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1 Abstract

Elimination of slugging by changing the design or the operating point (e.g.
increasing the pressure) has been suggested by many authors. The objective
for them was to get to an operating point where the desired flow regime is
(open-loop) stable. In this paper the objective is to stabilize the unstable
(optimal) operating point using feedback control.

A simple two-phase flow model is used for analysis and controller design.
The model captures the main dynamics of severe slugging, and is first order
continuous, thus suited for linear analysis and controller design. We have
shown that a system exhibiting severe slugging is a Hopf bifurcation with
the choke valve position as free variable.

The pressure sensor used as measurement for control should be placed in
the lower part of the system. With the pressure sensor located in the riser,
RHP-zeros close to the imaginary axis limits the bandwidth of the control
system, making stabilization of the system difficult.

The task of eliminating severe slugging in pipelines consists of two sub-
problems;

1. Breaking the limit cycle and bringing the system to the desired oper-
ating point

2. Stabilize the system at the desired operating point

In this work we show that it is possible to break the limit cycle manually
by closing the choke valve and then bring the system to its desired closed-loop
stable operating point using a simple PI-controller.
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2 Introduction

Stabilization of desired fluid flow regimes offers challenges of immense poten-
tial value. The opportunities for control engineers in this field are very large,
because most fluid flow experts tend to be ”feedforward thinkers” with only
limited insight into the potential benefits of feedback control. They tend to
believe that the stability regions of a given steady-state flow pattern is fixed
by nature. However, these are open-loop stability regions, and with feedback
control one may change these boundaries.

The most well-known example is probably the transition from laminar
to turbulent flow in single phase pipelines which is known to occur at a
Reynolds-number of about 2300. However, it is well known that by carefully
increasing the flow rate one may achieve laminar flow at much larger Re-
numbers, but that in this case a small knock at the pipeline will immediately
change the flow to turbulent. Some attempts have been made in applying
control to this problem (e.g. see Bewley (2000) for a survey), but the short
time and length scales make practical applications difficult.

Another unstable flow phenomenon occurs in multi-phase pipelines, where
pressure-flow fluctuations known as slug-flow can be induced both by velocity
difference between the gas and liquid phase (hydrodynamic slugging) and by
the pipe geometry (severe slugging, terrain slugging, riser induced slugging).
The latter severe slugging phenomenon occurs at a time and length scale
that makes control a viable option. In many cases severe slugging induced
by the terrain on the seabed or by the vertical distance to the platform is a
major problem for production, as it leads to large load disturbances for the
inlet separator causing compressor trip or flooding of the separator.

Unstable flow in multi-phase transport systems can usually be avoided by
either changing the operating point or redesigning the system. A description
of different approaches to avoid unstable flow regimes can be found in Sar-
ica and Tengesdal (2000). Up until very recently, the standard method for
avoiding this problem has been to change the operating point by closing the
choke-valve opening. However, the optimal operating point for many systems
is inside the unstable region, and increasing the downstream pressure results
in economic loss.

In many, if not most, cases the problems with unstable flow regimes oc-
curs as the oilfields get older and the gas-to-oil ratio and water cut increases.
Initially stable transport systems can in many cases experience severe stabil-
ity problems after a few years of production. Since these transport systems
are highly capital cost intensive, retrofitting or rebuilding these systems is
rarely an option. Thus, a effective way to stabilize unstable flow regimes is
clearly the best way to handle a multiphase transport system gone unstable.

The use of feedback control to avoid severe slugging was proposed and
applied on a test rig by Hedne and Linga (1990). Later independent studies,
including simulations and actual full-scale implementations, are reported by
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Henriot et al. (1999) and Havre et al. (2000). The two-phase simulations
were performed using the industrial simulators TACITE and OLGA, respec-
tively, but these were essentially used as ”black box” simulators to test the
proposed control strategies. None of the control systems are based on an first
principles dynamic model and subsequent analysis and controller design. It
is our view that in order to achieve robust stabilization for a wide range of
cases, a controller based on a simple model describing the dominant dynamic
characteristics of the system is needed.

