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Introduction 3

Introduction

Distillation is a very old separation technology for separating liquid mixtures that can be traced back to
the chemists in Alexandria in the first century A.D. Today distillation is the most important industrial
separation technology. It is particularly well suited for high purity separations since any degree of sepa-

ration can be obtained with a fixed energy consumption by increasing the number of equilibrium stages.

To describe the degree of separation between two components in a column or in a column section, we

introduce the separation factor:

_ (xl_/xH)T
(xl_/xH)B

1)
where herexdenotes mole fraction of a component, subsdrigenotes light componer heavy com-
ponent, T denotes the top of the section, dhthe bottom.

It is relatively straightforward to derive models of distillation columns based on almost any degree of
detail, and also to use such models to simulate the behaviour on a computer. However, such simulations
may be time consuming and often provide limited insight. The objective of this article is to provide ana-
Iytical expressions that are useful for understanding the fundamentals of distillation and which may be

used to guide and check more detailed simulations:
» Minimum energy requirement and corresponding internal flow requirements.
« Minimum number of stages.
» Simple expressions for the separation factor.
The derivation of analytical expressions requires the assumptions of:
« Equilibrium stages.
» Constant relative volatility.

« Constant molar flows.
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These assumptions may seem restrictive, but they are actually satisfied for many real systems, and in any
case the resulting expressions yield invalueable insights, also for systems where the approximations do

not hold.
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Fundamentals

The Equilibrium Stage Concept

The equilibrium (theoretical) stage concept (see Figure 1) is central in distillation. Here we assume
vapour-liquid equilibrium (VLE) on each stage and that the liquid is sent to the stage below and the
vapour to the stage above. For some trayed columns this may be a reasonable description of the actual
physics, but it is certainly not for a packed column. Nevertheless, it is established that calculations based
on the equilibrium stage concept (with the number of stages adjusted appropriately) fits data from most

real columns very well, even packed columns.
<Figure 1. near here>

One may refine the equilibrium stage concept, e.g. by introducing back mixing or a Murphee efficiency
factor for the equilibrium, but these “fixes” have often relatively little theoretical justification, and are

not used in this article.

For practical calculations, the critical step is usually not the modelling of the stages, but to obtain a good
description of the VLE. In this area there has been significant advances in the last 25 years, especially
after the introduction of equations of state for VLE prediction. However, here we will use simpler VLE

models (constant relative volatility) which apply to relatively ideal mixtures.

Vapour-Liquid Equilibrium (VLE)

In a two-phase systenPH=2) with N; non-reacting components, the state is completely determined by

N; degrees of freedonf)( according to Gibb’s phase rule;

f = N_+2-PH @)

If the pressurel) andN.-1 liquid compositions or mole fractiong)(are used as degrees of freedom,
then the mole fractiong} in the vapour phase and the temperatilileate determined, provided that two

phases are present. The general VLE relation can then be written:
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(Y1) Yor -ee YN, -1 T]
[y, T]

f(P, Xy Xy wee xNC_l)
f(P, %)

®)

Here we have introduced the mole fractions x and y in the liquid an vapour phases respectively, and we
n n

trivially have z X =1 andz y, =1
i=1 i=1
In ideal mixtures, the vapour liquid equilibrium can be derived from Raoult’s law which states that the

partial pressure; of a componentif in the vapour phase is proportional to the vapour pressm|°re ( )of

the pure component (which is a function of temperature opﬁ’y: piO(T) ) and the liquid mole fraction

():

pi = %Py (T) (@)
For an ideas gas, according to Dalton’s law, the partial pressure of a component is proportional to the
mole fraction:p, = y;P , and since the total presstre= p; + p, +... + py = Z P = in p?(T)
| |

we derive:

0 o

P i (T
yi = )(iF = L(o) (5)
in p; (T)

The following empirical formula is frequently used for computing the pure component vapour pressure:

0/ b f
Inp(T)~a+m+dln(T)+eT (6)
The coefficients are listed in component property data bases. The cagbedtd is called the Antoine
equation.
K-values and Relative Volatility

TheK-value for a components defined ask; = y,/x; . The K-value is sometimes called the equilib-
rium “constant”, but this is misleading as it depends strongly on temperature and pressure (or

composition).
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Therelative wlatility between componenisndj is defined as:

a; = ~— =71 (7)

For ideal mixtures that satisfy Raoult's law we have:

_ /%) _ K p(M)

.. = =
Do) Ko

(8)

Here piO(T) depends on temperature so the K-values will actually be constant only close to the column
ends where the temperature is relatively constant. On the other hand th@?r@ﬁ))/ p?(T) is much
less dependent on temperature which makes the relative volatility very attractive for computations. For

ideal mixtures, a geometric average of the relative volatilities for the highest and lowest temperature in

the column usually gives sufficient accuracy in the computatbo,ps; Ju WMo

ij,top —ij,bottom
We usually select a common reference compong¢nsually the least volatile (or “heavy”) component),
and define:
(0] (0]
o; = a = p(T)/ p(T) )

The VLE relationship (5) then becomes:

y, = —— (10)

For a binary mixture we usually omit the component index for the light component, i.e. wexwrije

(light component) ang,=1-x (heavy component). Then the VLE relationship becomes:

(00

= T+ (a-D)x (D

y
This equilibrium curve is illustrated in Figure 2.

<Figure 2. near here>
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The differencey-x determine the amount of separation that can be achieved on a stage. Large relative
volatilities implies large differences in boiling points and easy separation. Close boiling points implies

relative volatility closer to unity, as shown below quantitatively.

