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Abstract

The central question to be examined in this paper is if it is optimal to have a large or small number of stages in a distillation column with respect to controllability when the objective is to have dual composition control. With multivariable controllers and without considering model uncertainty few stages shows somewhat better controllability than many stages because (i) the available manipulated variables have larger effect on the outputs (allowing larger changes in manipulated variables for few stages) and (ii) it is not necessary to reject the disturbances as fast as for many stages. However, in reality there will always be model uncertainty, and with uncertainty included the conclusion is reversed: it is better to have many stages. The reason is that with more stages the system is less interactive and thus less sensitive to uncertainty. Physically, with many stages a pinch zone develops around the feed stage, which tends to decouple the two column ends from each other. 

1. Introduction

We want to evaluate if it is optimal with a large or a small number of stages in a distillation column with respect to controllability. Economic objectives like design cost (connected to number of stages in the column and necessary dimensions for internal flows) and operation cost (energy cost connected to internal flows) are not considered here. The study is for dual composition where we have a given purity specification in the top and in the bottom of the column. The conventional LV-configuration is used for stabilizing the condenser and reboiler holdups. Skogestad (1997) claims that it is better to have many stages. He writes: How should the column be designed to make feedback control easier? In terms of composition control, the best is probably to add extra stages. This has two potential advantages:

1. It makes it possible to over-purify the products with only a minor penalty in terms of energy cost; recall the expression for Vmin=1/(1-α)F  which is independent of the purity. The control will then be less sensitive to disturbances.

2. If we do not over-purify the products, then with "too many" stages a pinch zone will develop around the feed stage. This pinch zone will effectively stop composition changes to spread between the top and bottom part of the column, and will therefore lead to a decoupling of the two column ends, which is good for control.
However, this finding is disputed by Meeuse and Tousain (2001) who claim, based on optimal design of LQG controllers, that it is better to have few stages. The objective of this paper is to study this issue in more detail.
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Figure 1: D istillation column

Figure 2. Block diagram for μ-analysis


(One-feed two-product)

2. Column data

A distillation column separating two-component feed is studied, see figure 1. The feed is saturated liquid. There are two remaining degrees of freedom when we assume given column pressure and liquid holdup in the reboiler and condenser. The model details are described in Skogestad (1997). The controlled variables are composition of light component in top product (xd) and composition of light component in bottom product (xb). With the indicated conventional control configuration for pressure and levels, the two remaining manipulated variables are reflux flow rate (L) and vapor boil-up flow rate (V). The disturbances are feed flow rate (F=1±0.2) and feed composition (zF=0.5±0.1). The number of stages is varied between 25 and 51. The base case has 41 trays with the feed tray in the middle (tray 21). Column data is summarized in table 1.

Table 1: Column data
Controlled variables (y)
xd
0.99
kmol/kmol


xd
0.01
kmol/kmol

Manipulated variables (u)
L
21.5-2.2
kmol/min


V
22.0-2.7
kmol/min

Disturbances (d)
F
1
kmol/min


zF
0.1
kmol/kmol

Key hydraulic parameters
τI
0.02-0.2
min


τd
0.02-0.2
min


τb
0.02-0.2
min


Στi
0.5-10.2
min

Thermodynamic data
Α
1.5
-

Number of stages
NT
25-51
-

Feed stage number
NF
13-26
-

3. Analysis of the controllers

Figure 2 shows the block diagram for the system where model uncertainty is included both as input and output uncertainty. This setup is based the setup previously used by Lundstrom and Skogestad (1995). G' is the plant model which consists of the disturbance gain Gd and the process gain G. G' has two outputs (xd and xb) and four inputs (L, V, F and zF). The model is scaled with respect to acceptable control error (ymad= [0.01 0.01]T), allowed variation in manipulated variables (umad = unominal) and expected disturbances (dmad= 0.2dnominal). Maximum expected setpoint changes (rmad) are [0.01 0.01]T. K is the controller. Wr, Wd and Wn are weight matrices for setpoints r, disturbances d and measurement noise n. We and Wu are weights respectively on deviation from desired setpoints e and manipulated variables u. Model uncertainty is represented by WiΔi which models input uncertainty, and ΔoWo which models output uncertainty. Δi and Δo are any diagonal matrices with H∞-norm less than one. The weighting matrices are diagonal with elements:

wr=rmad/ymad=1/(τrs+1)=1/(30s+1)





