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Abstract.

The “Petlyuk” or “dividing-wall” or “fully thermally coupled” distillation column is an interesting alterna-

tive to the conventional cascaded binary columns for separation of multi-component mixtures. However, the
industrial use has been limited, and difficulties in operation have been reported as one reason. With three
product compositions controlled, the system has two degrees of freedom left for on-line optimization. We
show that the steady-state optimal solution surface is quite narrow, and depends strongly on disturbances
and design parameters. Thus it seems difficult to achieve the potential energy savings compared to conven-
tional approaches without a good control strategy. We discuss candidate variables which may be used as
feedback variables in order to keep the column operation close to optimal in a “self-optimizing” control
scheme.

1. INTRODUCTION

The thermally integrated “Petlyuk” arrangement has several appealing features. For the separation of a three-compo-
nent mixture Triantafyllou and Smith (1992¢port typical savings in the order of 30% in both energy and capital costs
compared to traditional arrangements with two columns in series. However, an important question remains: Is this pro-
cess units difficult to operate and is it possible to achieve in practice the energy savings?

The Petlyuk column, shown in Fig. 1, has at steady state five
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ondenser degrees of freedom, which may be selected as the following
manipulative inputs: Boilup\(), reflux (L), mid product
Liquid split (R) 7 3 » D,xp Side-stream flow$), liquid split (R=L4/L) and vapor split
RN 3 Top product  (R~=V2/V). There may be up to four product specifications:
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Side-stream
Fz.4 2|5 product Wolff, et. al. (1994,1996have reported discontinuities in
the range of feasible operation if all these product composi-

“The Petlyuk tions are specified. This is related to the fact that column

wall” ~

6 - sections 4 and 5 (see Fig. 1) are tightly coupled and we can-
v T not independently adjust the amount of light and heavy
Vapour split (R)  component in the intermediate side-stream product. This
may be a disadvantage compared to a conventional arrange-
» Bxg mentwith two columns. On the other hand, if the number of
Reboiler Bottom product controlled outputs is reduced from four to three, by not con-
sidering the ratio of light/heavy impurity-components in the
Fig. 1 The Petlyuk Distillation Column implementedide-stream, the feasibility problem disappears. Thus in this

in a single column shell. paper we will focus on this simpler task of three-point con-
trol, where the purities of the main component in each prod-
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uct are specifiedXy, Xg. Xg, )-The remaining extra two degrees of freedom can then be used for other purposes,
and in particular for minimizing the operating cost, which in our case is the energy consulption (

The practical problem of keeping operation at optimum is illustrated in Fig. 2 which may represent the energy con-
sumptionV (Criterion) as a function of the liquid splR, (Free control variable). We are nominally operating at the
optimum but then the optimal operating point has moved due to some unknown disturbance, and we want to compute
the optimal move in our available manipulative variable in order to follow the real optimum. With model uncertainty
and unknown disturbances it may be difficult to tell in which direction the free variable should be moved in order to
bring the process closer to the real optimum.
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Fig. 2 Optimization problems with unknown distur-
bances and model uncertainties

Three main approaches to deal with this problem are: Model based methods, experimenting methods (e.g. EVOP) and
feedback methods. In this paper we will focus on the feedback method. This is the simplest method, requiring the least
modeling effort for implementation, and is therefore the preferred choice if it gives acceptable performance. In our
case the objective is to use the two extra manipulated inputsReandR,) to minimize the energy consumption per

unit feed ¥//F). The key step for the feedback method is to translate this optimization problem into a setpoint problem.
The issue is then to find a set of variables which, when kept constant at their setpoints, indirectly ensures optimal oper-
ation. Fig. 3 illustrates this idea.
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Fig. 3 Optimization by controlling a suitable
feedback variable to a setpoint.

Since the criterion functiorM) in our case is also a possible free variable, one seemingly viable solution for the Petlyuk
column would be to simply implement the optimal minimum heat input in an open loop fashion, i. e. to perform an
optimization to compute the minimum Wiwith respect to the degrees of freedaygdg).
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and then simply sa&t=\;,. However, there are at least three serious problems:

1. Operation is infeasible f&f<\Vj,, so we would need to useV,,.

2. The optimal value 0¥, changes with operation, and it would require a good model and measurements of the dis-
turbances to recompute it.

3. Measurement or estimation of the actuas generally difficult and inaccurate, which makes it even more difficult
to keepV close tov,,.

Thus, this open-loop policy is clearly not viable. As good candidate variables for feedback control we want variables
which avoid the three problems above and satisfies the following requirements:

1. The optimal candidate feedback value should not be at an unconstrained extremurVgike
2. The optimal value of the variable should be insensitive to disturbances.

3. The accuracy of the measurement of the variable should be good and the he variable should be easy to control, using
the available extra degrees of freedom.

Often we may find variables which have an extremum when the criterion functions is at its minimum. Although these
cannot be used for feedback, they may be used in experimental methods, or as indicators to process operators.

A variable related to the gradient of the criterion function fulfills requirements 1 and 2.