3 Severe Slugging Phenomenon

The cyclic behavior of severe slugging is illustrated schematically in figure 1.

Figure 1: Graphic illustration of a slug cycle

It can be broken down into four parts. First, the liquid accumulates in the low
point. A prerequisite for severe slugging to occur is that the gas and liquid
velocity is low enough to allow for this accumulation. The liquid blocks the
gas flow, and a continuous liquid slug is formed in the riser. As long as the
rate of pressure increase upstream the slug is lower than the rate of increase
of the hydrostatic head of the liquid in the riser, the slug will continue to
grow(step 2).

When the pressure behind the slug overcomes the hydrostatic head of the
liquid column, the gas will start penetrating the liquid in the riser and push
the liquid out (step 3). Since this is accompanied with a pressure drop, the
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gas will expand and further increase the velocities in the riser. After the
majority of the liquid and the gas has left the riser, the velocity of the gas
is no longer high enough to pull the liquid upwards. The liquid will start
flowing back down the riser (step 4) and the accumulation of liquid starts
again.

A more detailed description of the severe slugging phenomenon can be
found in Taitel (1986).

4 Model Description

Two types of one-dimensional models are commonly used when modeling
multiphase flow; the drift flux model, with mass balances for each phase and
a combined momentum balance, and the two-fluid model, with separate mass
and momentum balances for each phase. For the drift flux type model, one
also needs algebraic equations relating the velocities in the different phases.

In this work we used a two-fluid model for a two phase system. The
conservation equations for mass and momentum then consists of four Partial
Differential Equations(PDEs):
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Here we have assumed the following

• Constant liquid density ρL

• Constant pressure over a pipe cross-section, implying equal pressure in
both phases

• No mass transfer between the phases

• No liquid droplet field in the gas

• Isothermal conditions

• Ideal gas equation of state
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Algebraic relations for friction and relations between wetted perimeter
and phase fraction are needed. These, and other details about the model are
given in the appendix.

This will give four states (αLρL, αGρG, αLρLuL and αLρLuL), which to-
gether with the summation equation for the phase fractions αL + αG = 1
gives the phase fractions, gas density and both velocities.

Horizontal and inclined flow is fundamentally different due to the effect
of gravity. This model is based on stratified flow for the horizontal pipe
sections, and annular or bubbly flow for inclined pipe sections. This does not
introduce discontinuities, as this switch is only dependent on geometry.

For inclined flow, the possibility for annular and bubbly flow is included.
It is assumed that the same algebraic relation between phase densities, ve-
locities and friction is valid for all flow regimes, both horizontal and inclined.
The expression for the wetted parameter is the only difference between the
regimes. For bubble flow in inclined pipes, the wetted perimeter is computed
based on an average bubble diameter. For annular flow, the wetted perimeter
is that of a gas core in a body of liquid. The transition between the regimes
is modeled using a sinusoidal weighting function (weight 0-1), and is assumed
only to be a function of phase fraction. This ensures a smooth transition.

The choke valve is modeled using the model of Sachdeva et al. (1986)

The model is implemented in MatLab.

4.1 Discretization of the PDEs

In order to solve the system of PDEs, we discretize in space and solve the
resulting set of Ordinary Differential Equations (ODEs). A staggered grid ap-
proach is used, since this is required for numeric stability of the solution with
standard ODE solvers (e.g. MatLab). The spatial derivatives are computed
using a backward difference scheme (Patankar, 1980). Since the direction
of the flow can change in this system, care has to be taken when allocating
data to the ODEs. For forward flow, the data for the spatial derivatives is
collected upstreams the control volume, when the flow reverses, the data is
collected downstream.

