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Abstract

In this paper we aim at obtaining insight into how a multi-
variable feedback controller works, with special attention
to serial processes.

1 Introduction

Before designing and implementing a multivariable con-
troller, there are some questions that are important to
answer: What will the multivariable controller really at-
tempt to do? Will a multivariable controller significantly
improve the response as compared to a simpler scheme?
What must the multivariable controller take into account
to succeed? How accurate a model is needed?

There is a fundamental difference between feedforward
and feedback controllers with respect to their sensitiv-
ity to uncertainty. Feedforward control is sensitive to
static uncertainty, while feedback is not. On the other
hand, aggressively tuned feedback controllers are very sen-
sitive to small uncertainties in the crossover frequency
region. Similar differences with respect to uncertainty
can be found for multivariable controllers. Traditional
single loop controllers are predominantly based on feed-
back, whereas model based multivariable controllers usu-
ally have a significant component of feedforward action
(for example the decoupling elements of the controllers).

In this paper we discuss these questions for an impor-
tant class of processes: The serial processes. The struc-
ture of this class of processes makes it suitable for a dis-
cussion of these questions for the multivariable controllers.
A serial process consists of a series of one way interacting
units. The states in one unit influence the states in the
downstream unit, but not vice verse. This is very com-

mon in the process industry, where the outlet flow of one
process enters into the next. One example, which will be
studied in section 4, is neutralization performed in sev-
eral tanks in series. Examples of processes that are not
serial are processes with some kind of recycle of material
or energy. Even for such processes, however, parts of the
process may be modelled as a serial process, if the out-
let variations of the last unit is dampened through other
process units before it is recycled, so that no significant
correlation can be found between the outlet variations and
the variations in the disturbances to the first unit.

The characteristics of serial processes can be utilized
when considering control structures and multivariable
controllers for such processes. The multivariable con-
troller can be divided into three types of controller blocks:
Local feedback, feedback from downstream units and
”feedforward” from upstream units.

This division of the controller blocks has two purposes.
First, it allows each block to be implemented in simpler
multivariable controllers, using conventional controllers.
In some cases the multivariable controller can be imple-
mented as combinations of conventional single loop con-
trollers. Second, it gives insight into the behavior of the
control system.

In section 2 we develop the model structure for serial
processes, and discuss some of the specific properties of
this structure. In section 3 multivariable control of se-
rial processes is discussed, and the ideas are illustrated
through an example with pH neutralization in three stages
(section 4).

2 Model structure of serial pro-
cesses

In this section we look closer at serial processes and de-
velop a general transfer function model.

Definition 1 A serial process can be divided into a series
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Figure 1: A serial process.

of subprocesses or units in such a way that the states in
each unit are entirely decided by the states in the unit it-
self, the states in the upstream unit, and by external inputs
to the unit.

An example of a serial process is a process where mass
and/or energy flow from one process unit to another, and
there is no recycling of mass or energy. From this formu-
lation we can express the model for unit no. :

d
T (1)

where x; and xz;_jare the state vectors for unit 7 and unit
t — 1 respectively, and the external input is divided into
a vector of manipulated inputs, u;, and disturbances, d;.
We linearize this equation around a working point, intro-
ducing A; = 6]"1/81], Bi = afz/auz and Ei = 8f1/6dz
and let the variables be the deviation from their working
point. Applying Laplace transformation, and recursively
inserting for variables from previous tank, we obtain:

y(s) = G(s)u(s) + Ga(s)d(s) (2)

We have defined the total output vector, y(s), as all the
states, u(s) as all the inputs, d(s) as all the disturbances.
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and Gy is identical but with B; replaced by E;(the distur-
bances to each unit are assumed independent).

We see that G(s) and G4(s) are both lower block trian-
gular. From (3), we can deduce the following properties:

e The state vector of a process unit is not influenced by
control inputs and disturbances to downstream units.

e The influence from a control input or a dis-

turbance  which enters an wupstream unit,

q, is dampened by the transfer function
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e GG(s) and Gy(s) are block diagonal at infinite fre-
quency (s — 00).

Often for a serial process, it is the states in the last unit
that is of importance, since the final product is taken out
here. In an optimization of the operation of the process,
only the states in the last tank and the control inputs to
all units need to be represented in the objective.