In general it is not always possible to find a feedback variable with the required property of turning the optimization
problem into a setpoint problem. However, for processes with a large number of states, and a large number of ways to
combine measurements, good candidates may exist, but they may not be easy$&duopestad and Postlethwaite

(1996) present a method for selecting the best candidate feedback variables from a set of available alternatives. (See
their remark on page 405.) We will not consider this procedure here, but rather aim at obtaining insight into the column
behavior that may be used for selecting candidate feedback variables.

Some interesting questions for the Petlyuk column are: Which variables should be used as the degrees of freedom in
order to achieve the best practical result. (The ch¢ReR,) mentioned above is not necessarily the best.) Can we

leave both degrees of freedom constant? Or can we leave one constant and use the other one for our optimization task?
Or do we need to use both degrees of freedom for on-line optimization? How large changes in disturbances can we
accept?

2. THE PETLYUK COLUMN MODEL

We use a stage-by-stage model with the following simplifying assumptions: Constant pressure, equilibrium stages with
constant relative volatilities, constant molar flows, no heat transfer through the dividing wall. This model is a very sim-
ple, but it contains the most important properties of a column. The model and column data are given in Table 1. Since
we focus on the steady-state properties we do not need to include data for tray and condenser holdups.

To model the column in Fig. 1 we use 6 sections of stages (the numbers inside the column are section numbers). In our
case study a three-component (ternary) feed, consisting of companérmtsdc is separated into almost pLai€97%)

in the top product D, almost pubg(97%) in the in the side stream S, and almost (&%) in the bottom product B.

The input, output and disturbance vectors are defined next. There are five degrees of freedom which we select as the
following manipulated inputs:

u=I[LV,S RR]
Three outputs (compositions) are controlled:
y = [XDa’ XBe XStJ

The disturbances associated with the feed are:
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d = [F, z,2,q]

In addition to the outputs in y, we will propose later some other measurements to be used for optimization purposes.
We will also present results from a model where we assume infinite number of stages and sharp product splits, but with
the same feed.

3. OPTIMIZATION CRITERION

We assume that it is optimal to keep the product purities at their specifications (i.e. the setpoints are 97% purity). This
is reasonable in most cases unless the product values are very different or energy is very cheap. The column has 5
degrees of freedom at steady-state so with 3 setpoints specified we have 2 degrees of freedom left for optimization. We
choose as a base case the two remaining degrees of freedorRjtari¥R,. (Note that other choices could have been

made.)

With the three product purities given, the only operation variables that affect the operating costs are the reboiler and
condenser duty. Both are proportional to the boilup Ktend as the optimization criterion we therefore choose to
minimize the scalar “cost)=V/F. (We normalize the throughpuE€1) and minimizingv/F is then equivalent to min-

imizing V.)

With our assumptions the steady state optimization problem can be written on the following general form:

minJ _ min V(u,ysd)

T = Vopd¥s ) @

whereu; = [R,R,] denote the degrees of freedom. The other three manipulated inpatdL, V, § are not

degrees of freedom any more since their values are determined indirectly by the product purity setpoints ¢, ) and

The solution to (2) yields the optimal values of the degrees of freedom as a function of the external distudances (
and the product specificationg,( ),

ul,opt = U(ys' d) (3)

In many optimization problems, the optimal solution is at some “active” constraint(s), and the optimizing control task
can be reduced to controlling the active constrained variables. However, for our application the optimal solution is usu-

ally not at a constraint. Thus, the optimal solution to the problem in (2) is a point where the grﬁkﬂglnt: 0 which

usually is much more difficult to find and implement. The reason is that we do not really know the disturdbaoces
rately, and unless we have a very good model we do not even know the function to be minimized in (2).

We will leave this problem for a while, and assume that we know the model and the disturbances, and we will investi-
gate the shape of the cost functiagl=V), that is, how it depends on changes in product purity specifications and dis-
turbances.

3.1 Criterion with state space model

With a stage-by-stage model, we can formulate the criterion with the model equation included as equality constraints:

minJ =V
[x U]
subject to the constraints 4)
f(x,ud =0
h(x ud ¥)<0

Heref is the column model ankdis a set of equality or inequality constraints. The statgsd@nsist of two component
compositions on each equilibrium stage. For our column, the total number of states is 100 (there are 48 stages plus

reboiler and condenser). Typicallywill contain product specifications (e.85,>0.97 ) and other operational con-
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straints like an allowed range for the inputs u (8,g,<uU< U, ., ) andinternal flow constraints, e.g. to avoid flood-
ing. (The latter constraints are not considered here, but such problems have to be dealt with in industrial columns).

Itis important to note that the problems and solutions for equations (2) and (4) are identical. The difference is that with
(4) we get the solution expressed by the full state and input vextdrdnd we can easily use our model equations
directly.

4. RESULTS FROM THE MODEL CASE STUDY
4.1 Optimal Steady State Profiles

We here consider the optimal steady state solution with three compositions specified and with the two remaining
degrees of freedom chosen such that the vapor bdil(@nergy consumption) is minimized. The results for our base
case are shown in Table 1.