Estimating the Relative Volatility From Boiling Point Data

The Clapeyron equation relates the vapour pressure temperature dependency to the specific heat of

vaporization AHvap ) and volume change between liquid and vapour pﬁkié’gp( ):

dp’(T) _ AH"P(T)
T 1Av"3(T)

12)

If we assume an ideal gas phase, and that the gas volume is much larger than the liquid volume, then

vap

AV "= RT/ P, and integration of Clapeyrons equation from temperafyyéooiling point at pressure

Prep) to temperaturd (at pressurep? ) gives, WhGﬁ”H;/ap is assumed constant:

0 AR
In °~MD_1_D+ InP E+E__B__E (13)
PTETR o0 e T
vap vap
This gi the Antoi fricientsa, = o010, jnp o= 200 =0 .1 t
is gives us the Antoine coefficientsa; = TD'T;D NP by = = R G = . In mos
casesP ; = 1 atm . For an ideal mixture that satisfies Raoult’s law we h@}ver piO(T)/ p?(T) and
we derive:
vap vap vap vap
na. = AH; i_AHj L+AHJ’ —AH, (14)
1) R Ty R Tbj RT

We see that the temperature dependency of the relative volatility arises from different specific heat of

vap

vaporization. For similar vaIuesé\H?’ap: AHJ- ), the expression simplifies to:

—vap
_ AH T Ty -
InO(ij~ =T T—b where T, = /Tbinj (15)
DDE
B

DistillationTheory.fm 2 September 1999



Fundamentals 9

Here we may use the geometric average also for the heat of vaporization:

ARVP = JAHivap(Tbi) H{*(Ty)

This results in a rough estimate of the relative volatdriﬁy , based on the boiling points only:

—vap
AH
wheref3 = — 16

B o (16)

B

' ~ eB(Tbj_Tbi)/Tb

If we do not knowaAH P , a typical valug@= 13 can be used for many cases.

Example:For methanol (L) and n-propanol (H), we haVg, = 337.8K  ahgh, = 370.4K
and the heats of vaporization at their boiling points are 35.3 kJ/mol and 41.8 kJ/mol respectively.

ThusTg = +/337.80370.4= 354K andAA'“" = ./35.3041.8= 38.4 . This gives

B = AF"P/RTy = 38.4/(8.83035% = 13.1 and o = e13-1032.6 354 3 34 which is a bit

lower than the experimental value.

Material Balance on a Distillation Stage

Based on the equilibrium stage concept, a distillation column section is modelled as shown in Figure 3.
Note that we choose to number the stages starting from the bottom of the column. Weldenud®/,,

as the total liquid- and vapour molar flow rates leaving sta(gnd entering stages1 andn+1, respec-

tively). We assume perfect mixing in both phases inside a stage. The mole fraction of spedhes

vapour leaving the stage with, isy; ,, and the mole fraction iby, is X; .
<Figure 3. near here>

The material balance for componemt stagen then becomes (imjol i/seg):

dN.

,n

dt = (Ln+1Xi,n+1_Vnyi,n)_(LnXi,n_Vn—lyi,n—l) 17)

whereN,; , in the number of moles of componenin stagen. In the following we will consider steady
dN.

state operation, Ied_t b=

DistillationTheory.fm 2 September 1999



Fundamentals 10

It is convenient to define the net material flow ) of component upwards from stage to n+1 [mol i/

sed:

Wi,n = Vnyi,n_l-n+ 1Xi,n+1 (18)

At steady state, this net flow has to be the same through all stages in a column section, i.e.
Wiin = Win+1 =W

The material flow equation is usually rewritten to relate the vapour composyipor§ one stage to the
liquid composition on the stage aboxg.{):

L
_ n+1 1
Yin = A Xi,n+1+\TnWi (19)

The resulting curve is known as tloperatingline. Combined with the VLE relationship (equilibrium
line) this enables us to compute all the stage compositions when we know the flows in the system. This

is illustrated in Figure 4, and forms the basis of the McCabe-Thiele approach.

<Figure 4. near here>

Assumption about Constant Molar Flows

In a column section, we may very often use the assumption about constant molar flows. That is, we

assumeL, =L, ,4 =L rmol/dandV, _; =V, =V [mol/d. This assumption is reasonable for

n

ideal mixtures when the components have similar molar heat of vaporization. An important implication

is that the operating line is then a straight line for a given sectiony;ig= (L/V)X; +w,/V

i,n+1
This makes computations much simpler since the internal fldwsar{d V) do not depend on

compositions.
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The Continuous Distillation Column

We here study the simple two-product continuous distillation column in Figure 5. We will first limit our-
selves to a binary feed mixture, and the component index is omitted, so the mole fraciyahwa/é refer
to the light component. The column hidequilibrium stages, with the reboiler as stage number 1. The

feed with total molar flow raté [mol/se¢ and mole fractiorz enters at stagsr.
<Figure 5. near here>

The section above the feed stage is denoted the rectifying section, or just the top section, and the most
volatile component is enriched upwards towards the distillate product outlet (D). The stripping section,
or the bottom section, is below the feed, in which the least volatile component is enriched towards the
bottoms product outlet (B). (The least volatile component is “stripped” out.) Heat is supplied in the

reboiler and removed in the condenser, and we do not consider any heat loss along the column.

The feed liquid fractiom describes the change in liquid and vapour flow rates at the feed stage:

ALg = gF
(20)
AVp = (1-qg)F
The liquid fraction is related to the feed enthalmy) @s follows:
O -
o >1 Subcooled liquid
0o _ .
hyeahe O 7 S.atu.rated liquid
9= 0 " E 0<qg<1 Liquid and vapour (21)
AH O = Saturated vapour
E <0 Superheated vapour

When we assume constant molar flows in each section, we get the following relationships for the flows:

Lp = Lo +QF
B T
_ (22)
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Degrees of Freedom in Operation of a Distillation Column

With a given feed,zandq), and column pressur®]), we have only 2 degrees of freedom in operation

of the two-product column in Figure 5, independent of the number of components in the feed. This may
be a bit confusing if we think about degrees of freedom as in Gibb’s phase rule, but in this context Gibb’s
rule does not apply since it relates the thermodynamic degrees of freedom inside a single equilibrium

stage.

This implies that if we know, for example, the refluxd{ and vapour¥g) flow rate into the column, all

states on all stages and in both products are completely determined.

External and Internal Flows

The overall mass balance and component mass balance is given by:

F=D+B

Fz = Dxy+Bxg (23)

Herezis the mole fraction of light component in the feed, agdandxg are the product compositions.
For sharp splits withxp= 1 andxg = 0 we then have thdd=zF. In words, we must adjust the product
split D/F such that the distillate flow equals the amount of light component in the feed. Any deviation
from this value will result in large changes in product composition. This is a very important insight for

practical operation.