4.2 Dealing with the extremes

Due to the one-dimensional nature of the model and the simplifying assump-
tions made, dealing with close to one-phase conditions is difficult. When the
liquid fraction approaches one, the gas velocity will increase disproportion-
ately, since the wetted perimeter of the gas, on which friction is effective,
diminishes. In the real situation, under these condition the gas will be trans-
ported as bubbles in the liquid, and the friction will be significant. Also,
numerical problems arise, as the ODEs will be close to ”0=0” type, making
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them sensitive to numerical noise and unphysical solutions(such as negative
phase fractions)

To avoid these problems, an artificial friction term is added to the momen-
tum balances. This term is exponential in phase fraction, linear in velocity
and effective only over a narrow range of phase fractions close to the extreme
values. For phase k:

Fk = −10000 · vk · e5−500∗αk

This term effectively prevents the acceleration of the minor phase by penal-
izing its velocity in the momentum balance. At the same time it prevents
a phase from disappearing from a control volume, by forcing the velocity of
the last amounts of that phase to be zero.

4.3 Dealing with different flow regimes

Multiphase flow may change between different flow regimes. Flow regime
maps, showing the stability region of the various flow patterns as func-
tion of liquid and gas velocity, have been developed based on experimental
data.Baker (1954) was one of the first to investigate the stability of the dif-
ferent flow regimes, the resulting map for horizontal flow of oil and gas is
shown in figure 2. The parameters used on the axis are

Figure 2: Flow regime map for horizontal flow of oil and gas
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More recent work can be found in Schmidt et al. (1979). Friction, phase
distribution and other system properties which depends on flow regimes are
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computed either by algebraic correlations or interpolated from experimental
data based on the predicted flow regime. Commercial multiphase flow simu-
lators uses flow regime maps and the experimental data behind these maps
to determine the flow regime and the suitable correlations for the problem at
hand. However, the flow regime maps are based on open loop experimental
data. In this work, where we are concerned with the operating in open-loop
unstable operating points, the maps do not apply. Because of this, we do not
use flow regime dependent correlations (except for the possibility for annular
and bubbly flow in the riser, where we only consider this change to be a
function of phase fraction)

Another point to be made is that incorporating flow regime dependent
algebraic correlations based on open loop data will result in a discontinu-
ous model. Linearization and succeeding analysis of such a model can give
errors due to the discontinuities. An effort has been made to avoid these
discontinuities.

5 Case description

In order to study the dominant characteristics of the problem, a simple case
is studied. The geometry is shown in figure 3. A feed of 0.937 kg/sec of liquid
and 0.063 kg/sec of gas enters into the system. Downstreams the choke valve,
there is a constant pressure of 20 bar.

0 200 400 600 800 1000 1200

−100

−80

−60

−40

−20

0

Horizontal [m]

V
er

tic
al

 [m
]

Choke 

Feed 

Figure 3: Geometry for the test case
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Figure 4: Liquid holdup profile through a slug cycle

6 Simulations without feedback control

With a valve opening of 0.5 the system exhibits severe slugging. The liquid
holdup profile through the slug cycle is shown in figure 4. Pressure in the
horizontal pipe section is shown as a function of time in figure 5.

As can be seen from figures 4 and 5, the liquid blocks the pipe at the low
point, and the pressure starts to rise upstreams from the blockage. As the
pressure reaches its maximum, the gas penetrates the liquid column in the
riser and pushes a majority of the liquid out of the system. This is associated
with a pressure drop and succeeding drop in the gas velocity. The gas can
no longer bring the liquid up the riser, the liquid falls back down the riser
and the cycle starts over.

Mathematically, this cyclic behavior is called a limit cycle. As will be
evident below, the reason for this is a Hopf bifurcation in the model when
considering the valve position as an independent variable. The task at hand
for control is to somehow break the limit cycle and operate at the unstable,
stationary point which exists inside the cycle. For control, we want to use
the choke valve as an actuator, and a pressure measurement as input to the
controller. The optimal location for the pressure transmitter is examined
below.
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Figure 5: Pressure (at axial distance x=300m) in the horizontal pipe section
through a slug cycle.