Table 1: Optimal steady-state solution

Parameter//Variable Base case
Relative volatility pia,0pg,0¢] [4,2,1]
Feed compositiorg,z,,z,] [1/3 1/3 1/3]
Feed liquid fractiorg 0.477
Ys=[XpaXsbXad [0.97,0.97,0.97]
Uy ope [R,RY [0.450,0.491]
Vopt 1.498
XsdXsc 0.937
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Fig. 4 a) Optimal composition profiles for componerifeyg. 4 b) Optimal composition profiles for various distur-
a, bandc in pre-fractionator (dashed) and main bances in the feed compositios ( 0.05) and the
column (solid) for the base case in Table 1. liquid fraction @ 0.1)

Fig. 4a shows the resulting optimal composition profiles along the column for the base case in Table 1 and optimal
profiles for various feed disturbances is shown in Fig. 4b. We observe that the stage with mdxtomposition is

the side-stream stage, which intuitively seems reasonable.We also observe that the prefractionator (dashed lines) sep-
aratesa from ¢ almost completely. Thus we can regard sections 1+2 as a column of separaifnomfc, sections

3+4 as a binary column for separationaséndb, and sections 5+6 as a binary column for separatidnayfdc. The

“tricky” part is that the amount db in the “feeds” to “columns” 3+4 and 5+6 depends on the control inpi#ER,R ],

and that we have the same vapor flow from the lower part of the main column through to the upper part (from section
51to0 4).

Normally, composition measurements along the column are not available, but temperatures, which are closely related
to compositions, may be used to obtain important information. In Fig. 5 the temperature profile is shown for a case



Page 6 of 23

where the three pure-component boiling points are set to 0, 50 and 100 “degrees” for light, medium and heavy com-
ponent, respectively. At the product locations, the temperature profile is close to the pure product boiling point, and
the temperature profile will normally have large gradients where the composition profile has large gradients.
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Stage number, Top=1, Bottom=32

Fig. 5 Optimal temperature profile in pre-fractionator
(dashed) and main column (solid) for the base
case in table 1.

4.2 The solution surface

In the following the three product compositions are specified (97% purity). We first study the dependency of the solu-
tion surface to variations iR andR,.

V = V(R,R) ®)

This is shown in Fig. 6 (surface) and Fig. 7 (contour plot) for the base case. (Which has a partly vaporige@ 48
The surface actually looks like the hull of a ship, and there is an quite flat region (“bottom of the valley”) between
points P and R. The minimum vapor flow at the “bottomVji=1.498, but observe that the vapor flow increase rapidly

if we do not keeplR,R ] at their optimal values [0.450,0.491]. In the “worst” direction, which is normal to the line PR,
the boilup increase by 30% for a changéjror R, of just 5%. Whereas, in the “best” direction, along the line PR, We
can make a 10 times larger changeRjror R, (50%) before the boilup increases by 30%. This is further illustrated in

Fig. 8 and Fig. 9 which give cross-sections of the surface in the bad and good directions respectively. We note that for
the case witly=1, a reduction oR, by just 2% in the bad direction results in infinite boilup.

The conclusion of this is that at least one of the two degrees-of-freelflaanR) have to be adjusted during operation

in order to be able to keep the energy consumption close to its minimum (i.e. operate along the line PR). But is seems
possible that one degree of freedom, for insteRgean be left uncontrolled (constant), provided that the other degree

of freedom R, is adjusted to keep the operating point along the “bottom of the valley” (along PR).
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4.3 Effect of disturbances

If disturbances move the optimum in the “bad” direction normal to PR, then this results in large increases in V unless
we adjustR and/or R, in order to remain in the “bottom of the valley”. We find in our case that changes in feed liquid
fraction (@), middle feed componeng) and sidestream product compositiog (), will move the optimal operating

point in the “bad” direction. The other feed composition changes and setpoint changes will move the operation in the
“good” direction along the “bottom of the valley” and thus require less attention. The fact that changes in the feed lig-
uid fraction €f) moves optimum in the bad direction normal to PR is illustrated in Fig. 8.
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0.3 0.35 0.4 0.45 05 0.55 0.6
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Liquid split" R,

Fig. 8 The solution surface fo¥ is very steep and Fig. 9 V depends only weakly oR, whenR, is adjusted
depends strongly oR, in the “bad” direction so we stay in the “good” PR-direction. Note that
normal to PR. The whole surface is also strongly the axis scaling are the same as in Fig. 8
dependent on the feed liquid fractia).(

In addition, we see from Fig. 8 that changesjinave a dramatic effect on the shape of the solution surface. When the
feed is saturated liquidgEl), the optimal surface becomes almost vertical very close to the optimum. The practical
implication of this is that witlR, andR, fixed close to their optimal values, the system may become unstable, since we

easily may enter a region where there is no feasible solution (no amount of energy can fulfill the composition require-
ments). For a subcooled liquidX1), the solution surface “bends over”, and we may have multiple solutions of V for

the same product compositions. In open loop, all these operation conditions are reachable and stable. But with com-
position control active, and tuned for the lower branch, operation on the upper branch is unstable.

Feed flow changes are normally a major disturbance, but do not affect the steady state operation if we keep product
compositionsyg) and splitratios R, R, ) constant (since these are all intensive variables). However, feed flow changes

will affect the composition control and optimization during a transient.