Example:Consider a column with z=0.55%0.99, »%=0.01 (all these refer to the mole fraction

of light component) and D/F = B/F = 0.5. To simplify the discussion set F=1 [mol/sec]. Now con-
sider a 20% increase in the distillate D from 0.50 to 0.6 [mol/sec]. This will have a drastic effect
on composition. Since the total amount of light component available in the feed is z = 0.5 [mol/
sec], at least 0.1 [mol/sec] of the distillate must now be heavy component, so the amount mole
faction of light component is now at its best 0.5/0.6 = 0.833. In other words, the amount of heavy

component in the distillate will increase at least by a factor of 16.7 (from 1% to 16.7%).
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Thus, we generally have that a changesxternal flowgD/F andB/F) has a large effect on composition,
at least for sharp splits, because any significant deviati@ikfrom zimplies large changes in compo-

sition. On the other hand, the effect of changes iimntieenal flows(L andV) are much smaller.

McCabe-Thiele Diagram (Constant Molar Flows, but any VLE)

The McCabe-Thiele diagram wheyes plotted as a functior along the column provides an insightful
graphical solution to the combined mass balance (“operation line”) and VLE (“equilibrium line”) equa-
tions. It is mainly used for binary mixtures. It is often used to find the number of theoretical stages for
mixtures with constant molar flows. The equilibrium relationship=f(x,) (y as a function of x at
the stages) may be nonideal. With constant molar flow, L and V are constant within each section and the
operating linesy as a function ok between the stages) are straight. In the top section the net transport
of light componentv = x;D . Inserted into the material balance equation (19) we obtain the operating

line for the top section, and we have a similar expression for the bottom section:

Top: Y= E\L—/ET(Xn +17%p) * Xp

(24)
Bottom: y, = %Elg(x“” 1—Xg) + Xg

A typical McCabe-Thiele diagram is shown in Figure 6.
<Figure 6. near here>

The optimal feed stage is at the intersection of the two operating lines and the feed stage composition
(X=Yr) is then equal to the composition of the flashed feed mixture. We have thatjx- + (1 - q)yg

Forg=1 (liquid feed) we findx. = z and fog=0 (vapour feed) we fing/ = z (in the other cases we
must solve the equation together with the VLE). The pinch, which occurs at one side of the feed stage if
the feed is not optimally located, is easily understood from the McCabe-Thiele diagram as shown in Fig-

ure 8.
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Typical Column Profiles— Pinch

An example of a column composition profile is shown in Figure 7 for a column with z=0.5, =1.5,
N=40, N-==21 (counted from the bottom, including the reboile79.90, %=0.002. This is a case were

the feed stage is not optimally located, as seen from the presence of a pinch zone (a zone of constant
composition) above the stage. The corresponding McCabe-Thiele diagram is shown in Figure 8. We see
that the feed stage is not located at the intersection of the two operating lines, and that there is a pinch

zone above the feed, but not below.
<Figure 7. near here>

<Figure 8. near here>
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Simple Design Equations

Minimum Number of Stages— Infinite Energy

The minimum number of stages for a given separation (or equivalently, the maximum separation for a
given number of stages) is obtained with infinite internal flows (infinite energy) per unit feed. (This
always holds for single-feed columns and ideal mixtures, but may not hold, for example, for extractive

distillation with two feed streams.)

With infinite internal flows (“total reflux”)L/F=c andV,/F=c, a material balance across any part of the
column givesV,, = L,+1, and similarly a material balance for any component gWe$, = Ly+1 Xn+1-

Thus,y, = X+1, and with constant relative volatility we have:

y X X nyq X
_ L,n/ L,n= L,n l/ L,n

a =
YH,n XH,n XH,n+1 XH,n

(25)

For a column or column section with stages, repeated use of this relation gives directly Fenske’s for-

mula for the overall separation factor:

B x 4 X O N
S=0-0/0-0 =a (26)
KnO DRl

For a column with a given separation, this yields Fenske’s formula for the minimum number of stages:

_InS

min — Ina

N (27)

These Fenske expressions do not assume constant molar flows and apply to the separation between any
two components with constant relative volatility. Note that although a high-purity separation $arge
requires a larger number of stages, the increase is only proportional to the logarithm of separation factor.
For example, increasing the purity level in a product by a factor of 10 (e.g. by redyginérom 0.01

to 0.001) increasds,,i, by about a factor oin10 = 2.3

A common rule of thumb is to select the actual number of stdges2N,;, (or even larger).
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Minimum Energy Usage— Infinite Number of Stages

For a given separation, an increase in the number of stages will yield a reduction in the reflux (or equiv-

alently in the boilup). However, as the number of stages approach infinity, a pinch zone develops

somewhere in the column, and the reflux cannot be reduced further. For a binary separation the pinch
usually occurs at the feed stage (where the material balance line and the equilibrium line will meet), and

we can easily derive an expression for the minimum reflux Wtk oo . For a saturgted feed

(9=1) (King’s formula):

T _Ty,p~ 9y p

I‘min - a—-1

F (28)

whererl_’ p = XpD/zF s the recovery fraction of light component, arp_gID of heavy component,
both in the distillate. The value depends relatively weakly on the product purity, and for sharp separations
(Whererl_, p = 1 and 'yp =0 ),we havelL = F/(a - 1). Actually, equation (28) applies without
stipulating constant molar flows or constantbut thenL,;, is the liquid flow entering the feed stage

from above, and is the relative volatility at feed conditions. A similar expression, butin termzéﬁhfn

entering the feed stage from below, applies for a satuvamalir feedq=0) (King's formula):

I’B GI’B
B _ "H™Y'L
Viin = —e—7-F (29)

For sharp separations we g‘éﬁ"n FHa - 1). In summary, for a binary mixture with constant molar

flows and constant relative volatility, the minimum boilupgbarp separationss:

Feed liquid, g=1: \Eﬂn = &—l—iF +D
- (30)
. 1
Feed vapour, g=0: \iin = a_—lF

Note that minimum boilup is independent of the product purity for sharp separations. From this we estab-
lish one of the key properties of distillatiowe can achieve any product pur{gven “infinite separation
factor”) with a constant finite enerdys long as it is higher thahe minimumby increasing the number

of stages
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Obviously, this statement does not apply to azeotropic mixtures, for vehich for some composition,
(but we can get arbitrary close to the azeotropic composition, and useful results may be obtained in some

cases by treating the azeotrope as a pseudo-component and fitigis pseudo-separation).

