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Abstract

The idea of self-optimizing control is \to �nd a function c of the process

variables, which when held constant, leads automatically to the optimal ad-

justments of the manipulated variables, and with it the optimal operating

conditions" (Morari et al. 1980). One problem is that in general it is not clear

o� hand whether such a self-optimizing controlled variable set exists. Sko-
gestad (2000) presents a method for selection of controlled variables, based

on steady-state economics. In this paper we extend this method to include

the choice of setpoints by robust optimization. As a case study we consider

a reactor-separator-recycle process. For this process the control structures

based on Luybens rule (\�x a ow in every recycle loop") give infeasibility if

we use the nominal optimal setpoints, but it is feasible with acceptable loss

with robust optimal setpoints.

1 Introduction

This paper is concerned with the implementation of an optimal control policy. We
consider a strategy where the optimization layer sends setpoints for the controlled
variables to be implemented by the control layer, see �gure 1.
There are two classes of problems:

� Constrained: The optimal solution lies at active constraints for all expected
disturbances

� Unconstrained (the focus of this paper): One or more of the optimization
degrees of freedom are unconstrained for all or some expected disturbances.

Two important decisions are to be made:

� Decision 1: Selection of controlled variables (c): This is a structural decision
which is made o�-line before implementing the control strategy.

� Decision 2: Selection of setpoints (cs) for the controlled variables. This is a
parametric decision which is usually done on-line.
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Figure 1: A typical optimization system incorporating local feedback: The process is disturbed
(d) and the control system tries to keep the controlled variables (c) at their setpoints (cs). Steady-
state optimization is performed regularly to track the optimum by updating the setpoints.

For the constrained problem, we usually select the active constraints as controlled
variables (Maarleveld and Rijnsdorp 1970). Then selection of setpoints (Decision 2)
is the only issue. An exception is when the constraints are diÆcult to measure or
diÆcult to control due to poor dynamics. This is thoroughly discussed by Perkins
and coworkers, e.g. (Narraway et al. 1991). Another exception is when the optimally
active constraint is moving. In this case one may select unconstrained variables with
good self-optimizing properties.

For the unconstrained problem, the selection of what to control (Decision 1) is
crucial. A main issue is that the controlled variables should yield feasible operation,
that is, not violate any constraints for the expected disturbances and implementa-
tion errors. Otherwise, there may be both dynamic and steady-state problems such
as instability, input saturation and operation outside constraints. To avoid such
problems it may be necessary to back-o� from the nominal optimum. The required
back-o� and the corresponding economic loss depend on the selected controlled vari-
ables. The required back-o� can be reduced by using logic, model predictive control
and/or on-line optimization. A good choice of controlled variables may reduce the
need for these remedies and give a simpler and cheaper system.

2 Some de�nitions

2.1 Optimal operation

From a steady-state point of view optimal operation for a given disturbance (d) can
be found by solving the following problem:

min
x;u

J(x; u; d)

f(x; u; d) = 0 (1)

g(x; u; d) � 0

The scalar objective function J describes the quality (cost) of operation, f is the
process model, g is the inequality constraints connected to operation, u is the in-



dependent variables (inputs) we can a�ect, d is the independent variables (distur-
bances) we cannot a�ect and x consists of internal variables, e.g. states. The
inequality constraints usually consist of upper and lower bounds on the output and
input variables.

2.2 Feasibility

From a steady-state point of view operation is feasible when the following constraints
are ful�lled:

f(x; u; d) = 0 (2)

g(x; u; d) � 0

A constant setpoint policy is feasible if, with constant setpoints for the controlled
variables (c(x; u; d) = cs + e), none of the constraints are violated for expected vari-
ations in disturbances (d � D) and implementation errors (e � E).

Mathematically, this means there is a feasible solution to the following system of
equations for all expected disturbances (d � D) and implementation errors (e � E).

f(x; u; d) = 0

g(x; u; d) � 0 (3)

c(x; u; d) = cs + e

where c is the variables that we try to keep constant (equal cs). The implementation
error e is the sum of the measurement error (cm� c) and the control error (cs� cm),
see �gure 1. We distinguish between hard and soft constraints. Soft constraints may
be violated in transients, but not at steady-state (average). Hard constraints must
neither be violated in transients nor at steady-state. We then have

� For controlled variables related to soft constraints we should only include
the steady-state implementation error which with integral action equals the
steady-state measurement error.

� For controlled variables related to hard constraints we must also include the
worst-case dynamic control error.