3 Control structures for serial pro-
cesses

In the previous section we introduced the concept of se-
rial processes. Equations (2) and (3) summarizes the lin-
earized model. If a full, multivariable controller is used
to control this process, the blocks of this controller can be
given special characteristics. If we for simplicity assume
that the set-points are zero, and we want to control all the
outputs, the control inputs are given by:

(4)

where K(s) is the controller.
We divide the controller, K (s), into n x n blocks of the
same size as the blocks in G(s):
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These controller blocks can be divided into three groups:

Blocks on the diagonal (K;;) These blocks use local
control, where inputs to the unit are used to control
outputs of the same unit.

(sI — A3) ™" Bo 0
: 0
(sI—A") ' B,

=

Blocks above the diagonal (K;;, j > i) These blocks
represents feedback from the outputs of downstream
units. Intuitively, when the dampening through the
different units is large, or if there is transport delays
in the units, these blocks seem ineffective since the
local feedback always will be quicker. There are,
however, several cases when it may prove useful:

1. We have no relevant control inputs downstream
so local control is impossible.

2. The control inputs downstream are constrained,
and insufficient to compensate the disturbances.

3. The downstream inputs are expensive to use.



In the latter two cases the upstream inputs can be
used to (slowly) drive the downstream inputs to zero
or to some other ideal resting value. This is called in-
put resetting and is normally used for systems where
we have more control inputs than outputs ([skoge2],
page 416).

Of course, the feedback from downstream units may
also come into use if the downstream actuators are
slow, so that it actually is more efficient to operate
the upstream control inputs.

Blocks below the diagonal (X;;, ¢ > j) Through
these blocks an output from an upstream unit di-
rectly affects the input in a downstream unit. Since
upstream units act as disturbances to downstream
units, these controller blocks may be viewed as
”feedforward” elements. However, strictly speaking,
a feedforward element is defined as a link between
"measured disturbances and manipulated inputs”
(see e.g. [skoge2]), and in our case the ”disturbance”
is actually an output from an upstream unit. In
particular, if we use a full controller with blocks
above the diagonal, then the upstream unit will
be affected by the downstream units, and the term
”feedforward ” element is somewhat misleading.

3.1 Some special controllers
3.1.1 Full controller

With a full controller, as in (5), the loop transfer function
becomes

L=K(s)G(s) =
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In this case the stability of the closed-loop system is af-
fected by all elements in the controller K (and in G).

3.1.2 Lower block triangular controller

In this case the loop transfer function becomes:
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L= Go1  Goo o Koy Kap 0 =
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Here the stability of the closed-loop system is deter-
mined only by the blocks on the diagonal, that is we have
closed-loop stability if and only if each of the diagonal
closed-loop blocks (I + GiiKii)_l are stable. In this case
the controller elements below the diagonal have most of
the properties of feedforward elements, for example, that
they do not affect closed-loop stability. Also, as is gen-
erally the case with feedforward control, the response is

strongly dependent on model error, also at steady-state.
In summary for lower block triangular controllers, the con-
troller elements will have very different properties:

The diagonal elements are feedback elements, where
most of the benefits may be achieved simply by using suf-
ficiently high gains and an accurate process model is not
needed. The main problem is that too high gain may
give closed-loop instability. With a nominal model for
unit 7, y; = Gu; + Gqy;_1, and an actual plant model
yi = G'u; + Glyi—1, a feedback controller gives the fol-
lowing error when run on the actual plant: y, —r; =
Szﬁ (GLyiz1 — ;) (eq. (5.71) and (5.72) in [skoge2]
with d = y;_1). S; and T; are sensitivity and comple-
mentary sensitivity functions, respectively, and FE; rela-
tive error in G. So here the model error may be damp-
ened by the feedback since effective feedback control gives
|Si| << 1. For frequencies where |S;| ~ 1 and |T;| > 0,
the model error influences the control error, and may even
influence stability ([skoge2]).

The elements below the diagonal are feedforward ele-
ments, where benefits can be achieved only if we have an
accurate model. The elements have no effect on stabil-
ity. Using the same models as in last point, a perfect
feedforward controller gives the following error when run

on the actual plant: e} =y, —r; = (1 — G//G/”’) "Yi1 —

G/Gq
(1 - %) r; (eq. (5.70) in [skoge2] with d = y;—1). So
the relative errors in G and G/Gy directly influence the
control error.

These differences are particularly clear here, but similar
differences occur for most multivariable controllers. Such
insights are important, e.g. when evaluating how the con-
troller is affected by model error.

3.2 Final control only in last unit

In many serial processes, only the output from the last
unit is important for the overall plant economics. The
outputs in upstream units are controlled to improve con-
trol performance in the final unit. Assuming that we have
control inputs to several (or all) of the units, this means
that we actually have a plant with more inputs than out-
puts. In such cases, we often adjust the setpoints in
upstream units such that the inputs in downstream units
are reset to some ideal resting value.