Finite Number of Stages and Finite Reflux
Fenske’s formul&=aN applies to infinite reflux (infinite energy). To extend this expression to real col-
umns with finite reflux we will assume constant molar flows and consider three approaches:

1. Assume constant K-values and derive the Kremser formulas (exact close to the column end for a

high-purity separation).

2. Assume constant relative volatility and derive the following extended Fenske formula (approxi-

mate formula for case with optimal feed stage location):

N
GN(LT/VT) !

N
(Lg/Vg) °
HereNr is the number of stages in the top sectionlggith the bottom section.

3. Assume constant relative volatility and derive exact expressions. The most used are the Under-
wood formulas which are particularly useful for computing the minimum reflux (with infinite

stages).

Constant K-values— Kremser Formulas

For high-purity separations most of the stages are located in the “corner” parts of the McCabe-Thiele
diagram where we according to Henry’s law may approximate the VLE-relationship, even for nonideal

mixtures, by straight lines;
Bottom of columny, = H, x_ (light componenty_ - 0)

Top of columnyy = Hy x4 (heavy componenig; — 0)
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whereH is Henry’s constant. (For the case of constant relative volatility, Henry’s constant in the bottom
isH = a andinthetopiH,, = 1/a ). Thus, with constant molar flows, both the equilibrium and
mass-balance relationships are linear, and the resulting difference equations are easily solved analyti-

cally. For example, at the bottom of the column we derive for the light component:

wheres = (Vg/Lg)H >1 isthe stripping factor. Repeated use of this equation gives the Kremser for-

mula for stagéNg from the bottom (the reboiler would here be stage zero):

X N, = S\eX [+ (1= Vg/Lg)(1-sT)/ (s— 1)] (32)
(assumes we are in the region where s is constant,i.e.0 ). At the top of the column we have for the
heavy component:
Yn—1 = (Lt/V) X/ HY)Yy o+ (D/V )Xy p = ayy n+ (1- L/ V)X, p (33)

wherea = (Ly/V;)/Hy > 1 is the absorbtion factor. The corresponding Kremser formula for the
heavy component in the vapour phase at st&geounted from the top of the column (the accumulator

is stage zero) is then:

Vi N, = aNx, pl1+(1- L/ V) (1-a )/ (a-1)] (34)

(assumes we are in the region where a is constant, j=0 ).
For hand calculations one may use the McCabe-Thiele diagram for the intermediate composition region,

and the Kremser formulas at the column ends where the use of the McCabe-Thiele diagram is inaccurate.

Example We consider a column with N=40N21, a =1.5, 7 =0.5, F=1, D=0.5, \g=3.206. The

feed is saturated liquid and exact calculations give the product compositjgsrsx{ g=0.01.

We now want to have a bottom product with only 1 ppm heavy produgt,d.e.Xxe-6. We can

use the Kremser formulas to easily estimate the additional stages needed when we have the same
energy usage,pg#3.206. (Note that with the increased purity in the bottom we actually get

D=0.505). At the bottom of the columify = a = 1.5  and the stripping factor is
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Simple Design Equations 19

s = (Vp/Lg)H, = (3.206/ 3.71)1.5 = 1.296

With x_g=1.e-6 (new purity) and<|_’ Ng = 0.01 (old purity) we find by solving the Kremser equa-
tion (31) for the top with respect tgslthat Ns=34.1, and we conclude that we need about 34
additional stages in the bottom (this is not quite enough since the operating line is slightly moved

and thus affects the rest of the column; using 36 rather 34 additional stages compensates for this)

The above Kremser formulas are valid at the column ends, but the linear approximation resulting from
the Henry’s law approximation lies above the real VLE curve (is optimistic), and thus gives too few

stages in the middle of the column. However, if the there is no pinch at the feed stage (i.e. the feed is
optimally located), then most of the stages in the column will be located at the columns ends where the

above Kremser formulas apply.

Approximate Formula with Constant Relative Volatility

We will now use the Kremser formulas to derive an approximation for the separation factor S. First note
that for cases with high-purity products we haése 1/ (% gXy p) That is, the separation factor is the

inverse of the product of the key component product impurities.

We now assume that the feed stage is optimally located such that the composition at the feed stage is the
same as that in the feed, 1By N, = YH,F ang Ny = XL, F Assuming constant relative volatility
and usingH, = a Hg = 1/a 0 = (Y /X )/ (Yyp/Xgqe) andN = Ny +Ng+1 (including

total reboiler) then gives:

N
AN

S=a
(Lg/Vg)Ne(XurYLF)

vV _ <N L _aN
wherec = 1+E|1——B 1-s °) 1+EI1——T 1-a )
O Lgd (s-1 0 Vo (a-1)

We know that S predicted by this expression is somewhat too large because of the linearized VLE. How-
ever, we may correct it such that it satisfies the exact relationShipaN at infinite reflux (where

Lg/Vg = V;/L; = 1 and c=1) by dropping the factdt/ (x4ry, )  (which as expected is always
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larger than 1). At finite reflux, there are even more stages in the feed region and the formula will further

oversestimate the value of S. However, since ¢ > 1 at finite reflux, we may partly counteract this by set-
ting c=1. Thus, we delete the term c and arrive at the final extended Fenske formula, where the main
assumptions are that we have constant relative volatility, constant molar flows, and that there is no pinch

zone around the feed (i.e. the feed is optimally located):

(L/V)NT
=N T (35)
(Lg/Vpg)®
whereN = N;+Ng+1 . Together with the material balanéeg = Dxp + BXg , this approximate

formula can be used for estimating the number of stages for column design (instead of e.g. the Gilliand
plots), and also for estimating the effect of changes of internal flows during column operation. However,

its main value is the insight it provides:
1. We see that the best way to increase the sepafitdo increase the number of stages.

2. During operation wherd is fixed, the formula provides us with the important insight that the sep-
aration factoiSis increased by increasing timernal flows L andV, thereby makingd/V closer
to 1. However, the effect of increasing the internal flows (energy) is limited since the maximum

separation with infinite flows i = aN

3. We see that the separation fackatepends mainly on the internal flows (energy usage) and only
weakly on the spliD/F. This means that if we chan@®F thenSwill remain approximately con-
stant (Shinskey's rule), that is, we will get a shift in impurity from one product to the other such

that the product of the impurities remains constant. This insight is very useful.