7 Stability Properties

The bifurcation diagram for the system with the valve opening as indepen-
dent variable is shown in figure 6. The dotted line indicates the stationary
points of the system, to the left of the bifurcation point (marked A) these are
stable, to the right they are unstable. The solid lines represent the maximum
and minimum pressures of the open loop stable limit cycle. For valve open-
ings between 0.15 to 0.3, the limit cycle is multiperiodic as shown in figure
7. The intermediate pressure levels are not shown in figure 6. The reason
for the seemingly strange behavior of the open loop pressures is that it is the
intermediate pressure peaks that sustain as the valve opening is increased,

This chart in figure 6 is consistent with a Hopf bifurcation in the system;
upon increasing the value of the independent variable, the system goes from
a stable state through a bifurcation point into limit cycles with increasing
amplitude.

The real part of the ”worst” pole (furthest into the right half plane) of
the system evaluated at the stationary points is plotted as function of valve
position in figure 8. As expected, the onset of instability coincides with the
bifurcation point in figure 6.

The root-locus plot for the unstable poles are given in figure 9. This plot
shows that the instability occurs as a result a pair of complex conjugate poles
moving into the right half plane, consistent with a Hopf bifurcation.
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Figure 6: Steady state pressure at x=300m as function of valve opening
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10



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Valve position

R
ea

l p
ar

t o
f "

w
or

st
" 

po
le
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Figure 10: Possible locations for pressure sensors

The gradient dp/dz at the stationary points in figure 6 approaches zero
with increasing valve opening. This implies that the process gain from input
z to output P approaches zero with increasing valve opening, at the same time
as the ”worst” pole moves further into the right half plane. As a consequence,
it is practically impossible to stabilize the system with large valve openings,
since at these operating points, we lack the input power to influence the
system sufficiently. We will further support this conclusion below, when
discussing controllability. However, the flattening nature of the stationary
points also implies that the losses in terms of increasing pressure drop when
operating with relatively low valve openings are small.

8 Controllability analysis

In order to cover a wide area of operation, we will in this section consider
two operating points: an ”easy” one with valve opening 0.15 and a ”difficult”
one with valve opening 0.4. When considering measurements, 13 different lo-
cations are included (coincident with grid resolution). These will be referred
to as location 1 through 13, the actual position of these possible sensors are
given in figure 10.

The pole vectors gives valuable information on the optimal location of the
pressure sensor. The dominant direction of the pole vector is an indication
of the best measurement location. The reason for this is that choosing the
measurement with the largest element in the pole vector minimizes the lower
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Figure 11: Pole vectors for the operating points z = 0.15 and 0.4

bound on both the H2 and H∞ norm of the transfer function KS from
measurement noise to input. More information about pole vectors can be
found in Havre (1998) and Havre and Skogestad (1998).

The pole vectors of the unstable poles for the two operating points are
illustrated in figure 11. For the first operating point, the pole vector indicates
that the pressure sensor should be located high up in the riser section. The
second case indicates that the pressure sensor should be located in the hor-
izontal or declining section. To understand why the results are so different
for the two operating points, we must consider process gain and right half
plane (RHP) zeros.

The RHP zeros limit the achievable bandwidth of the control system. As
can be seen from figure 12, with the pressure sensor located close to the top
of the riser, the RHP zeros lie close to the imaginary axis. With the pressure
sensor located in the declining or horizontal section, RHP zeros will not limit
performance. To be able to stabilize the system, the RHP zero must lie to
the right of the unstable pole in the complex plane. This is not the case with
z = 0.4 and the pressure sensor high up in the riser. For z=0.15, stabilization
with some of these measurements is possible, but the pole and the zero is
still close, and model uncertainty may well lead to problems even at this
operating point.

As previously mentioned, the process gain drops with increasing valve
opening. The process gain with the pressure sensor located in the riser is high
for low valve openings, but drop significantly with increasing valve opening.
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Figure 12: RHP zeros for different measurements, z = 0.15 and 0.4

With the pressure sensor in the declining or horizontal section, the gain still
drops with increasing valve opening, but less steeply.