2.3 Back-o�

Back-o� from nominal optimal operation is sometimes needed to achieve feasible
operation. The \back-o�" is the di�erence between the actual setpoints and the
nominal optimal setpoints b = cs � cs;opt(d0). Figure 2 demonstrates the need for
back-o�. The cost is shown as function of controlled variables. At nominal point
the cost is presented by line J(d0; c). If a disturbance happens, the system changes.
The new cost is presented by line J(d1; c). Outside the lines constraints are violated
and the operation is infeasible. If we use nominal optimal setpoints (cs;opt(d0)), we
get infeasibility. To avoid this we may change setpoints by doing some back-o� (b).

There are two types of back-o�:



J

c

J(d ,c)

1J(d ,c)

0

sc c    (d )s,opt     0

b

Figure 2: Cost (J) as function of con-
trolled variable (c) for di�erent distur-
bances (d0,d1)

C    =  constant

C    =  constant

Reoptimized J    (d)opt

1,s

2,s

*

Loss

d

J

d

Figure 3: The loss is the di�erence
between the cost by keeping a set of
controlled variables constant (c1;s or
c2;s) and the cost by re-optimizing for
a given disturbance (d)

1. \Simple" back-o� is moving away from active constraints as given by the im-
plementation errors.

\Simple" back-o� is used for variables at active output constraints. Back-o� for
variables at active input constraints is often not necessary, because it is impossible
to violate the input constraints, e.g. to have a negative valve opening

2. \Complex" back-o� is used in problems where \simple" back-o� is not suÆ-
cient.

\Complex" back-o� may be required for (1) unconstrained problems where the op-
timal value of c is unconstrained for all or some operating points (i.e. for some
disturbances) or (2) constrained problems where the optimal value of c moves from
one set of active constraints to another during operation.

2.4 Optimal back-o�

The required back-o� and economic loss depend on the selected controlled variables.
The optimal back-o� can be determined by robust optimization (Glemmestad et
al. 1999), where we �nd the setpoints (cs) that minimize an economic criterion
(usually steady-state) and satisfy constraints for the expected disturbances (D) and
implementation errors (E):

min
x;u;cs

Z
e�E

Z
d�D

w(d; e)J(x; u; d) dd de

f(x; u; d) = 0

g(x; u; d) � 0 (4)

c(x; u; d) = cs + e

d 2 D

e 2 E

The optimal back-o� is then:

bopt = cs;robust � cs;opt(d0) (5)



where cs;robust is the robust optimal setpoints and cs;opt(d0) is the nominal optimal
setpoints. Nominal optimal setpoints are found by solving equation 1 with respect
to nominal disturbances (d0).

2.5 Self-optimizing control

A set of controlled variables have good self-optimizing properties, when constant set-
points yield acceptable operation for expected variation in disturbances and imple-
mentation errors (Skogestad 2000). More precisely, the loss L should be acceptable.
The loss for a given disturbance (d) is the di�erence between the cost by keeping
a set of controlled variables constant (J(cs + e; d)) and the cost by re-optimizing
(Jopt(d)):

L = J(cs + e; d)� Jopt(d) (6)

Figure 3 shows loss as function of disturbances for di�erent sets of controlled vari-
ables.

3 Robust optimization

We will now discuss robust optimization, see equation 7, in more detail.

3.1 Dimensions

The problem is in�nite dimensional. However, it can be simpli�ed by choosing a
limited number of operation points (i).

min
xi;ui;cs

X
i

wiJ(xi; ui; di)

f(xi; ui; di) = 0

g(xi; ui; di) � 0 (7)

c(xi; ui; di) = cs + ei

di 2 D

ei 2 E

If we chose the nominal point and the corner points for expected disturbances and
implementation errors, see �gure 4, this gives
(2nd + 2nu + 1)� (nu + nx) + nu optimization variables,
(2nd + 2nu + 1)� (nu + nx) equality constraints and
(2nd + 2nu + 1)� ng inequality constraints.
It is clear that the problem becomes very large even for a modest number of states,
disturbances and controlled variables. In addition, the grids need to be dense enough
to include important nonlinearities. The optimization problem may be solved by us-
ing a subspace optimization algorithm.