4.4 Transport of Components

Interesting insights into the behavior of the column are obtained by considering how each component moves through
the column sections towards the products. Define¢hepwards flow yof componenf through stageas:

Wi = VY=L aXie (6)

At steady statav:vj is constant through each sektidhe ratio ofw ; to the amount in the feed is thezovery
== @)

At optimal operation we find that the component flow () are as indicated in Fig. 10. For example, if we look at the

light a-component, then most of the flow takes the “shortest” way out to the top product. Some light product “slips”
down the prefractionator and this mostly ends up in the side stream. Interestingly, for the optimal solution there is no

net flow of light component downwards in the section above the side stream, tiagt s, is close to zero. For the

heavy componentj the behavior is similar, but reversed.The intermedist@mponent distribute quite evenly along
the two paths.
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Fig. 10 Components taking the “shortest” way.

In the following we will in particular consider the effect of changing the recovByy{ componenb at the top of the
prefractionator:

B=ryp = 2P (®)

5. ANALYSIS FROM MODEL WITH INFINITE NUMBER OF STAGES

The limiting case with an infinite number of stages in each column section provides a lower M@ the energy

usage. Although this value cannot be achieved in practice, one can usually come within 10-20% of the lower bound,
so it provides very useful information also for practical distillation. The advantage of using infinite number of stages

is that one does not need to consider the issue of selecting the number of stages. Furthermore, excellent theoretical
results for the Petlyuk column have been presentekitgowski and Krolikowski (1986 hrough careful treatment

of the Undewrood equations, they have shown that the minimum energy solution for the Petlyuk column is obtained
by operating the prefractionator along its minimum energy characteristic in the range betweeaféined split
Stichlmair (1988)and up to a point where the upper and lower part of the main colurhalaneed

Christiansen and Skogestad (19%8rived similar results for the closely related case with a separate prefractionator
(with its own reboiler and condenser), and they suggested a control structure based on controlling either the impurity
of heavy key at the top of the prefractionator, or the impurity of light key at the prefractionator bottom. (The particular
choice depends on whether the upper or lower parts of the main column determine minimum reflux.)

We will now use the case with infinite stages to study more carefully how various disturbances and other parameters
affect the task of keeping the operation point close to the optimum.

5.1 Minimum energy consumption for a Petlyuk column.

We first recapitulate the most important results freitkowski and Krolikowski (1986 heir results are derived for
a saturated liquidg=1) ternary feed, constant relative volatilities, constant molar flows, infinite number of stages and
sharp splits. IrHalvorsen and Skogest#t999) we have extended Fidkowski’s result to handle any liquid fractjpn (
Fidkowski and Krolikowski use the recovery of the middle component in the net flow out of the top of the prefraction-

ator (B ) and the “reflux” into the prefractionato{ ) as the two degrees of freedom. We will latef @mwagl ; to
our choice of degrees of freedo,andR,. Note that minimizing the main column boilupis equivalent to mini-
mizing the main column reflut].

At minimum reflux €y for the Petlyuk column, minimum reflux constraints have to be satisfied for both columns

in Fig. 1: In the prefractionator (section 1+2), and in either the upper (section 3+4) or lower (sections 5+6) parts of the
main column.
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First consider the prefractionator which separates the teatarynixture intoab andbc. For a sharp split between
andc, the minimum refluxI(;) as a function of the recovefy has a distinct minimum apiteéerred split( = Bp).

as shown in Fig. 11 for our base case feed.

The main column can be regarded as two binary columns, but their reflux flows are not independent. For large values
of B, most of theb-component will have to be separated in the upper part of the main column while the lower part gets
an almost pure-feed. Thus the reflux requirement for the upper part of the main column will determine the overall
main column reflux and the lower part will be over-refluxed. For low valueB of we have the opposite case, and for
an intermediate valugd = B , reflux requirements are the same for both parts; at this point the main cokimn is

anced
5.2 Solution surface for infinite number of stages

Fidkowski and Krolikowski (1986pund that the minimum overall refluk ;) is not obtained at a single value of the
recoveryf3 , but rather there éflat regionwherelL=L ,,;, for a range of recoveries between the preferred split for the
prefractionator B, ), and the valuB{ ) which makes the main column balanced. This is illustrated in Fig. 11.

The flat region may be wide or narrow, depending on the relative valuBs of [3and and we may have cases with
either Bp>PBg or Bp <Bg (like in our example). Only for the special cag = Bg do we have a sharp minimum.

Note that the value oB,  corresponding to the preferred split is always optimal, but depending on the #gue of it
will be in the left or right end of the flat region.

Minimum reflux in main column and prefractionator
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Fig. 11 The prefractionator reflux {). has a sharp mini
mum at the preferred split((E The overall col
umn reflux () is minimal in aflat region(P'-R")
for recoveries between the preferred $pli
(Bp = 0.5) and a balanced main column
(Bg = 0.625).
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The corresponding solution surfa@éR;,R,) computed by the infinite stage model and sharp product splits is shown

in Fig. 12 (surface) and Fig. 13 (contour) and is seen to be very similar to the surface for the case study shown previ-
ously in Fig. 6 and Fig. 7.
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Fig. 12 The solution surfac¥ (R, R,)  for the limiting Fig. 13 The contour lines foV(R,R,) are straight
case with infinite stages and sharp splits contains lines between the four characteristic corners.
the same characteristics as found in Fig. 6 (The “bad” direction is normal to*R*)

Contour plot ofV corresponding to Fig. 12.