Example.Consider a column withD’ y = 0.01 (1% heavy in top) ang‘ L = 0.01 (1% light

in bottom). The separation factor is then approximately 0.99x 0.99( 0.0% 0.01= 9801
Assume we slightly increase D from 0.50 to 0.51. If we assume constant separation factor (Shins-
key’s rule), then we find tha:tD, n changes from 0.01to 0.0236 (heavy impurity in the top product
increases by a factor 2.4), whereas a@gL changes from 0.01 to 0.0042 (light impurity in the

bottom product decreases by a factor 2.4). Exact calculations with column data: N=21,N
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a=1.5,7=0.5,F=1,D=0.5, L1/F=3.206, give thaiy |, changes from0.01t00.0241 agd,
changes from 0.01 to 0.0046 (separation factor changes from S=9801 to 8706). Thus, Shinskey’s

rule gives very accurate predictians

However, the simple extended Fenske formula also has shortcomings. First, it is somewhat misleading
since it suggests that the separation may always be improved by transferring stages from the bottom to
the top section ifL+/V) > (Vg/Lg) . Thisis not generally true (and is not really “allowed” as it vio-
lates the assumption of optimal feed location). Second, although the formula gives the correct limiting
valueS = aN forinfinite reflux, it overestimates the valueSait lower reflux rates. This is not surpris-

ing since at low reflux rates a pinch zone develops around the feed.

ExampleConsider again the column with N=40¢gN21, a =1.5, 7 =0.5, F=1, D=0.5; L1=2.706
Exact calculations based on these data giygxx, g=0.01 and S = 9801. On the other hand, the

extended Fenske formula witg20 and N;=20 yields:

0
1, (27606 320070 _ ) ronnnne 034 _ 5007

s= 1%
(3.706/ 3.20420 18.48

corresponding to ¥p= X, g = 0.0057. The error may seem large, but it is actually quite good for

such a simple formula.

Optimal Feed Location

The optimal feed stage location is at the intersection of the two operating lines in the McCabe-Thiele
diagram. The corresponding optimal feed stage composixjpyg) can be obtained by solving the fol-
lowing two equationsz = qx +(1-q)yg ang = axg/(1+(a-1)xg) .Faorl(liquidfeed)we

find xz = z and for g=0 (vapour feed) we fing- = z  (in the other cases we must solve a second order

equation).

There exists several simple shortcut formulas for estimating the feed point location. One may derived
from the Kremser equations given above. Divide the Kremser equation for the top by the one for the bot-

tom and assume that the feed is optimally located to derive:
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S:;—Té%[l +0- ﬁhl - a_NT)}
.

YH.F _ XH.D_ (N;~Np)

XLF  *B oV e o Vv _ N
BH (14 01— BHl=S )
80 0O Lgo (s—-1

The last “big” term is close to 1 in most cases and can be neglected. Rewriting the expression in terms

of the light component then gives Skogestad’s shortcut formula for the feed stage location:

(1-Yg) Xg |0
e

whereye andxg at the feed stage are obtained as explained above. The optimal feed stage location

counted from the bottom is then:

_ [N+1-(Ny—Ng)]

Ng = Ng+1 5

(37)

whereN is the total number of stages in the column.

Summary for Continuous Binary Columns
With the help of a few of the above formulas it is possible to perform a column design in a matter of
minutes by hand calculations. We will illustrate this with a simple example.

We want to design a column for separating a saturated vapour mixture of 80% nitrogen (L) and 20% oxy-
gen (H) into a distillate product with 99% nitrogen and a bottoms product with 99.998% oxygen (mole

fractions).

Component data: Normal boiling points (at 1 atm), F 77.4K, Ty = 90.2K, heat of vaporization at

normal boiling points: 5.57 kJ/mol (L) and 6.82 kJ/mol (H).

The calculation procedure when applying the simple methods presented in this article can be done as

shown in the following steps:
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1. Relative volatility:

The mixture is relatively ideal and we will assume constant relative volatility. The estimated rel-

ARVaP(Tpy —Tp))
Th Ty

AHVaP = /5.57006.82= 6.16 kJ/mo| T, = /T, 4T, = 86.3K and

T, —T, = 90.2— 77.7= 18.8. This gives(AH'aP)/(RT,) = 8.87 and we find = 3.89

ative volatility at 1 atm based on the boiling pointéia = where

(however, it is generally recommended to obtain  from experimental VLE data).

2. Product split:

Z —% _ 0.8-0.00002 _

Xg—Xp  0.99- 0.00002 0-808

From the overall material balance we get:

3. Number of stages:

, < _ 0.99x 0.99998_ , -
The separation factor iS = 0.01x 0.00002" 4950000 ,i.e.8= 15.4. The minimum number
of stages required for the separatiolNjs;, = InS/Ina = 11.35 and we select the actual

number of stages d8 = 23 =2N_.. ).
4. Feed stage location

With an optimal feed location we have at the feed stag@) (thatyg = z- = 0.8 and

Skogestad’s approximate formula for the feed stage location gives

(1-ya)|[ X O 0.2 0.00002|]
N;—Ng = |na | T [y (ne = n 0.507}([ Soi | 1358 = ~3.56

corresponding to the feed stayge = [N+ 1—-(Ny—Ng)]/2 = (23+ 1+ 3.59/2 = 13.8

5. Energy usage:

The minimum energy usage for a vapour feed (assuming sharp separation) is

Vii’'F = /(a-1) = 1/2.89 = 0.346. With the choiceN = 2N the actual energy

min

usageY) is then typically about 10% above the minimw/,(), i.e.V/F is about 0.38.
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This concludes the simple hand calculations. Note again that the number of stages depends directly on
the product purity (although only logarithmically), whereas for well-designed columns (with a sufficient

number of stages) the energy usage is only weakly dependent on the product purity.

