Minimum Energy for Separation of Multicomponent Mixtures in Directly Coupled Distillation Arrangements

by

Ivar J. Halvorsen and Sigurd Skogestad
Norwegian University of Science and Technology (NTNU)
Department of Chemical Engineering

Working Party on "Distillation, Absorption and Extraction"
April 5-6, 2001 in Bamberg, Germany
Paper THZ 13
email: Ivar.J.Halvorsen@ecy.sintef.no, Sigurd.Skogestad@chembio.ntnu.no

Motivation

1. Need for quick determination of energy requiremen in complex distillation configurations, e.g for Petlyuk columns.
2. Need for better understanding of how to operate complex column arrangements.

Main results:

1. Exact analytical solution for minimum energy in directly coupled distillation arrangements
2. Simple graphical visualization in the $V_{\min }$-diagram.
3. Handle N components and M products.
4. Detailed solution for all internal flows is also obtained

The General Problem

Some simplifying assumptions:

- constant relative volatilities (α)
- constant molar flows
- constant pressure
- no internal heat exchange

Our Contribution:

We can use the behaviour in this standard two-product column - to predict the optimal performance
 of a directly coupled extended Petlyuk arrangement

$\mathrm{V}_{\text {min }}$ for the 3-product Petlyuk column is found as the highest peak in the $V_{m i n}$-diagram:

$$
\frac{V_{\text {Tmin }}}{F}=\underset{j}{\max }\left(\sum_{i=1}^{j} \frac{\alpha_{i} z_{i}}{\alpha_{i}-\theta_{j}}\right)
$$

Selected references:

Classical references for multicomponent distillation

- Underwood (1946, 1948a,b), Fractional distillation of multicomponent mixtures
- Shiras (1950), Calculation of Minimum Reflux in Distillation Columns
- Franklin, Forsyth (1953), The interpretation of minimum reflux conditions in multicomponent distillation
- King (1980), Separation Processes.(book)
- Koehler (1995), A review of minimum energy calculations
- Stichlmair (1998), Distillation: Principles and Practice. (book)

Minimum energy expressions for Petlyuk arrangements:

- Fidkowski, Krolikowski (1986), Thermally Coupled Columns: Optimization proc.
- Carlberg, Westerberg (1989) Temperature-Heat Diagrams for Complex Columns. 3. Underwood's Method for the Petlyuk Column.

Revisit of Underwood's Equations

Starting points:

1. Net component flow (w) through a stage

$$
\begin{equation*}
w_{i}=V_{n} y_{i, n}-L_{n+1} x_{i, n+1} \tag{1}
\end{equation*}
$$

(w is defined positive upwards)
w_{i} is constant in a section:

$$
w_{i, D}=r_{i, D} z_{i} F
$$

2. Vapour liquid equilibrium (VLE): $\quad y_{i}=\frac{\alpha_{i} x_{i}}{\sum_{i} \alpha_{i} x_{i}}$

Summary of Underwood's Equations for Minimum Energy Calculations

Feed equation
gives common
" $V_{\text {min "-roots } \theta}$

How to use Underwood's minimum energy results:

Problem: Given 2 specifications, find $\left\{\boldsymbol{V}, \boldsymbol{r}_{1, D}, \boldsymbol{r}_{2, D}, \ldots \boldsymbol{r}_{N, D}\right\}$ ($\mathrm{N}-1$ unknowns).

1. Compute all the common root $s(N-1)$ from the feed equation (polynomal roots):

$$
(\mathbf{1}-\boldsymbol{q})=\sum_{i} \frac{\alpha_{i} z_{i}}{\left(\alpha_{i}-\theta\right)}
$$

2. Determine the total set $\left(N_{D}\right)$ of the distributed components

There will be $N_{A}=N_{D^{-1}}$ active Underwood roots
3. Apply the set of definition equations (in the top or in the bottom) corresponding to each active root.