As already noted, there is a flat region witkV i, along a straight line from'Po R’ in the (R, R)) -plane. The fact

that the optimum is flat between Bnd R is an important result, and this fully confirms the results based on numerical
computations on the column with a finite number of stages.

In appendix A.2 we summarize the resultHalvorsen and Skogestd@l999) and present analytical results for gen-
erating the rest of the solution surface. We find that for a given value of the main column B&HopNst, V>V,

the contours in th¢R, R,) -plane are straight lines between four characteristic corner lines (C1-C4). These contour

line corners (C1-C4) are illustrated seen in Fig. 13 and each represent a particular operating condition for each partic-
ular edge (dotted) of the solution surfad&,R):

Corner line 1 (C1):
Preferred split in the prefractionator. Over-refluxed main column.

B=Bp. L1 =Lyp:L>Lyin

Corner line 2 (C2):
Along the left branch of the minimum reflux characteristics for the prefractionator.

B<BP' Ll = I‘1,min(B) L= I‘min([?" I‘1)

Corner line 3 (C3):
Over-refluxed prefractionator (above the V-shaped minimum curve). Balanced main column

B = BR(L)’ Ll = Ll, R(L)  L> I-min (L1>L1,min(BR) )’

Corner line 4 (C4):

Along the right branch of the minimum reflux characteristics for the prefractionator, but above the point represent-
ing a balanced main column.

B>BR' Ll = I‘1,min(B)' L = I‘min(B’ Ll)

Note that line C2 and C4 apply for our example whédg < B - Wit B we instead get the similar lines C2’
and C4:

Corner line 2’ (C2):
Along the right branch of the minimum reflux characteristics for the prefractionator.

B>BP’ Ll = Ll,min(B) L= I-min(B' Ll)
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Corner line 4’ (C4):
Along the left branch of the minimum reflux characteristics for the prefractionator. Above the point representing a
balanced main column.

B<BR' Ll = I‘l,min([?’)' L = I-min(B’ Ll)

As we approach minimum boilup/€V i, lines C1 and C2 (or C2’) approach point @ptimum at preferred pre-
fractionator split, = B, ) and line C3 and C4 (or C4’) approach point(&timum at balanced main column,

B = Br)

The path C2-BR"-C4 on the solution surfacé(R,R)) represent an important limiting case of operating conditions:
There the minimum reflux constraints are met in both the prefractionator and in the main column. That is:

Ll = Ll,min(B) andL = I-min(B* Ll) = Lmin(B) '

In the whole operating region to thigiht of the path C2-R-R"-C4 in Fig. 13 we over-reflux the prefractionator (oper-
ating above the V-shaped minimum characteristics), while we keep the main column at its minimum reflux:

L1>Lg min(B) andL = L;in(B, L,) . This part corresponds to surfaces in Mke4)-plane found inFidkowski and
Krolikowski (1986). Note also that the case of a balanced main column is always within in this region (along C3).

In the whole operating region to theft of the path C2-BR'-C4in Fig. 13 we operate the prefractionator exactly at
its minimum characteristicl(; = Ly min(B) ), but we over-reflux the main coluobwL . ;.(B, L;) . The computa-

tion of the surface in this region is a new contribution as it was not consideFetkbwski and Krolikowski1986).

Finally, we must note that the “good direction” is along the path GRRC3 (which is coinciding with the path C2-
P'-R"-C4 only along the line FR"). Operation along the “good” path gives the minimum\bivhen we keep one
degree of freedom constaiR or R). Observe that C1 is to the left of the path CRP-C4 and C3is to the right.

5.3 Analyzing the Effect of the Feed Enthalpy

The effect of changing the liquid fraction is shown in Fig. 14 (contour plot) and Fig. 15 (cross section in the bad direc-
tion) for the infinite stage model.

Contour plots of V(R,R/ for various values of ¢
1-

091 V= 120%
081
071
Cc3

0.6

05F

0.4} %,710.33033033]

q=0.5
« =[4.002.001.00] c1

q=0

0.1 0.2 0.3 04 0.5 0.6 0.7 0.8

Fig. 14 Liquid fraction affects the shape of the surface
in addition to the position of the optimal oper-
ating line in theR,R)) plane.
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The results in Fig. 15 are in agreement with similar computations for the finite column model in Fig. 8. As we increase
g the surface between corner lines C4 and C1 first becomes vertical and then starts to bend over when we increase the

liquid fraction past saturated liquigl= 1

350

=0.5 (%]

Boilup VIV, pt.q

-

50
o \/
100F

50 I I I I
03 0.35 0.4

I I )
5 0.55 0.6 0.65

0.45 0.
Liquid split Rl

Fig. 15 Cross-sections of the surfaces in Fig. 14 in the
“pad” direction normal to PR" (taken at the
middle of the line FR").