An alternative way to do robust optimization is to optimize for expected worst-
case disturbances. This gives a smaller problem to solve, but it is not obvious which
are the worst-case disturbances. In addition minimizing the expected objective value
is preferable from an economic point of view.
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3.2 Weights

The weights in the objective function (cost) can be chosen in di�erent ways. Using
a nominal objective (w0 = 1, wi = 0 when i 6= 0) gives no di�erence between sets of
controlled variables where nominal optimal setpoints are feasible. Using an average
objective with respect to all operation points considered (wi = 1 for all i) may give
a too conservative operation. Preferably, the weights should be chosen equal to
the probability for operation in the respective points. However, feasibility may be
very important. This can be handled by distinguishing between an economic and a
feasible region, see �gure 5. The constraints must be ful�lled in the feasible region,
whereas the cost is average in the economic region.

4 Method for selecting controlled variables and

robust setpoints

In the method presented by Skogestad (2000) the nominal optimal setpoints were
used to identify promising sets of controlled variables. Here we focus on achieving
feasible operation by implementing setpoints found by robust optimization ("optimal
back-o�"). We use a �ve step procedure

1. Initial system analysis:
Identify the number of degrees of freedom, de�ne objective function and con-
straints, identify main disturbances and candidates for controlled variables,
optimize at nominal and for expected disturbances, see equation 1.

2. Identify candidate controlled variables sets:
Eliminate variables with no steady-state e�ect, use active constraint control,
eliminate variables with large losses by using short-cut loss evaluation, elimi-
nate variables based on process insight.

3. Evaluate loss and select setpoints for di�erent sets of controlled variables, by
using nominal optimization and \simple" back-o�.

4. Evaluate loss and select setpoints for di�erent sets of controlled variables, by
using robust optimization, see equation 7.



5. Final evaluation and selection of control structures:
Stabilization, controllability analysis, selection of control con�guration and
simulation of proposed control structures.

The method is applied to a reactor, separator and recycle process in next section.

An alternative to initial screening (step 2) before evaluating the loss (step 3 and 4)
is mathematical programming to �nd sets of controlled variables which imply small
losses. The robust optimization is then the inner problem in a MINLP-problem.
If including a controllability test (step 5) for di�erent controlled variable sets, the
selection of controlled variables is done automatically.

5 Example: Reactor, separator and recycle pro-

cess

The process equipment consists of reactor, distillation column and liquid recycle
(Papadourakis et al. 1987). There is no inert in the feed, and no purge is required.
We apply model parameters presented by Wu and Yu (1996). Larsson (2000) iden-
tify promising sets of controlled variables for this process using nominal optimal
setpoints.
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Figure 6: Reactor/separator process with liquid recycle

The computations are done by Matlab. Optimization toolbox is used in nomi-
nal and robust optimization and �-analysis and synthesis toolbox is used during
controllability analysis.

5.1 Initial system analysis

The process has �ve manipulated variables (valves) which give �ve degrees of free-
dom.

uT = [L V B D F ]



However, two of them (the reboiler holdup (Mb) and condenser holdup (Md)) have no
steady-state e�ect. Then there are three degrees of freedom at steady-state. These
may, for example, be selected as the reactor holdup (Mr), product composition (xb)
and recycle composition (xd). The economic objective is to maximize the pro�t (the
value of the products minus the cost of the utilities and raw materials). Since F0 is
given, B is given and L depends directly on V , this can be simpli�ed to minimize
the boilup ow rate:

J = V

The reactor volume is constrained and there is a purify speci�cation on the product:

0 �Mr � 2800

xb � 0:015

The main disturbances are feed ow rate (F0) and feed composition (x0):

dT = [F0 x0] = [460� 92 kmol=h 0:90� 0:05 molA=mol]

The 20 candidate controlled variables (9 manipulated variables and measurements
and 11 ow ratios) are given below:

cT = [u xr xb xd L=F V=F B=F D=F V=L B=L D=L B=V D=V B=D F=F0]

The implementation errors are initially assumed as �10% for ow rates, �0:5%
(absolute) for compositions and �1% for holdups. Steady-state optimization for the
nominal operation and the corner-points in the disturbance regime, see equation 1,
show that the product composition (xb) and the reactor holdup (Mr) are always at
their constraints.

5.2 Identify sets of candidate controlled variables

20 candidate controlled variables and three steady-state degrees of freedom give 1140
alternative sets of controlled variables, and we need to reduce the number of sets.
We have already eliminated the condenser (Md) and the reboiler holdup (Mb) which
have have no steady-state e�ect. We choose to control the active constraints. As
mentioned, there are two active constraints (c1=product composition and c2=reactor
holdup). We are then left with 18 candidate controlled variables and 1 steady-state
degree of freedom, which give 18 possible sets.

