions that are unlikely, we
expect that few if any real mixtures will be found. The experi-
mental data for ternary azeotropic mixtures used for the
above statistics is rather limited. However, the experimental

data of binary azeotropic pairs is considerably more exten-
Ž .sive. For example, Gmehling et al. 1994 have compiled data

Ž .for 18,800 binary systems involving about 1,700 components .
From this, we can estimate the behavior of a large number of
ternary mixtures combinations from a VLE model, however,
to our knowledge no systematic effort has been done yet.

It is well known that binary maximum-boiling azeotropes
are less adundant than minimum-boiling azeotropes. Accord-

Ž .ing to Lecat 1949 , the ratio of minimum-boiling vs. maxi-
mum-boiling azeotropes that occurs in nature is about 9 to 1.
The statistics of Reshetov confirm this heuristic rule. Thus,
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the more maximum-boiling binary azeotropes that are in-
cluded in the ternary mixture, the less is the probability of its
occurrence. This is demonstrated clearly in Table 1. In par-
ticular, no ternary mixture with three binary maximum-boil-
ing azeotropes has been found among Reshetov’s selection of
1,365 mixtures. Ternary maximum-boiling azeotropes are also
very rare. As a result, even for the topological structures
where the existence is beyond question, the occurrence of
antipodes with maximum-boiling azeotropes is much less than
that of antipodes with minimum-boiling azeotropes.

Ž .Pollmann and Blass 1994 propose to reduce the number¨
of ternary VLE diagrams by only considering ‘‘physically
meaningful’’ structures. Their list includes 19 of Serafimov’s

26 classes, excluding 1.1-1a, 1.1-1b, 2.1-1, 2.1-2a, 3.1-1a, 3.1-1c,
and 3.1-3b. However, it is impossible in principle to state that
some classes of ternary mixtures cannot exist in nature or are
‘‘physically meaningless,’’ because all the structures in Figure
2 are thermodynamically and topologically feasible. We can
only discuss the probability of the existence of some types of
the VLE diagram structures.

Use of Elementary Cells
The concept of elementary topological cells is a simplifica-

tion which primarily is made to reduce the number of struc-

Table 2. Relationship between Different Classifications of Ternary VLE Diagrams
UŽ . Ž . Ž .Gurikov 1958 Serafimov 1970 ZS-type Matsuyama and Nishimura 1977

Zeotropic 1 0.0]1 1 000

One binary 4a 1.0]1a 3a 100
azeotrope 7a 030

4b 1.0]1b 3b 001
7b 003

3 1.0]2 4 020
8 400

One binary 2a 1.1]1a 2a 200-m
and one 6a 040-M
ternary 2b 1.1]1b 2b 002-m
azeotrope 6b 004-M

5 1.1]2 5 010-S
9 300-S

Two binary 9 2.0]1 15 031, 103, 130
azeotropes 8a 2.0]2a 17 023, 320

18 401, 410
8c 2.0]2b 11a 102, 120, 021

21a 043, 430, 403
8b 2.0]2c 11b 201, 210, 012

21b 043, 430, 403

Two binary 7 2.1]1 13 032-m, 230-m, 203-m
and one 14 041-M, 140-M, 104-M
ternary 2.1]2a 16a 420-m, 402-m
azeotrope 16b 024-m, 420-M

6 2.1]2b 10 022-m, 220-m, 202-m
20 044-M, 440-M, 404-M

10a 2.1]3a 19 013-S, 310-S, 301-S
10b 2.1]3b 12 011-S, 110-S, 101-S

22 033-S, 330-S, 303-S

Three binary 14a 3.0]1a 29 411
zeotropes 33 323

14b 3.0]1b 28 123, 321, 132, 213, 312, 231
34 413, 314, 431, 341, 134, 143

13 3.0]2 24 212, 122, 221
37 434, 344, 443

Three binary 3.1]1a 27b 421-m, 412-m
and one 32b 423-M, 324-M
ternary 12 3.1]1b 26 232-m, 223-m, 322-m
azeotrope 31 414-M, 441-M, 144-M

3.1]1c 27a 142-M, 241-M, 124-M, 214-M, 421-M, 412-M
32a 423-m, 324-m, 432-m, 342-m, 234-m, 243-m

11 3.1]2 23 222-m
36 444-M

15 3.1]3a 25a 121-S, 112-S, 211-S
38a 343-S, 334-S, 433-S

3.1]3b 25b 121-S, 112-S
38b 343-S, 334-S, 433-S

16 3.1]4 30 131-S, 113-S, 311-S
35 133-S, 313-S, 331-S

U Ž .ZS-type refers to the refined classification of the 49 antipodal structures by Zharov and Serafimov 1975 , p. 96-98.
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tures of ternary VLE diagrams. It is useful for preliminary
Ž .analysis of azeotropic distillation presynthesis . Based on the

knowledge of the distillation behavior of azeotropic mixtures
of the primary diagrams elementary cells in Figure 3, or com-
binations of these, we also have information about what be-
havior to expect from other more complex mixtures. It is im-
portant to recognize that each real mixture has its own spe-
cific thermodynamic characteristics and should therefore be
analyzed in detail in a later step of the separation synthesis.