5.4 How many degrees of freedom must we adjust during operation?

Is it possible to obtain reasonable energy savings if we keepRatindR, constant? The answer is clearly “no” for

our case study, as we have already found that the energy usage (Bpihgoeases very sharply as we move away in
certain directions from the flat region. This is further illustrated in Fig. 16, where we show the boilup as a function of
R, for various fixed values oR, (this is not quite as bad as we move normal to P*R, but note the difference in axis
scaling when comparing the curve for g=0.5 in Fig. 15 with Fig. 16). We clearly see from the sharp minimum of the
V-shaped curves (solid lines) th@twould have to be determined very accurately in order to obtain a valMeex-
sonable close to the minimum. For instanc& i set only 5% away from its optimal value, energy increase compared
to the optimum is between 10% to 30%.

Boilup as function of R for some fixed values of R,
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2,=[0.330.330.33]
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0.3 0.35 0.4 0.45

. . . )
05 0.55 0.6 0.65 0.7
Liquid SplitR,

Fig. 16 We have to adjust the liquid split on line in order
to operate on minimum energy consumption.

Having established that we cannot keep both degrees of freedom constant, we ask: Can ameleanstant? Since
the vapour flows are usually the most difficult to adjust in practice, and since it seems reasonable in many cases that
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the vapor splitis constant if we do no adjustments, we will analyze what happens when vigkeepstantand then
adjust the other degree of freedom (&gy.optimally.

Minimum boilup as function of R when R, is optimised
150

145
140 -
1351
g 130 Corner line C3
g
2 125)
o
=2
5
& 120} Corner line C1
115
110 Flat region, PR, with V=Vmin
2,=[0.33 0.33 0.33 ]
105 a =[4.00 2.00 1.00]
R, =0.50 R, =0.62 a=05
vp vir
100 I I . \ . . . , . ,
0.3 0.35 0.4 0.45 05 0.6 0.65 0.7 0.75 0.8

0.55
Vapour splitR,

Fig. 17 Minimum energy can be obtained if the vapor
split is set within the flat region.
Plot showV as a function oR, whenR,
is optimized for each value &

Fig. 17 shows how the boilup/f depends ok, whenR, is optimized for every value dR, (i.e. along the “good” C1-
P'-R’-C3 path in Fig. 12). As mentioned above, we must ctiga the flat region R, <R\<R,,) in order to achieve
minimum boilup. Importantly, ifR, < Ry, D oR,>R, , we very soon loose energy compared to the optimal opera-
tion (V>Vpy,i=100%) even iR, is adjusted optimally. FoR, <R, |, , the best we can do is to adfusb operate the

prefractionator exactly at its preferred split and minimum reflux, while the main column is over-refluxed (along C1).
Andfor R,>R, , the best we can do is to adju&tto operate the main column at the balance line, while the prefrac-

tionator is over-refluxed (along C3).

Also recall from Fig. 16 that even witR, in the flat region, we will need to adjuBf. We conclude that it is acceptable
to keep one degree of freedom (&g constant, as long as it is selected so to operate within the flat region, and as long
as the other degree of freedom is adjusted optimally.

5.5 Sensitivity to disturbances and model parameters

We want to check if the simple strategy of keepRgconstant will work. In Fig. 18 we show the set of “flat region”

(minimum energy) line segments"@®) for variations of feed enthalpyg€[0.4 0.5 0.6]) and 2% feed composition
changes in different directiorig,, z,] = [1/3, 1/ 3] + 0.0 cos(y), sin(y)] v,= [0, 30°, ..., 360°]

Effect of varying feed parameters to optimal operation line
0.75

071 2% variation in zin all directions R

main column

0.65-

Max constant R =0.59

Vapour split RV

051

4 L L )
0.35 0.4 0.5 0.55

0.45
Liquid split Rl
Fig. 18 For the selected set of disturbances, a value of

R, between 0.53 and 0.59 guaranties operation
in the flat region.
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When the light feed fraction is increased and the heavy reduced, the p’biamiﬂ’fmove closer together, reducing
the flat region. Changes mresult in sideways movement of thém® line. The possible region fdR, that ensures

operation in the flat region for all possible disturbances in our example is indicated by the quite narrow region between
the solid and dashed lines.

5.6 A simple control strategy with one degree of freedom fixed

Based on the observations above we propose a control strategy whereRyariik useR, as a manipulated input. (We
could also make the opposite choice)

1. Keep a fixed value fdR, in the flat regiorR, [J [RV’ pRv, N
2. Control the product compositions at their setpoints (e.g. by manipulating L,S and V).
3. Control some feedback variable such fRas being adjusted close to optimally.

Provided that we can find the right feedback variable, this strategy will be acceptable if the magnitude of feed distur-
bances and other uncertainties do not bring the selé&tedtside the flat region. If the latter is not satisfied, we will

have to adjust alsB, to keep the operation within the flat region.

A particular difficult case occurs if some disturbance moves the balance point for the main column to the other side of
the point of preferred split. In this cag® will usually have to be adjusted, and we may have to change the control

strategy for adjustin&.

5.7 Liquid fraction: Bad disturbance or extra degree of freedom?

In general, adding more heat in the feed (i.e. reducing liquid fracfievill be less efficient than adding the same heat

in the reboiler. However, recall from Fig. 15 that the position of the minimum energy Iﬁm*IIWiII be directly
affected by the feed enthalpy and this may be used to our advantage. For instance, in a case where we cannot adjust
R, and we are operating outside the “flat” minimum energy region, we may add heat or cool the feed to move the solu-

tion surface into the flat region. Flow constraints in the column sections may be another motivation for introducing the
feed enthalpy as a degree of freedom.