         (1)

wd=1, wn=10-4, wu=0.1 






         (2)

we=(τI/ Mss+1)/(τIs+A)=(0.5s+1)/(s+10-4) 




         (3)


τI (=1min) is the closed-loop response time and Ms (=2) is the maximum allowed peak of the sensitivity function. In practice integral action is necessary when A is very small. We use A=10-4, except when analyzing the controllers with no integral action, for which we use A*=0.5. For the input uncertainty we use

wi=(τis+Mi,0)/(τi/Mi,∞s+1)=(s+0.2)/(0.5s+1)




         (4)

Mi,0 (=0.2) is the relative gain uncertainty in the inputs with low frequencies, Mi,∞ (=2) is the relative gain uncertainty in the inputs at high frequencies and the τi (=1.0 min) is the delay in inputs. For the output we use

wo=(τos+Mo,0)/(τo/Mo,∞s+1)= s/(0.5s+1)




         (5)

The relative uncertainty in the measurements are at low frequencies (Mo,0) assumed equal 0 and at high frequencies (Mi,∞) assumed equal 2. τo (= 1 min) corresponds to a delay up in each measurement. 

For the system in Figure 2, μNP is the H∞-norm of the transfer function from the scaled inputs [r d n] to the scaled outputs [ew uw], or equivalently tells us by which factor the performance weights must be reduced to have the scaled errors less than 1. μRS tells by which factor the uncertainty (the Δ-blocks) must be reduced to guarantee stability. μRP tells by which factor the uncertainty and performance weights must be reduced to give the worst-case scaled errors less than 1. In summary, μRP, μRS and μNP should be as small as possible, and preferably less than 1.

4. LQG-control
We first follow Meeuse and Tousain (2001) and design a quadratic optimal controller (LQG) where we only consider disturbances and measurement noise, with no model uncertainty included. The design of the LQG-controller is based on a scaled, linearized model of the plant:

dx/dt=Ax+Bu+wd=Ax+Bu+Bdd,  y=Cx+n




         (6)

The process noise (wd) and measurement noise (n) are assumed to be white noise with respectively covariances W and V. The LQG-problem is to find the optimal controller u(t) which minimizes 
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         (7)

where design parameters are Q=QT ≥0 and R=RT>0. We design LQG-controllers for different number of trays. The inputs are weighted equal 0.1 (rii=0.01). Top composition and bottom composition are weighted equal 1(qii=1). The remaining states have zero weights. The covariance matrix to the process noise (W) is selected as BdBdT. The measurement noise is assumed small and the covariance matrix for the measurement noise is selected as [0.0001 0.0001]. The results when using no integral action, are summarized in table 2. 