We may then use the following control elements:

Local control (i = j)
Feedforward (i > j)
Input resetting (j =4+ 1)

u; = kii(s) [ri — yil

Note that we here have restricted the input resetting to
operate between neighbor units, but this is not strictly
required. Applying local control in the three units, feed-
forward from unit 1 and 2 to units 2 and 3, and input
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Figure 2: Serial units with a combination of local control,
feedforward control and input resetting.

resetting from unit 3 to unit 2 and from unit 2 to unit 1,
the equivalent multivariable controller is:
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with u(s) = K(s)y(s) + K,(s) [Tuz,Tu3,T3]T, where r3 is
the set point for the controlled output in unit 3, whereas
Ty, and r,, are the ideal resting values for the inputs in
tank 2 and 3.

The final controller in (8) and (9) may seem very com-
plicated, but it can usually be tuned in a rather simple
cascaded manner. The feedforward elements are normally
the fastest acting and should normally be designed first.
The local feedback controllers can be tuned almost inde-
pendently. Finally, the slow input resetting is added. It
will not affect closed-loop stability if it is sufficiently slow.

4 Example: pH neutralization

Neutralization of strong acids or bases is often performed
in several steps. The reason for this is mainly that the pH
control in one tank cannot be quick enough to compensate
for disturbances [skogel]. In [mcmill], an analogy from
golf is used: the difficulty of controlling the pH in one tank
is compared to getting a hole in one. Using several tanks,
and smaller valves for addition of reagent for each tank,
is compared to the easier task of reaching the hole with a
series of shorter and shorter strokes.

In this example control structures for neutralization of
a strong acid by use of three tanks in series are discussed.
The aim of the control is to keep the outlet pH from last
tank constant despite changes in inlet pH or flow. This
is obviously a serial process, since the flow goes from one
tank to another. For each tank the pH can be measured,
and the reagent can also be added to each tank. Referring
to Figure 1, the three units (i-1, i and i41) correspond to
the three tanks (1, 2 and 3).

To study this process we model each tank as described
in [skogel]. In each tank we model the excess HT con-
centrations, that is ¢ = cg+ — cpog-. This gives bilinear
models, which are further linearized around a stationary
working point so that methods from linear control the-
ory can be used. We get two states in each process unit
(tank), namely the concentration, ¢, and the level. The
disturbances enter tank 1 only. We here assume that
there is a delay of 5 seconds for the effect of a change
in inlet acid or base flow or inlet concentration to reach
the outflow of the tank, e.g. due to incomplete mixing,
and a further delay of 5 seconds until the change can be
measured. In the linear state space model these trans-
portation delays are modeled by Padé-approximations of
4th order. There is assumed no further delay in the pipes
between the tanks. We assume that the levels are con-
trolled by the outflows using a P controller such that the
time constant for the level is about 1/10 the time con-
stants for the concentrations.

The volumes of the tanks were chosen to 13.6m3, the
smallest possible volumes according to the discussion in
[skogel]. The acid inflow (disturbance) has pH = —1.
The pH of the final product in tank 3 should be pH = 7+1,
and we selected the setpoints in tank 1 as 1.65 and in tank
2 as 3.8. The concentrations are scaled so that a variation
of £1 pH around these set-points corresponds to a scaled
value of +1. The control inputs and the disturbances are
also scaled appropriately. The linear model was used for
multivariable controller design, while the simulations are
performed on the nonlinear model.

A conventional way of controlling this process is to use
local control of the pH in each tank using PID-controllers.
Figure 3 shows the response of pH in each tank when the
acid concentration in the inflow is decreased from 10mol/1
to 5mol/l.  As expected from [skogel], this control sys-
tem is barely able to give acceptable control. However,
the nominal response can be significantly improved with
multivariable control.

Figure 4 shows the response with a 3 x 3 multivariable
Hoo controller designed with performance weights on the
outputs and on the control inputs in all tanks, and with
composition into tank 1 as a disturbance. The main rea-
son for the large improvement is the feedforward effect
discussed in section 3.
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Figure 3: With only local control, PID controllers must be
agressively tuned to keep the pH in the last tank within
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Figure 4: A large improvement in nominal performance is
possible with multivariable control. (Disturbance in inlet
concentration occurs at ¢ = 10)

Figure 5: Gain of the control elements of the original 3 x 3
H, controller. (Local PID controllers are dashed.)