Itis also possible introduce an extra degree of freedom by extracting both liquid and vapour products in the sidestream,
again for the purpose of moving the solution surface as desired.

In summary, largeincontrolledvariations in the liquid fraction should be avoided, but adjustments of the feed enthalpy
(q) can be used as a mean to move the solution surface in a desired manner.

5.8 Relations to composition profiles

Each of the different surface segments in Fig. 12 corresponds to a characteristic composition profile. The location of
the pinch zones on these profiles can be used to identify the actual operation point, and this information may then be
used in an optimizing control strategy. In Fig. 19 we show composition profiles computed from the stage-by-stage col-
umn model with a sufficiently large number of stages to be a good approximation of an infinite column. (Adding more
stages will just extend the flat pinch regions). We show composition profiles for 6 different operating points: Optimal
operation V=V,;;,) at P (upper left) and R(upper right), and suboptimal operatiofH1.3V i) along the four corner

lines C1 to C4. We used the infinite stage model to compute the control inputs for each case (e.g. Fig. 13).

At operating point Pwe have pinch zones on both sides of the prefractionator feed, and at the lower “feed” to the main
column, whereas the upper part of the main column is over-refluxed. At poimeRave pinch zones at both “feeds”

to the main column (the column is balanced), but here the lower end of the prefractionator is over-refluxed. (Remember
that we havé8p<Pg, and in the case g,> g we would get an anti-symmetric result.) Along C1 (middle left) we have

a similar prefractionator profile as at,ut along C1 both parts of the main column is over-refluxed. And similarly,
along C3 (middle right) the main column is balanced at minimum reflux (like"y ®hereas the prefractionator is
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over-refluxed along C3. Along C2 (lower left) we over-purify the “wrong” (upper) side of the prefractionator, and
along C4 (lower right) we over-reflux the “wrong” (lower) end of the main column.

Optimal operation at preferred prefractionator split (°P")  Optimal operation with balanced main column (R')
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Fig. 19 We can extract important information about the
actual operating point from the composition pro-
files in the “infinite” Petlyuk column. Prefraction-
ator composition profiles are shown dashed.
Locations of feed, sidestream, and connection
stages are indicated (dotted).

Feed dataz=[0.33,0.33,0.33]p=[4,2,1],0=0.5.

The optimal “pattern” in our case study, whdlie <fg, is to have a pinch zone above the prefractionator feed, and a
pinch zone on both sides of the lower main column “feed”. If this is the case, we know that the operation is along line

P'R". None of the suboptimal operating points have this “signature”. Note also that for operation ZRnthe upper
part of the main column and the lower end of the prefractionator, are over-refluxed. In casg wh both pinch

zones move to the other end. If we do not know the relative magnitu@e @fidpg, a possible approach is to operate

at point P all the time, that is, with pinch zones twothsides of the prefractionator feed (or no end of the prefraction-
ator overpurified).

The corresponding column with a finite number of stages and non-sharp splits studied earlier (Table 1 and Fig. 4) does
not have pinch zones, and this tells us that we probably have too few stages. However, that model is not intended as a
column design example, but rather to illustrate the problem of optimizing control. And more importantly, in spite of
low number of stages in our case study example, the main properties of that solution surface is very close to the results
from the infinite stage model.

6. CANDIDATE FEEDBACK VARIABLES

The results from computations using models with both finite and infinite number of stages show that we must contin-
uously adjust at least one of the two degrees of freedomRg.ij close to optimal operation is desired. As mentioned

above, we would like to implement this in a feedback fashion, by finding some measurement, which when kept at a
constant value, indirectly ensure optimal operation. Candidates for such measurements are composition measurements
on individual stages, temperature measurements and combinations thereof and flow measurements from individual
sections of the column. Temperatures are easy to measure, flows are more difficult, and even more so are compositions.

We consider next a few candidate measurements (Y1-Y6) for feedback control. The analysis is mainly based on obser-
vations from the model with a finite number of stages.
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6.1 Position of Profile in Main Column (Y1).

An interesting observation from our case study using the finite stage model is that the maximum composition of the
mid-component occurs at the location of the side-stream when the column is at its optimum (Fig. 4b). A measurement
of thestage numbewith the maximum value of the intermediate compongyiherefore seems to be a very good can-

didate for feedback optimization. However, we would need on-line composition measurements on several stages, so it
is difficult to use in practice.

6.2 Temperature Profile Symmetry (Y2)

The temperature profiles on both sides of the dividing wall show some interesting symmetry properties. We define the
average difference temperature of the temperature profiles on each side of the dividing wall as a symmetry measure-

ment OTy). If the vectorT,  contains the temperature profile in sectigandx denotes the average of the elements
of in the vector x, then

DTs = (Th1=Tpa) *(Tp2=Tp5) ©)

In a practical applicatio®Tgcan be based one or more pairs of difference temperatures in sections above and below
feed and side stream. The temperature profile shown in Fig. 5 is for optimal operation. In Fig. 20 we show the profiles
if we move away from the optimum in the four directions towards P and R and normal to PR in Fig. 6. Interestingly
we find thatDTgis close to constant along directions parallel to the “bottom of the valley” of the solution surface (along
PR in Fig. 6), as illustrated in Fig. 21. When we move away from the bottom of the valley normal to PR, the profile
symmetry changes, and tBd gbecomes more positive towards the right side and more negative to the left side of PR
(see Fig. 7).