This is N_{A} linear equations in N_{A} unknowns
(The non-distributed components have recoveries of either 1 or 0)

$$
V_{m i n}^{T}=\sum_{i=1}^{N_{c}} \frac{\alpha_{i} r_{i, D} z_{i}}{\left(\alpha_{i}-\theta_{a 1}\right)}
$$

$$
V_{\min }^{T}=\sum_{i=1}^{N_{c}} \frac{\alpha_{i} r_{i, D} z_{i}}{\left(\alpha_{i}-\theta_{a N_{a}}\right)}
$$

This procedure particularly simple for sharp component splits ($r_{i}=1$ and $r_{j}=0$)

Visualisation of minimum energy and component distribution for the ternary example (feed components ABC)

Visualization of the operation in the D-V plane

- Any feasible point in the 2-dimensional plane spanned by 2 independent DOFs (here D, V) determines the operation completely.
- In every polygon region, a particular set of components distribute.
- The "active Underwood roots" are always adjacent, and are in the set laying between the volatilities of the distributed components. Thus each polygon region corresponds to a set of active Underwood roots.
- On the straight line boundaries between the polygon regions, one particular component is at the limit of being distributed to both products.
- The "mountain" tops: Sharp splits between adjacent key components (neighbours i relative volatility)
- Minimum points: "Preferred split", or optimal distribution of intermediate components.

Ternary Example: Possible recoveries in the top product

5-Component example:

P_{ij} marks $V_{\min }$ for sharp split of keys i, j.
$V>V_{\min }$ all above the "mountains"

All computations are simple and the solution is exact (infinite number of stages).

Simple Matlab ${ }^{\text {TM }}$ function prototypes

[日] =UWroots $(\alpha, z, q) \quad$ Compute the common roots from the feed equation
$[\mathrm{Vs}, \mathrm{Ds}, \mathrm{Rs}]=\mathrm{UWmulti}(\alpha, z, q) \quad$ Compute all the polygon points in the $\mathrm{D}-\mathrm{V}$ plane
$[\mathrm{V}, \mathrm{D}, \mathrm{R}]=\mathrm{UW}$ rspec $(\alpha, \mathrm{z}, \mathrm{q}, \mathrm{ri}, \mathrm{rj}) \quad$ Compute an operation point from specification the recoveries (r) of keys i, j
$[\mathrm{V}, \mathrm{D}, \mathrm{R}]=\mathrm{UW} x \operatorname{spec}(\alpha, \mathrm{z}, \mathrm{q}, \mathrm{xi}, \mathrm{xj})$ Compute an operation point from specification the product composition (x) of keys i,j
[R] =UWvdspec ($\alpha, z, q, V, D)$ Compute all recoveries R as function of V and D
V: Normalized top section vapour flow ($\mathrm{F}=1$)
D: Normalized distillate product flow ($\mathrm{F}=1$)
R : All component recoveries $R=\left[r_{1}, r_{2}, r_{3}, \ldots . r_{N c}\right]$ (in the distillate product)
α : Relative volatilities $\quad \alpha=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots . \alpha_{\mathrm{Nc}}\right]$
z : Feed composition $\quad z=\left[z_{1}, z_{2}, z_{3}, \ldots . z_{N c}\right]$
q : Feed liquid fraction
Note that the distillate flow $\mathrm{D}=\mathrm{FRz}^{\top}$, and the top composition $\mathrm{x}_{\mathrm{i}, \mathrm{D}}=\mathrm{r}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} /(\mathrm{D} / \mathrm{F})$

Application to directly (fully thermally) coupled columns:

Underwood roots "carry over" to the next column through the fully thermal (or direct) coupling

Proof for the general N -component case

Minimum energy for the N -product Petlyuk column:

$$
\begin{equation*}
V_{\text {Tmin }}^{P \text { Petlyuk }}=\max _{j} \sum_{i=1}^{j}\left(\frac{\alpha_{i} w_{i, T}}{\alpha_{i}-\theta_{j}}\right) \tag{2}
\end{equation*}
$$

In the ternary case, our general approach gives the same results as the analytical solution by Fidkowski and Krolikowski (1986) (valid for $\mathrm{q}=1$ and sharp splits):

$$
\begin{equation*}
V_{\text {Tmin }}^{\text {Petlyuk }}=\max \left(\frac{\alpha_{A} z_{A}}{\alpha_{1}-\theta_{A}},-\frac{\alpha_{C} z_{C}}{\alpha_{C}-\theta_{B}}\right) \tag{3}
\end{equation*}
$$

Our contributions can be listed as:

1. Different and more direct deduction
2. Generalize the solution to any liquid fraction and nonsharp splits
3. Handle $\mathrm{N}>3$ components and $\mathrm{M}>3$ products
4. Simple visualization in the $V_{\text {min }}$-diagram: The highest peak!