The concept of elementary cells is even more important
when using the classification of Matsuyama and Nishimura
with its 113 cases, which are less easily surveyed.

The elementary cell concept may be extended to mixtures
with more than three complonents, but graphical visualiza-
tion is then more difficult. Of course, for a multicomponent
mixture, one can analyze each ternary subsystem. For exam-
ple, each of the four triangles of a four-component tetrahe-

Ždon is one of the 26 ternary classes and for the real mixtures
.reported so far four elementary ternary cells.

Album
One goal underlying the classification of ternary mixtures

is to have a complete album of possible VLE diagram struc-
tures with their corresponding scheme of separation by distil-
lation. However, this is not established knowledge. Prediction
of feasible distillation product compositions for even some of
the simplest diagram structures is still under development.
Furthermore, methods or separation schemes to separate all

Ž .classes of ternary azeotropic mixtures are not established.
One reason is that there are many possible structures with
deformation of the simple-phase transformation paths due to
regions with different volatility order within the composition
space, making this an almost impossible task. Instead, we
propose to consider selected VLE diagrams and specific mix-
tures of these diagrams in detail:
Ž .1 Zeotropic mixture, ideal and nonideal with univolatility
Ž . Ž .line s Serafimov’s class 0.0-1: cell I .

Ž . Ž .2 Mixture with one separatrix one binary azeotrope
Ž .Serafimov’s class 1.0-2: combination of two cell I’s .
Ž .3 Mixture without separatrix, but with one binary

Žazeotrope Serafimov’s class 1.0-1a: cell II and 1.0-1b: cell
.III .
Ž .4 Mixture without separatrix, but with two binary

Ž .azeotropes nodes Serafimov’s class 2.0-1: cell IV .
An illustration of a ternary mixture with one binary saddle

Ž .azeotrope Class 1.0-2 consisting of two elementary cell I’s is
given in Figure 4. The left cell has ‘‘C-shaped’’ residue curves,

Ž .and the right cell has ‘‘S-shaped’’ residue curves inflection
caused by the univolatility line a . Although both cells are23
of type I, this difference in shape may have a large effect on
the actual separation process. For details on the internal

Ž .structure ‘‘shape’’ of ternary VLE diagrams, refer to Hilmen
Ž . Ž .2000 and Reshetov et al. 1999 .

Multiple steady states
As an example of the use of elementary cells, we may con-

Žsider the possibility for multiple steady states in homoge-
.neous azeotropic distillation. Such multiplicities may lead to

problems in column operation and control, as well as prob-

Figure 4. Ternary azeotropic mixture with one binary
(saddle azeotrope Class 1.0-2 consisting of

)two Cell I’s .
Ž .Residue curves; unidistribution solid and univolatility

Ž .dash-dotted lines are given.

lems in column design and simulation. When two or more
multiple steady states exists for the same inputs, it is possible
that, for some disturbances, the column profile jumps from

Ž .the desirable in terms of product specifications to an unde-
sirable steady state. However, such catastrophic jumps may
be avoided by proper control of the column, and the separa-
tion schemes for such mixtures may well be feasible and eco-
nomical. The possibility of multiple steady states at infinite

Žefficiency of the distillation infinite reflux, infinite theoreti-
.cal equilibrium trays, and DrF from 0 to 1 was first noted by

Ž .Balashov et al. 1970 . They considered a mixture of Serafi-
Žmov’s class 1.0-1b primary diagram of elementary cell III with

.U-shaped residue curves with a binary maximum-boiling
Ž .azeotrope ZS-type 7b , and found that, for these mixtures, it

is feasible to have mutliple products for the same value of the
Ž .parameter DrF. Later, Petlyuk and Ave’yan 1971 analyzed

this issue in more detail and included bifurcation analysis.
This analysis is also included in the textbook by Petlyuk and

Ž .Serafimov 1983 , where Petlyuk writes, ‘‘the existence of more
(than one saddle along a distillation line for sharp infinite reflux,

)infinite column separation going from an unstable node to a
stable node leads to multiplicity of the separation products for
the same feed composition and the same ®alue of parameter
DrF.’’ The geometrical considerations given by Petlyuk and

Ž .coworkers are also found in Serafimov et al. 1971 . This is a
sufficient, but not neccessary, condition for multiplicity of the

Ž .mixture. Bekiaris et al. 1993 give a similar condition, roughly
that the existence of two or more neighboring saddles may lead

Ž .to output multiplicity. Bekiaris et al. 1993 also identify other
structural characteristics that may induce multiple steady

Žstates such as highly curved distillation boundaries ‘‘pseudo-
.saddles’’ , as for the mixture of acetone-chloroform-methanol.