Remark 1:

The actual minimum energy usage is slightly lower since we do not have sharp separations. The
recovery of the two components in the bottom productis= (x gB)/(z- F) = 0.9596 and
ry = (xy, gB)/(zgyF) =0, so from the formulas given earlier the exact value for nonsharp sep-

arations isvV,. /F = (0.9596- 0.0< 3.8%/(3.89— 1) = 0.332

Remark 2:
For a liquid feed we would have to use more energy, and for a sharp separation
Vi F = /(a-1)+D/F = 0.346+ 0.808= 1.154

Remark 3:

We can check the results with exact stage-by-stage calculationsN&2B, Nc.=14 anda =3.89

(constant), we fin&/F = 0.374 which is about 13% higher thég;,=0.332.

Remark 4:

A simulation with more rigorous VLE computations, using the SRK equation of state, has been
carried out using the HYSYS simulation package. The result is a slightly lower vapour flow due
to a higher relative volatilityd in the range from 3.99-4.26 with an average of 4.14). More pre-
cisely, a simulation wittN=23,Ng=14 gaveV/F=0.30, which is about 14% higher than the
minimum valueV' .. = 0.263 found with a very large number of stages (increasing N>60 did

not give any significant energy reduction beldly,.. ). The optimal feed stage Kixi28) was

found to beNg=15.

Thus, the results from HYSYS confirms that a column design based on the very simple shortcut methods

is very close to results from much more rigorous computations.
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Multicomponent Distillation — Underwood’s Methods

We here present the Underwood equations for multicomponent distillation with constant relative volatil-
ity and constant molar flows. The analysis is based on considering a two-product column with a single

feed, but the usage can be extended to all kind of column section interconnections.

It is important to note that adding more components does not give any additional degrees of freedom in
operation. This implies that for an ordinary two-product distillation column we still have only two
degrees of freedom, and thus, we will only be able to specify two variables, e.g. one property for each
product. Typically, we specify the purity (or recovery) of the light key in the top and of the heavy key in
the bottom (the key components are defined as the components between which we are performing the
split). The recoveries for all other components and the internal flavesi{V) will then be completely

determined.

For a binary mixture with given products, as we increase the number of stages, there develops a pinch
zone on both sides of the feed stage. For a multicomponent mixture, a feed region pinch zone only devel-
ops when all components distribute to both products, and the minimum energy operation is found for a
particular set of product recoveries, sometimes denoted as the “preferred split”. If all components do not
distribute, the pinch zones will develop away from the feed stage. Underwood’s methods can be used in

all these cases, and are especially useful for the case of infinite number of stages.

The Basic Underwood Equations

The net material transpos;) of component upwards through a stages:

Wi = ViYin—Lbnt Xin+1 (38)
Note thatw; is always constant in each column section. We will assume constant molar flows

(L=L,=L,.; and V=V, =V,+1), and assuming constant relative volatility, the VLE relationship is:
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;X /X
—— whereq; = (vi7%)

ZO(ixi T /%)

Y, = (39)

We divide equation (38) by, multiply with the factora,/(a;—¢@) , and take the sum over all

components:

O(izxi n
1 AW, Z(O‘l‘q’) L<%Xin+1
—_— = (40)
V£ (a,-9) ZGIXI (0;—®)

The parameteg is free to choose, and the Underwood roots are defined as the vglues of  which make

the left hand side of (40) unity, i.e:

V = L (41)
2.0,
The number of valueg satisfying this equation is equal to the number of components.

Most authors usually use a product composition or component recayeémtkiis definition, e.g for the

top (subscript T) section or the distillate product (subscript D):

W, =W =W = DXi,D = ri,DZiF (42)
but we prefer to use w since it is more general. Note that use of the recovery is equivalent to using net
component flow, but use of the product composition is only applicable when a single product stream is

leaving the column. If we apply the product recovery, or the product composition, the defining equation

for the top section becomes:

-|- _ i, D | i | D
Z(a =ny Z(a “9)° “3)
Stage to Stage Calculations

With the definition ofp from equation (41), equation (40) can be simplified to:
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iNin+1 _ 1 i
V2Ta-9  Sax 49

This equation will be valid for any of the Underwood roots, and if we assume constant molar flows and

divide an equation fog,  with the one fq)T , the following expression appears:

a: X

i |n+m% . i%N,n E
] (o _(pk)D E{(Pikgn : (ai—(Pk)E (45)
cXIX| n + m[J Bpj cxixi,l’l 0

and we note the similarities with the Fenske and Kremser equations derived earlier. This relates the com-
position on a stage (n) to an composition on another stagm). That the number of independent
equations of this kind equals the number of Underwood roots minus 1 (since the number of equations of
the type as in equation (44) equals the number of Underwood roots), but in addition we also have
z X; = 1. Together, this is a linear equation system for comput«'ng+ m vwk]gp is known and

the Underwood roots is computed from (41).

Note that so far we have not discussed minimum reflux (or vapour flow rate), thus these equation holds

for any vapour and reflux flow rates, provided that the roots are computed from the definition in (41).

Some Properties of the Underwood Roots

Underwood showed a series of important properties of these roots for a two-product column with a
reboiler and condenser. In this case all components flows upwards in the top segtipe 0 ), and
downwards in the bottom sectiow( ;<0 ). The mass balance yields; = w, 1 —w, ¢ where

w; ¢ = Fz . Underwood showed that in the top section (Wthrcomponents) the rootg( ) obey:

1 >@Q;>0,>@3>03> ... >0Unc> P

And in the bottom section (Whem =W gs 0 ) we in general have a different set of roots denoted

() computed fromvVB = Z(a —UJ) Za(fx rl:i))z = zai(_((al.__r:IJ)D))zi which obey:
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W >0, >Wy>0,>Pa>03> . > P> A,

Note that the smallest root in the top section is smaller than the smallest relative volatility, and the largest
root in the bottom section is larger then the largest volatility. It is easy to see from the defining equations

thatVT -~ w O @ - o; andsimilarw® . o 0O g, - q;

When the vapour flow is reduced, the roots in the top section will decrease, while the roots in the bottom
section will increase, but interestingly Underwood showed ghaty, , . A very important result by

Underwood is that for infinite number of stag¥s- V,;, 0 @ - W, 4

Then, at minimum reflux, the Underwood roots for the tgp ( ) and bottpm () sections coincide. Thus,
if we denote the common root$ (), and recall thdt—VB = (1-q)F , we obtain the following equa-

tion for the common rootsh( ) by subtracting the defining equations for the top and bottom sections:

(1-0 = § o (46)
> (@ -9)