Super-simple procedure for the minimum energy requirement for 3 product Petlyuk Column

1. Compute the $V_{\text {min }}$-diagram for the feed:
2. Compute the energy requirement to produce the Petlyuk top product specification in a single column, and plot it into the diagram ($V_{\text {min }}^{A / B C}$)
3. Compute the energy requirement to produce the Petlyuk bottom product specification in a single column and plot it into the diagram $\left(V_{\text {min }}^{A B / C}\right)$
4. Operate the prefractioantor at the preferred split: $V_{\text {min }}^{A / C}$
5. The minimum energy requirement for the Petlyuk column is simply the maximum value of 2 and 3 (adjusted for 1-q): $V_{\text {min }}^{\text {Petlyuk }}=\max \left(V_{\text {min }}^{A / B C}, V_{\text {min }}^{A B / C}\right.$)
6. This also gives us information of the extent of the flat region. If the difference is large, there is a large flat region.

Example: Application to a 3 product Petlyuk Column:

* Sharp A/BC split
- Sharp AB/C split
- Preferred split (sharp A/C)
${ }_{-} V_{\text {min }}^{S 3}=f\left(D^{S 3}\right)$ for $D^{S 1}=D_{\text {bal }}$ distribution boundaries

Feed:

$$
\alpha=\left[\begin{array}{lll}
4 & 2 & 1
\end{array}\right]
$$

$$
z=\left[\begin{array}{lll}
0.33 & 0.33 & 0.33
\end{array}\right]
$$

$$
q=1.0
$$

$$
V_{\min }^{\text {Petlyuk }}=1.37
$$

$$
V_{\min }^{\text {Conventional }}=2.03
$$

Petlyuk savings $=\mathbf{3 3} \%$

Ex.: Application to 3-product Petlyuk arrangement with 5-component feed

We want pure $\mathrm{A}+\mathrm{B}$ in the top, and pure $\mathrm{C}+\mathrm{D}$ in the side and pure E in the bottom

Solution: Operate the prefractionator between $\mathrm{P}_{\mathrm{Bal}}$ and P_{BE}
The energy requirement to the Petlyuk column is found as $\max \left(\mathrm{P}_{\mathrm{BC}}, \mathrm{P}_{\mathrm{DE}}\right)=\mathrm{P}_{\mathrm{BC}}$

Ex.: 4-component feed to 4-product "Petlyuk" column

All vapour flows in every Petlyuk column section is found from the $V_{\text {min }}$-diagram

Solution: Operate every "2-product column" at its "preferred split"
The energy requirement to the Petlyuk column: $V_{\min }=\max \left(\mathrm{P}_{\mathrm{AB}}, \mathrm{P}_{\mathrm{BC}}, \mathrm{P}_{\mathrm{CD}}\right)=\mathrm{P}_{\mathrm{CD}}$

Improved 2nd Law performance

Double Effect Column Arrangements

Summary of our Contribution:

The most difficult split in
this standard two-product column.. ..gives is the minimum energy

The $V_{\min }$-diagram given by the behaviour in this simple column
 of a directly coupled extended Petlyuk arrangement

$V_{\min }$-diagram for directly coupled columns

The $V_{\text {min }}$-diagram gives all internal flows

Example: \mathbf{N} (9) components and \mathbf{M} (4) products

Direct Coupling Minimize Vapour Flow

	Configuration (Ad: AdiabaticNon: Non-ad.) Feed data: $\alpha=[4,2,1], \mathrm{z}=[1 / 3,1 / 3,1 / 3], \mathrm{q}=1$		External Energy $\boldsymbol{V}_{\boldsymbol{m i n}}=\Sigma \Delta Q / \lambda$	Relative Entropy Production $\Delta S_{\text {total }} /\|\Delta S\|$
A	Direct Split, no HE (conventional)	Ad	2.072	0.59
B	Indirect Split, no HE (conventional)	Ad	2.032	1.21
C	Side Rectifier (directly coupled)	Ad	1.882	0.86
D	Side Stripper (directly coupled)	Ad	1.882	1.05
E	Reversible Petlyuk Column	Non	1.667	0.00
F	Conventional prefrac-tionator arrangement	Ad	1.556	0.63
G	Petlyuk Column (typical)	Ad	1.366	0.72
H	Petlyuk Column + side-HE	Ad	1.366	0.54
I	Petlyuk + HE across the dividing wall	$\begin{aligned} & \text { Ad+No } \\ & \mathrm{n} \end{aligned}$	1.222	0.54
J	Petlyuk + HE from sidestream to feed	Ad	1.181	0.49
K	Petlyuk + total middle HE	$\begin{aligned} & \text { Ad+No } \\ & \mathrm{n} \end{aligned}$	1.000	0.26
L	Reversible Petlyuk with internal HE	Non	1.000	0.05
M	Reversible process with only two temperature levels	Non	0.793	0.00