The RHP-zeros and process gain explains why pole direction analysis
gives significantly different results for low and high valve openings. Even
though it seems that placing the pressure sensor in the riser seems promis-
ing when considering the operating point with z=0.15, the RHP-zero analysis
shows that this is infeasible for more ”aggressive” operation. From this analy-
sis, it is recommended to place the pressure sensor in the lower part of the
system. We will in the next section use a pressure measurement placed in
the horizontal part at the bottom of the system(point 9 in figure 10).

9 Simple closed loop example

Stabilizing the system consists of two tasks. First the limit cycle has to
be broken and the system brought to the desired operating point. Then
the system has to be stabilized and kept in this (unstable) state. One can
visualize this as a controlling device consisting of two parts, one designed to
break the limit cycle and one designed to stabilize the system.

measurement→ Limit cycle breaker → Stabilizing controller → output

Note that the term controlling device does not necessarily imply that both
tasks has to be done by an automatic controller.
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Figure 13: Simple closed loop example

Due to the highly nonlinear nature of the limit cycle behavior, the first
part of the controller designed to achieve both tasks probably would need
nonlinear elements. An alternative is to manually decrease the valve opening,
until the system is stable. Then the control loop is closed and the set point
is gradually increased until the desired operating point is reached. In this
case, the operator would be the ”Limit cycle breaker”.

In figure 13, the system is initially operating with a valve opening of 0.5.
The choke valve is then closed manually to an opening of 0.07, making the
system stable. Using a simple PI-controller, the control loop is then closed,
and the set point is gradually decreased, first to 27.46 bar (z = 0.1) then
to 27.35 bar (z = 0.15) . This brings the system into the unstable region.
Turning the controller off, leaving the valve in the same position, results in
instability. This confirms that the steady-state operating point is open-loop
unstable

10 Conclusions

In this paper a simple two-phase flow model has been developed. The model
captures the main dynamics of severe slugging, and is first order continuous,
thus suited for linear analysis and controller design. We have shown that a
system exhibiting severe slugging is a Hopf bifurcation with the choke valve
position as free variable.
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Inside the limit cycle there exists an unstable stationary operating point.
The gain of the system approaches zero as the valve opening is increased,
at the same time the unstable poles move further into the right half plane.
Because of this, stabilizing the system with large valve openings is not prac-
tically possible. However, the losses in terms of pressure drop are small even
if one operates at quite low valve openings.

The pressure sensor used as measurement for control should be placed in
the lower part of the system. With the pressure sensor located in the riser,
RHP-zeros close to the imaginary axis limits the bandwidth of the control
system, making stabilization of the system difficult.

Stabilizing the system consists of two tasks. First the limit cycle has to
be broken and the system brought to the desired operating point. Nonlinear
aspects will probably be important for achieving this. Then the system has
to be stabilized and kept in this (unstable) state. A linear controller should
be sufficient for this.
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Appendix 1 : Modeling details

The partial differential equations describing the system is described in chap-
ter 5.
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The algebraic relations used for friction correlations are:
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The wetted perimeters are implicit in phase fraction, and is approximated
by polynomials:

Si(stratified) =
(
α2

L − αL

)
(−4D)

Si(annular) = πD
√
αG

Si(bubble) =
παGD2
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The notation used for phases k = L and G are:
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Symbol Description Unit
αk Volume fraction
ρk Density kg/m3

x Axial distance m
uk Local phase velocity m/s
A Pipe cross-section m2

gx Gravity vector in pipe direction m/s2

Skw Wetted perimeter between phase k and pipe wall m
Ski Wetted perimeter between the phases m
τkw Wall friction Nm2

τki Interphase friction Nm2

ε Wall roughness m
Dhk Hydraulic diameter for phase k m
Rek Reynolds number -
Db Bubble diameter m
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