We denote this expression the feed equation since only the feed propgriiedz) appear. Note that

this is not the equation which defines the Underwood roots and the solutions ( ) apply as roots of the
defining equations only for minimum reflux conditiond (= « ). The feed equatiomNpasots, (but

one of these is not a common root) andNrd common roots obey:

a;>¢,>0,>0,> ... >0y._ 1> 0y Solution of the feed equation gives us the possible common
roots, but all pairs of rootsg¢ andy; , ; ) for the top and bottom section does not necessarily coincide

for an arbitrary operating condition. We illustrate this with the following example:

Assume we start with a given product sdlifK) and a large vapour flow/(F). Then only one
component (with relative volatilitya; ) can be distributed to both products. No roots are com-
mon. Then we gradually redud#F until a second componepfthis has to be a compongri+1
orj=i-1) becomes distributed. E.g fri+1 one set of roots will coincidep, = g, .4 = ¢, ,
while the others do not. As we redudd- further, more components become distributed and the

corresponding roots will coincide, until all components are distributed to both products, and then

all theN¢-1 roots from the feed equation also are roots for the top and bottom sections.
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An important property of the Underwood roots is that the value of a pair of roots which coincide (e.g.
when@ = @, ,, = ¢; ) will not change, even if only one, two or all pairs coincide. Thus all the possi-

ble common roots are found by solving the feed equation once.

Minimum Energy — Infinite Number of Stages

When we go to the limiting case of infinite number of stages, Underwoods’s equations become very use-
ful. The equations can be used to compute the minimum energy requirement for any feasible

multicomponent separation.

Let us consider two cases: First we want to compute the minimum energy for a sharp split between two

adjacent key componerjtandj+1 (rj’D =1 andrj +10-0 ). The procedure is then simply:

1. Compute the common rooij( ) for WhiGl’]! > ¢j >

j+1
from the feed equatior{1 — q) %%
rom the feed equatior{1—q) =
; V=250 |
VAR ! az
2. Compute the minimum energy by applying the definition equatiot for E'.” =5 @ I—CIIJ )
M foris | i=1 "

Note that the recoverigs = Ep fori> i
' ori> ]

For example, we can derive Kings expressions for minimum reflux for a binary feed (z
z,=(1-2,a0 =a,a, = 1,andliquid feedg=1)). Consider the case with liquid feeg1). We

find the single common root from the feed equatign= a/(1+ (a —1)2) , (Obsereed = 1 as
expected). The minimum reflux expression appears as we use the defining equation with the common

root:

Lin _ Vmin D _ zq)ri,DZi _¢r,pz 0ryp(1-2
F F F | (a;—0) a—¢ 1-¢
LT- r —ar
and when we substitute for ~ and simplify, we obtain King’s expressigﬂ‘. = %
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Another interesting case is minimum energy operation when we consider sharp split only between the
most heavy and most light components, while all the intermediates are distributed to both products. This
case is also denoted the “preferred split”, and in this case there will be a pinch region on both sides of

the feed stage. The procedure is:
1. Compute all th&l.-1 common roots¢ )from the feed equation.
2.Setr; 5 =1 and N, D = 0 and solve the following linear equation &t {1 eqguations)

with respect tdV T, 'y »l3p-fy -1l M.—1 variables):

N

T = ° &l pg
izl(ai_¢1)
) (47)
NC
VT = arip
izl(ai_q)Nc—l)

Note that in this case, when we regard the most heavy and light components as the keys, and all the inter-
mediates are distributed to both products and Kings very simple expression will also give the correct
minimum reflux for a multicomponent mixture (fgr1 or g=0). The reason is that the pinch then occurs

at the feed stage. In general, the values computed by Kings expression give a (consenwaévbpund

when applied directly to multicomponent mixtures. An interesting result which can be seen from Kings’s
formula is that the minimum reflux at preferred split (fiprl) is independent of the feed composition

and also independent of the relative volatilities of the intermediates.

However, with the Underwood method, we also obtain the distribution of the intermediates, and it is easy

to handle any liquid fractiorgy in the feed.

The procedure for an arbitrary feasible product recovery specification is similar to the preferred split
case, but then we must only apply the Underwood roots (and corresponding equations) with values
between the relative volatilities of the distributing components and the components at the limit of being
distributed. In cases where not all components distribute, King’s minimum reflux expression cannot be

trusted directly, but it gives a (conservatiupper bound
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Figure 9 shows an example of how the components are distributed to the products for a ternary (ABC)
mixture. We choose the overhead vapour fi&Y ") and the distillate product flonDV-L) as the two
degrees of freedom. The straight lines, which are at the boundaries when a component is at the limit of
appearing/disappearing (distribute/not distribute) in one of the products, can be computed directly by
Underwood’s method. Note that the two peakggRnd Ryc) gives us the minimum vapour flow for
sharp split between A/B and B/C. The poiggPhowever, is at the minimum vapour flow for sharp

A/C split and this occurs for a specific distribution of the intermediate B, known as the “preferred split”.

Kings's minimum reflux expression is only valid in the triangle below the preferred split, while the
Underwood equations can reveal all component recoveries for all possible operating points. (The shaded

area is not feasible since reflux has to be positiv&{D>0)).

<Figure 9. near here>
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Further Discussion of Specific Issues

The Energy Balance and the Assumption of Constant Molar flows

All the calculations in this article are based on the assumption of constant molar flows in a section, i.e

V,=V,_1=VandL, = L,,, =L .Thisis avery common simplification in distillation compu-
tations, and we shall use the energy balance to see when we can justify it. The energy balance is similar
to the mass balance, but now we use the molar enth)pyf the streams instead of composition. The
enthalpy are computed for the actual mixture and will be a function of composition in addition to tem-

perature (or pressure). At steady state the energy balance aroundlstagmes:

thL,n_Vn—th,n—l = I-n+ 1hL,n+1_VnhV,n (48)
Combining this energy balance with the overall material balance on a stage
(Vp_1—L, = V,-L,+1 = W whereWis the net total molar flow through a section, Mé=D in the

top section andlV=B in the bottom section) yields:

hV,n—l_hL,n_'_\NhL,n_hL,n+l

V.=V, _
: 1hV,n_hL,n+1 hV,n_hL,n+1

n

(49)

From this expression we observe how the vapour flow will vary through a section due to variations in
heat of vaporization and molar enthalpy from stage to stage.