The gain of the elements in the multivariable controller
as a function of frequency are shown in Figure 5. The
diagonal control elements are the local controllers in each
tank, whereas the elements below the diagonal represent
the ”feedforward” elements. From such plots we get an
idea of how the multivariable controller works. For ex-
ample, we see that the control input to tank 1 (row 1) is
primarily determined by local feedback, while in tank 2
it seems that ”feedforward” from tank 1 is most decisive
for the control input. In tank 3 the control actions are
smaller. This is also seen from the simulation in Figure
4 (the solid line in the plot of u).

We observe that none of the control elements have any
integrators, even though the simulation in Figure 4 show
no steady-state offset. However, if some model error is
introduced (20% reduced gain in tank 2 and 3), we do
get a steady-state offset. Figure 6 shows the start of the
response, it finally ends up slightly above pH = 8. Local
PID controllers give no such steady-state offset.
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Figure 6: Model error gives steady-state offset with origi-
nal 3 x 3 controller.

===

o= ——]

71Tz

1d 10 1d 10* 1d

Figure 7: Gain of the control elements of the redesigned
3 x 3 Hy controller. (Local PID controllers are dashed).

We subsequently redesigned the controller to get three
integrators in the control loop shape (Figure 7). The
simulation in this case gives no steady-state offset. This
illustrates one of the problems of the ”feedforward” con-
trol block, namely the sensitivity to static uncertainty.



Simulations on the perfect model may lead the designer
to believe that no integrator is necessary.

To study the feed forward effect separately, a Ho, con-
troller was designed using the measurement in tank 1, and
control inputs in all tanks. The result is local control in
tank 1 and feed forward from tank 1 to tanks 2 and 3.
Simulation on the linear model gives the same result as
for the 3 x 3 controller (Figure 4), whereas nonlinear sim-
ulation gives steady-state offset due to static model error
and no feedback in tanks 2 and 3.

The effect of feedback from downstream tanks, i.e. the
blocks above the diagonal from the discussion in section
3, is illustrated through the following simulations. We
introduce a static measurement noise in tank 2 of 1 pH
unit. In Figure 8 we see the response for the process with
local control with PID. We can see that the pH in tank
3 relatively quickly returns to a pH of 7. The problem
is the control input in tank 3, which stabilizes at a level
away from the point in the middle of the range (0), which
we consider as the ideal resting position. Since we really
are interested in the pH in only the last tank, we get two
extra degrees of freedom, which can be used for resetting
the control inputs of the last two tanks. Figure 9 shows
the simulation for the multivariable controller. Here we
see that both the pH and the control input in tank 3 go to
their desired values. The actual pH in tank 2 is risen to
the correct value to obtain this. This illustrates that the
elements above the diagonal in the multivariable controller
give input resetting.

100 150
time [s]
Figure 8: Steady-state measurement noise in tank 2: Lo-
cal control with PID do not bring the control input for

tank 3, ug, back to the ideal resting position. (u-plot:
solid line.)

To summarize the example we can say that the mul-
tivariable controller gives significant improvements com-
pared to local control based on PID. This is especially
due to the feedforward effect, and with large model errors,
the feedforward may lead to worse performance. Integral
action is important in the controllers, even if the feed-
forward effect may give no stationary deviation for the
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Figure 9: Steady-state measurement noise in tank 2: The
multivariable controller has built in input resetting, and
brings u3 back to the ideal resting position (u-plot: solid).
Note that the timescale differs from the other plots.

nominal case. The inputs in the last two tanks are reset
to their ideal resting position with the multivariable con-
troller, because of the feedback from downstream tanks.

5 Conclusion

An example of neutralization of a strong acid with base
in a series of three tanks is used to illustrate some of the
ideas in the paper. This process is obviously serial. The
example illustrates that the multivariable controller yields
significant nominal improvements compared to local con-
trol based on PID. But this is especially due to feedfor-
ward, and with model errors, the feedforward may in fact
lead to worse performance. Integral action or strong gain
in the local controllers at low frequencies is important to
obtain no steady-state offset, even if the feedforward ef-
fect itself may nominally give no steady-state. Feedback
to upstream tanks brings the inputs to their ideal resting
positions, also when a wrong pH measurement give prob-
lems in an upstream tank. The example indicates that it
is possible to get a good performance with careful use of a
multivariable controller or a combination of local control,
feed forward from tank 1 and input resetting.

In this study we used a Ho,-contoller, but similar results
have also been found for a MPC controller.
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