Initial screening is performed by maximizing the steady-state gain (jG(0)j) where
G(0) is obtained with the active constraints kept constant. The candidate controlled
variables are scaled with respect to variation in optimal values and implementation
errors. From table 1, we see that xd and L=F are the most promising controlled
variables.

At steady-state the product ow rate must be equal to the feed ow rate (B = F0).
Thus, keeping the product ow rate B constant when the feed ow rate changes,



Table 1: Candidate controlled variables ranked by steady-state gain (jG(0)j)
Rank c3 jG(0)j � 103

1 xd 13:1
2 L=F 8:9
3 D=L 7:7
4 D=V 5:8
5 V=L 4:5
6 B=L 4:1
7 V=F 4:0
8 B=D 3:3
9 L 3:0
10 B=F 2:6
11 D 2:6
12 F=F0 2:5
13 D=F 2:5
14 F 1:9
15 B=V 0
15 V 0
15 xr 0
15 B 0

does not give feasible steady-state operation. Hence the product ow rate (B) is
eliminated as a candidate controlled variable. The product ow rate (B) is given by
the component balance of the product:

B = kMrxr=xb

Here Mr and xb are controlled at their active constraints, when, as just noted,
B = F0. Thus the reactor composition (xr) is �xed and can be eliminated as a
candidate controlled variable. 16 candidate controlled variables and 1 steady-state
degree of freedom still remain, which give 16 possible sets.

5.3 Loss evaluation with nominal optimal setpoints

For the remaining 16 alternative sets we evaluate the economic losses imposed by
using constant setpoints instead of re-optimization. Average losses (and setpoints)
when using nominal optimal setpoints are shown in table 2. Simple backo� from
active constraints is included. We rank the alternatives based on average loss. Con-
trol of xd (�gure 7) closely followed by L=F (�gure 8), D=V and D=L, gives the
smallest average loss, see also (Larsson 2000). Control of F or D, which follow Luy-
bens rule (\�x a ow in every recycle loop") (Luyben et al. 1997), give infeasibility.
In addition we have evaluated some alternatives proposed in literature. None of
them control the reactor holdup, and none of them yield feasible operation for all
disturbances.

5.4 Loss evaluation with robust optimal setpoints

Use of nominal optimal setpoints may exclude controlled variables that are work-
able.In the worst case we may not �nd any feasible sets of controlled variables at



Table 2: Average operation costs and loss when using nominal optimal setpoints
Rank c1 c2 c3 c1;s c2;s c3;s Javerage %-loss

Optimal � � � � � � 1231:23 �
1 xb Mr xd 0:9900 2772 0:8186 1322:35 7:4
2 xb Mr L=F 0:9900 2772 0:8207 1324:20 7:6
3 xb Mr D=L 0:9900 2772 0:6379 1324:17 7:6
4 xb Mr D=V 0:9900 2772 0:3893 1325:87 7:8
5 xb Mr V=F 0:9900 2772 1:3446 1331:10 8:2
6 xb Mr L 0:9900 2772 792:6702 1336:88 8:8
7 xb Mr V=L 0:9900 2772 1:6585 1329:79 9:9
8 xb Mr B=D 0:9900 2772 0:9098 1330:97 11:0
� xb Mr B=F � � � infeas infeas
� xb Mr B=L � � � infeas infeas
� xb Mr B=V � � � infeas infeas
� xb Mr D � � � infeas infeas
� xb Mr D=F � � � infeas infeas
� xb Mr F � � � infeas infeas
� xb Mr F=F0 � � � infeas infeas
� xb Mr V � � � infeas infeas
� xb F xd � � � infeas infeas
� xb xr xd � � � infeas infeas
� xb F=F0 xd � � � infeas infeas
� V=B F=F0 xd � � � infeas infeas
� xb F=F0 V=B � � � infeas infeas
� xb F=F0 L=D � � � infeas infeas
� xb Mr=F L=D � � � infeas infeas
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Table 3: Average operation costs and loss when using robust optimal setpoints
Rank c1 c2 c3 c1;s c2;s c3;s Javerage %-loss