The elementary cells that may lead to output multiplicity
are III, IIIX, IV, and IVX. From this, we can predict the possi-

Ž .bility of multiple steady states sufficient condition for any
given mixture that is caused by these structural characteris-
tics. From Figure 2, we see that 14 of the 26 diagrams include
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Žthese elementary cells 1.0-1b, 1.1-1a, 1.1-1b, 2.0-1, 2.0-2a,
2.0-2c, 2.1-1, 2.1-2a, 2.1-2b, 3.0-1b, 3.1-1a, 3.1-1b, 3.1-1c, 3.1-
.3a . From the statistics by Reshetov, we find that about 7%

of the reported VLE diagram structures include these cells.
Serafimov’s class 2.1-2b, which includes cell IV, is relatively

Ž .common 4% , and this class may give multiplicities for feeds
in the region with U-shaped residue curves.

The significance of multiplicities for column operation have
Žbeen studied by Morari and coworkers Laroche et al.,

1992a,b; Bekiaris et al., 1993; Bekiaris and Morari, 1996;
.Guttinger and Morari, 1996, 1997 . Mixtures with one binary¨

minimum-boiling azeotrope of Serafimov’s class 1.0-1b
Ž .primary diagram of cell III with U-shaped residue curves
has been the focus, in particular the mixture of acetone-
heptane-benzene. However, from the occurrence statistics we
see that Serafimov’s class 1.0-1b is not very common.

Ž .Bekiaris and Morari 1996 found multiple steady states for
Žthe mixture ethanol-ethyl propanoate-toluene Serafimov’s

.class 2.0-2a, ZS-type 18, which includes cells I and III for a
specific feed region. The specific feed region corresponds ex-
actly to elementary cell III.

Pseudo-Component Subsystem
An idea related to the concept of elementary cells is the

concept of pseudo-components. This approach is known to
many engineers working with azeotropic distillation. Vo-

Ž .gelpohl 1999 proposes to analyze real azeotropic mixtures
as subsystems approximated by zeotropic mixtures where each
azeotrope is represented by a pseudo-component. A residue

Žcurve region with k singular points pure component and
.azeotropes is thus represented as a k-component zeotropic

mixture by assuming constant relative volatilities between the
Ž .real components and the pseudo-components azeotropes .

Ideal distillation lines are calculated for each subsystem. How-
ever, this strong simplification has major pitfalls. The ideal

Ž . Ždistillation lines or residue curves diverge from the real ex-
.act ones as azeotropic mixtures necessarily have univolatility

lines that deform the simple-phase transformation trajecto-
Žries and cause S-, V-, and even more complex shapes inter-

. Ž .nal structures of the distillation lines residue curves . For
example, a ternary azeotropic mixture of Serafimov’s class

Ž .1.0-2 Figure 4 may be considered to be a quaternary system
with the binary saddle azeotrope as an intermediate boiling
pseudo-component. From this, for both of the cells I in the
diagram, C-shaped ideal distillation lines are calculated.
However, this is not true for the real mixture. Furthermore,
the approach results in straight line distillation boundaries

Ž .which in general are curved Schreinemakers, 1902 . We ar-
gue that, when only the qualitati®e shape of the curves are

Ž .needed, one can sketch the residue curve map by hand
rather than calculate the exact, but incorrect, ideal subsys-
tems map based on the constant relative volatility assump-
tion. For example, we know that, for mixtures of Serafimov’s

Ž .class 1.0-2 Figure 4 with one binary azeotrope saddle and a
separatrix that splits the composition space into two cells I,
one of these cells must have a univolatility line extending from
the azeotrope and to one of the binary edges resulting in an

Ž .inflection point of the residue curves S-shape .
Ž .Vogelpohl 1999 emphasizes that his main point is not to

approximate the distillation lines of real mixtures by the dis-

tillation lines of ideal systems, but to show that the distilla-
Ž .tion behavior of real zeotropic and azeotropic mixtures is

not fundamentally different from the distillation behavior of
ideal systems, and, therefore, the large body of knowledge
developed from the theory of multicomponent distillation may
be applied to better understand the distillation of real multi-
component mixtures. This is in line with the idea behind ele-
mentary cells presented in this article.

Conclusion
The concept of elementary topological cells of ternary VLE

diagrams is a key to a simple azeotropic distillation analysis
that can easily be surveyed. Any real ternary mixture can be
qualitatively represented by a combination of only four ele-
mentary cells. This greatly reduces the number of VLE dia-
gram structures that need to be analyzed in order to reveal
the qualitative characteristics of ternary azeotropic mixtures.
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