Table 2. LQG- and μ-optimal controller analysis for different number of stages  

NT/NF
V/F
LQG - No integral action
LQG - Integral action
μ-optimal



105J* 
μNP*
μRS*
μRP*
μNP
μRS
μRP
μNP
μRS
μRP

25/13
22.0
0.054
2.001
1.158
2.004
0.384
6.544
6.549
0.691
1.230
1.258

27/14
9.69
0.201
2.028
1.169
2.034
0.159
6.862
6.875
0.714
1.118
1.122

29/15
6.63
0.346
2.074
1.126
2.088
0.103
6.645
6.656
0.780
1.124
1.130

31/16
5.25
0.474
2.139
1.114
2.154
0.078
6.306
6.327
0.834
1.133
1.152

33/17
4.48
0.581
2.226
1.096
2.241
0.064
6.326
6.344
0.832
1.105
1.128

35/18
3.98
0.676
2.332
1.060
2.350
0.055
6.171
6.178
0.874
1.118
1.144

37/19
3.64
0.760
2.457
1.064
2.478
0.049
6.067
6.075
0.865
1.099
1.112

39/20
3.39
0.836
2.600
1.050
2.624
0.044
6.152
6.160
0.876
1.095
1.106

41/21
3.21
0.905
2.759
1.020
2.786
0.041
6.240
6.248
0.878
1.086
1.108

43/22
3.06
0.970
2.931
1.024
2.963
0.039
6.302
6.311
0.869
1.084
1.086

45/23
2.95
1.031
3.114
1.016
3.150
0.037
6.289
6.297
0.871
1.079
1.086

47/24
2.86
1.089
3.303
0.996
3.345
0.035
6.289
6.297
0.883
1.087
1.098

49/25
2.79
1.144
3.495
0.988
3.543
0.036
6.365
6.374
0.856
1.065
1.071

51/26
2.73
1.196
3.684
0.993
3.739
0.037
6.439
6.447
0.845
1.061
1.063

μNP*, μRS* and μRP* are computed with A* = 0.5, i.e. we*=(0.5s+1)/(s+0.5). We see that the value of the objective function J (and μRP) is smallest for few number of stages, confirming the findings of Meeuse and Tousain (2001). Note that the internal vapor flow V in the column is larger with few stages. μRS shows that a large number of stages is best when we have model uncertainty. The uncertainties have small effect on the robust performance compared to other inputs (disturbances and reference tracking). If we increase the relative weights on the outputs (q=1,r=0.0001), the results change. 

The results when using LQG-control with integral action included, are summarized in table 2. With increasing number of trays μNP is decreased and the nominal performance is improved. μRP and μRS are large and show that robust performance for the LQG-controller with integral action is far from acceptable when we have model uncertainties, including delays. The LQG-controllers do not clearly indicate if it is optimal with few or many trays.

5.  μ-optimal control

The μ-optimal controller minimizes the structured singular value μRP for the system. The μ-optimal controller is designed by DK-iteration (Doyle et.al.,1982). The results are summarized in table 2. With increasing number of trays μNP is decreased and the nominal performance is reduced. With increasing number of trays both μRS and μRP is decreased and both robust stability and robust performance are improved. This confirms the claims of Skogestad (1997).

6. Discussion

In order to explain the contradictionary results, we will now look at the effect of the different number of stages with respect to some simple controllability measures: process gain (G), disturbance gain (Gd) and interactions (RGA). With few stages the manipulated inputs have larger effect on the outputs. One reason is that the internal flows, e.g. V, and thus the allowed changes in manipulated variables (=unominal) are larger for few stages. From disturbance gains we see that many stages require somewhat faster control to reject the disturbances than few stages, though the column holdup is assumed larger for many than few stages. This may be explained by that with few stages the internal flows are larger. Figure 4 shows the 1,1-element in the relative gain array for 25, 31 and 41 stages. The RGA-values, and thus the two-way interactions, are much higher with few stages, especially at low frequencies. 
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Figure 3: Λ11  for 25, 31 and 41 stages     Figure 4: Responses for μ-optimal (stable)

                                                                                    and LQG-controller (unstable) 

Interactions pose no problem when designing a multivariable controller with a perfect model, but may pose serious problems when uncertainty is included. A more detailed study is based on LQG-controller design. This study shows that nominally it is preferable with few trays when we only consider disturbances and many trays when we only consider reference tracking. If we consider both disturbances and reference tracking, the controller tuning decides if it is optimal to have few or many trays. Nominally it is preferable with few trays when the weights on the outputs are relatively small (q=1, r=0.01), because the reference tracking is no significant problem (wr=1). Nominally it is preferable with many trays when the weights on the outputs are relatively large (q=1,r=0.0001) or include integral action, because the reference tracking has significant effect. When the controller output weights are relatively large, the uncertainties have large effect on the performance. LQG-controllers give bad performance, but do not clearly indicate if it is optimal to have few or many trays. In the μ-optimal controller design we consider uncertainty including delays, and the resulting controllers show better performance for many stages because of less interaction. Figure 4 shows simulations of step changes in the disturbances for 25 stages when using a LQG-controller with integral action included and when using a μ-optimal controller. We have taken into account some model input uncertainty including delay (e.g Gp=GGextraD where D=diag[0.8 1.2] and Gextra=diag[1/(0.02s+1)5]). The LQG-controller is unstable, which is expected since μRP is much larger than one (see table 3).

7. Conclusion

In conclusion, we find that a large number of trays gives somewhat better controllability than a small number of trays. The seemingly contradictory results of Meeuse and  Tousain (2001) are correct, but only hold when having no model uncertainty including delay (and no reference tracking), which is of limited practical interest.
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