Optimal � � � � � � 1231:23 �
1 xb Mr xd 0:9900 2772 0:8243 1322:35 7:4
2 xb Mr L=F 0:9900 2772 0:8061 1324:20 7:6
3 xb Mr D=L 0:9900 2772 0:6863 1324:17 7:6
4 xb Mr D=V 0:9900 2772 0:4159 1325:87 7:7
5 xb Mr V=L 0:9900 2772 1:8455 1329:79 8:0
6 xb Mr B=D 0:9900 2772 0:7741 1330:97 8:1
7 xb Mr V=F 0:9900 2772 1:3084 1331:10 8:1
8 xb Mr B=L 0:9900 2772 0:6441 1332:65 8:2
9 xb Mr F=F0 0:9900 2772 2:3856 1333:47 8:3
10 xb Mr B=F 0:9900 2772 0:4219 1334:96 8:4
11 xb Mr D=F 0:9900 2772 0:5849 1336:65 8:6
12 xb Mr L 0:9900 2772 716:0416 1336:88 8:6
13 xb Mr F 0:9900 2772 1249:7635 1347:75 9:5
14 xb Mr D 0:9900 2772 880:9874 1350:97 9:7
15 xb Mr B=V 0:9900 2772 0:2703 1735:32 40:9
� xb Mr V � � � infeas infeas
16 xb F=F0 V=B 0:9900 2:4963 3:4371 1581:08 28:4
17 xb F=F0 xd 0:9900 2:4963 0:8522 1585:98 28:8
18 xb Mr=F L=D 0:9900 2:0231 1:2803 1586:64 28:9
19 xb xr xd 0:9900 0:4852 0:8522 1588:36 29:0
20 xb F=F0 L=D 0:9900 3:2497 0:5973 1652:97 34:3
21 xb F xd 0:9900 1954:5 0:7135 1794:04 45:7
22 V=B F=F0 xd 3:9475 2:6167 0:8366 1815:83 47:5

all. We therefore consider use of robust optimal setpoints, see equation 7. We se-
lect both the feasible and economic region to include the expected disturbances and
implementation errors. We select the nominal point and corner points for expected
disturbances and implementation errors as operation points with equal weights (w).
We rank the di�erent sets of controlled variables based on their cost in optimum
(average loss), see table 3. Interestingly, there are only minor changes compared
to table 2 among the best alternatives. However, control of F and D which follow
Luybens rule, are now feasible and give acceptable loss. Also alternatives which do
not control the reactor holdup, are feasible, but give large losses (28-48%).

Anyway, the conclusion has not changed. The loss is smaller and control is sim-
pler, if we keep xd or L=F at nominal optimal setpoints rather than controlling D
or F at robust optimal setpoints.

5.5 Final evaluation and selection of control structures

We will now check the control properties of the four alternatives with the smallest
loss (xd, L=F , D=L and D=V ) and the two alternatives that follow Luybens rule
(F and D). The reactor holdup, reboiler holdup and condenser holdup are �rst
stabilized. The controllability analysis reveals no problems for the six alternatives.
As the alternatives show small interactions, decentralized control is selected. The
pairing of the controlled variable and manipulated variables is based on steady-state



relative gain array (RGA), as shown in table 4. Loop 1 and 2 are stabilizing loops.
Loop 3 and 4 are used to control active constraints.

Table 4: Proposed decentralized control structures based on RGA
Alternative Loop 1 Loop 2 Loop 3 Loop 4 Loop 5

xd Mb $ B Md $ D Mr $ F xb $ V xd $ L
L=F Mb $ B Md $ D Mr $ F xb $ V L/F$ L
D=L Mb $ B Md $ D Mr $ F xb $ V D/L$ L
D=V Mb $ B Md $ D Mr $ F xb $ V D/V$ L
F Mb $ B Md $ L Mr $ D xb $ V F
D Mb $ B Md $ L Mr $ F xb $ V D

The IMC-tuning is used to select control parameters. Simulations are performed
with robust optimal setpoints for step changes in the disturbances, feed ow rate
(F0) and feed composition (x0). Responses for the reactor holdup and the product
composition for increase in the feed ow rate (�F0 = +20%) are shown in �gure 9
and 10. Control of F gives the fastest control and xd the slowest control.
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The control deviations are signi�cantly less than the expected implementation er-
rors. If we assume small measurement errors, the study can be performed with some
smaller expected implementation errors, which will reduce the economic loss con-
nected to implementation errors. The di�erences in the control deviation are rather
small and will not change the ranking of the alternatives.

6 Conclusion

An extended method for the selection of controlled variables with good self-optimizing
control properties which include the choice of setpoints, is presented. We focus on
achieving feasible operation by implementing setpoints found by robust optimization
(\optimal back-o�"). The method is applied to a reactor, separator and recycle pro-
cess. xd and L=F show best self-optimizing control properties. Alternatives which



follow Luybens rule (F and D), require \complex" back-o� and give larger loss than
xd and L=F . Alternatives with variable reactor holdup require \complex" back-o�
and give large losses.
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