We will now show one way of deriving the constant molar flow assumption:

1. Chose the reference state (whiex®) for each pure component as saturated liquid at a reference
pressure. (This means that each component has a different reference temperature, namely its boil-

ing point (pri ) at the reference pressure.)
2. Assume that the column pressure is constant and equal to the reference pressure.
3. Neglect any heat of mixing such timgt | = zi Xi nCpLi(Th=Tppi

4. Assume that all components have the same molar heat capacity
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5. Assume that the stage temperature can be approximaiggl byzi X; npri . These assump-

tions givesh, ., = 0 on all stages and the equation (47) for change in boilup is reduced to:

6. The molar enthalpy in the vapour phase is given as:
hy = AH/2P T -T hereAH, 2 is the heat of ization f
V.n = zixi,n bpi * zixi,ncp\,i( n= bpi) whereAH, i is the heat of vaporization for

the pure component at its reference boiling temperaﬂ[ggi( ).

7. We assume thap,, is equal for all components, and then the second summation term above will

. vap
become zero, and we ha\hg,’ n= Zi X, nApri
8. Then ifAH\égf’ = AHYP s equal for all components we bgt , = hy, ,_; = AH"®  and

thereby constant molar flows,, =V _;, andalsp=1L,,4

At first glance, these assumptions may seem restrictive, but the assumption of constant molar flows actu-

ally holds well for many industrial mixtures.

In a binary column were the last assumption about e@‘“‘%?? is not fulfilled, a good estimate of the
change in molar flows from the bottom (stabeo the top (stag®l) due this effect for a case with satu-
rated liquid feed ¢=1) and close to pure products, is given byN/VleHVHap/AH\(ap , where the

molar heats of vaporization is taken at the boiling point temperatures for the heavy (H) and light (L) com-

ponents respectively.

Recall that the temperature dependency of the relative volatility were related to different heat of vapor-
ization also, thus the assumptions of constant molar flows and constant relative volatility are closely

related.

DistillationTheory.fm 2 September 1999



Further Discussion of Specific Issues 34

Calculation of Temperature when Using Relative Volatilities

It may look like that we have lost the pressure and temperature in the equilibrium equation when we
introduced the relative volatility. However, this is not the case since the vapour pressure for every pure

component is a direct function of temperature, thus so is also the relative volatility. From the relationship

P=Sp=Yx p’(T) we derive:

P= p?(T)inO(i (50)

Remember that only one &for T can be specified when the mole fractions are specified. If composition

and pressure is known, a rigorous solution of the temperature is found by solving the non-linear equation:

P =5 %p(T) (51)
However, if we use the pure components boiling poifiig)( a crude and simple estimate can be com-

puted as:

T=3 xTy (52)
For ideal mixtures, this usually give an estimate which is a bit higher than the real temperature, however,

similar approximation may be done by using the vapour compositignsvhich will usually give a

lower temperature estimate. This leads to a good estimate when we use the average of x and y, i.e:

=2 T 2 0 (53)

Alternatively, if we are using relative volatilities we may find the temperature via the vapour pressure of

the reference component. If we use the Antoine equation, then we have an explicit equation:

T~ C, wherep’ = P/
——— +C, wherep, = zxia-

= 5 i (54)
logp, — A, [
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This last expression is a very good approximation to a solution of the nonlinear equation (51). An illus-
tration of how the different approximations behave is shown in Figure 10. For that particular case (a

fairly ideal mixture), equation (53) and (54) almost coincide.

<Figure 10. near here>

In a rigorous simulation of a distillation column, the mass and energy balances and the vapour liquid
equilibrium (VLE) have to be solved simultaneously for all stages. The temperature is then often used
as an iteration parameter in order to compute the vapour-pressures in VLE-computations and in the

enthalpy computations of the energy balance.

Discussion and Caution

Most of the methods presented in this article are based on ideal mixtures and simplifying assumptions
about constant molar flows and constant relative volatility. Thus there are may separation cases for non-

ideal systems where these methods cannot be applied directly.

However, if we are aware about the most important shortcomings, we may still use these simple methods

for shortcut calculations, for example, to gain insight or check more detailed calculations.
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Figures

Figure 1. Equilibrium stage concept.
Figure 2. VLE for ideal binary mixture:
Figure 3. Distillation column section modelled as a set of connected equilibrium stages

Figure 4. Combining the VLE and the operating line to compute mole fractions in a section of equilib-

rium stages.
Figure 5. An ordinary continuous two-product distillation column
Figure 6. McCabe-Thiele Diagram with an optimally located feed.
Figure 7. Composition profile (xL,xH) for case with non-optimal feed location.

Figure 8. McCabe-Thiele diagram for the same example as in Figure 7. Observe that the feed stage

location is not optimal.

Figure 9. Regions of distributing feed components as function of V and D for a feed mixture with three
components: ABC. Prepresent minimum energy for sharp split between componenti and j.
For large vapour flow (above the top “saw-tooth”), only one component distribute. In the tri-

angle below R, all components distribute.

Figure 10.Temperature profile for the example in Figure 7 (solid line) compared with various linear boil-

ing point approximations.
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Figure 1. Equilibrium stage concept.
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Figure 2. VLE for ideal binary mixture. = T+ (a—1)x
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Figure 3. Distillation column section modelled as a set of connected equilibrium stages
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(1) VLE: y=f(x)

(2) Material balance
operating line
y=(L/V)x+w/V

Figure 4. Combining the VLE and the operating line to compute mole fractions in a section of

equilibrium stages.
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Figure 5. An ordinary continuous two-product distillation column
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Figure 6. McCabe-Thiele Diagram with an optimally located feed.
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Figure 7. Composition profileg(,x) for case with non-optimal feed location.
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Figure 8. McCabe-Thiele diagram for the same example as in Figure 7. Observe that the feed stage
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Figure 9. Regions of distributing feed components as functidhardD for a feed mixture with three

components: ABC. Prepresent minimum energy for sharp split between compdreed). For large

vapour flow (above the top “saw-tooth”), only one component distribute. In the triangle bglavalP
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Figure 10. Temperature profile for the example in Figure 7 (solid line) compared with various linear

boiling point approximations.
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