100
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Temperature

40

20

0

5 10 20 25 30 5 10 15 20 25 30
Normal to PR, DTS>O Towards R

Temperature

5 10 15 20 25 30 5 10 1 20 25
Towards P Normal to PR, DT <0

30

Fig. 20 Temperature profiles for the base case for off-
optimal operation in directions along the bottom
valley towards R (upper right) and P (lower left),
and in the “bad” directions normal to PR to the
left (upper left plot) and to the right (lower righ

plot)

If we choose to adjust the liquid spliR() to controlDTg, we can replace the liquid fractioR] with the setpoint for
DTgas a degree of freedom. The contour plot of the suX4BE g R ) for the base case is shown in Fig. 22 and when
we compare this to the contour ¥{R,R) in Fig. 7 we observe that the region close to the optimum now is quite flat
in both directions of the degrees of freedom¥WbDTgR,) as opposed tv(R;,R,) which is quite steep in the direction

normal to line PR. This “flatness” is a very important property since it implies that the energy consumption will not be
very sensitive to the degrees of freedom in the flat region.
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Unfortunately, the optimal value &fTg, (which may be non-zero) is sensitive to feed composition disturbances. How-
ever,DTgis easy to measure and apply in a practical control strategy.
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Fig. 21 Operation at constabiTgimplies operation ata Fig. 22 Contour plot o¥/(DTgR)) for the base case.
line parallel to the good PR direction on the The region close to the optimum is now quite fla
solution surface. Plot show contour lines of con- in both directions.
stantDTg (solid) projected on the contour lines
of V(R;,R,) (dashed) for the base case in Table 1.

6.3 Impurity of prefractionator output flows (Y3,Y4)

A key to optimal operation is to operate the prefractionator at minimum reflux characteri'sﬁcLL min(B) Chris:
tiansen and Skogestad (19%Howed that this is achieved by:

1. B>Bp: Control the impurity of the heavy component in the top. (Y3)
2. B<PBp: Control the impurity of the light component in the bottom. (Y4)

In both cases the uncontrolled end of the prefractionator should be over-purified.

In cases whefp andfR are close or may change order, we would have to use both degrees of freedom if we want to

track the optimum. Since we know that operating the prefractionator at the preferred split always will be optimal, inde-
pendent of where the balance point is, we can look for a strategy which keeps the prefractionator operating point at the
preferred split all the time L§ ,Bp) This can be obtained by using both degrees of freedom for two-point control of

both the prefractionator impurities (Y3 and Y4).

We also have to ensure that the main column is operated at its minimum reflux. But this is indirectly achieved by con-
trolling all three product purities.

6.4 Prefractionator flow split (Y5)

Consider the net “distillate” flow leaving the top of the prefractionddgy. (
D, =V;-L; (10)

Note that this is not a physical stream, but a difference between the vapor an liquid flows in the top of the prefraction-
ator. It may even become negative if the column is not operated well. For sharp Bylits,z, + Bz, (for a normal-

ized feed=1) so by adjustind; we directly affect the distribution of the middle compondjt {Ve would expecp

to be in the range [0,1], and thiy to be in the rangez], z,+z,]. This insight is correct, as we find in some non-optimal
operating points thgi or evenD; may be negative, corresponding to circulation around the dividing wall. Boilup as a
function of isD4 is illustrated in Fig. 23, where we see tliyf changes almost proportionally to the boilup when we

move along the solution surface in the bad direction normal to PR. Thus if we were able to measure the net prefrac-
tionator distillate flowD4, then we could achieve close to optimal operation by adjus®n@r L,) to keepD, at a

setpoint. Unfortunately such a flow measurement is difficult to obtain in practice.
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Fig. 23 BoilupV as function of the prefractionator “dis
tillate” flow (D) in the “bad” direction normakt
PR.

We can also express; in terms ofR andR,. A simple overall material balance for the prefractionator yields:
D, = RV-RL+(1-q) (11)

whereL andV are the overall reflux and boilup for the main column. This showsRpd&, andq affectsD; in a similar
way.

Another very interesting observation is that is thiats a function oD, behaves very “nicely” (Fig. 23), compared to

the very non-linear relationship betwe¥mndR, (Fig. 8) where we may even have multiple solutions in some cases.
This shows that if we were to use an open-loop policy, it would be better tolxgegther thary constant. For exam-

ple, forg=1 we see upon comparing Fig. 8 and Fig. 23 that a very small reductignyields a large increase M

since the surfac¥(R;,R)) is very steep close to the optimum. On the other hand, from Fig. 23 and Fig. 24 we observe
that this is not the case wiby as an independent variable.

Contour plots of V(d,Rv) for some values of q

0.85

I I I I I I I
0.3 0.35 0.4 0.45 0.5 0.55 0.6 0.65 0.7
D1

Fig. 24 The surface \[§;,R)) is less sensitive to varia-
tions in feed liquid fraction than the equivalent
V(R;,R)) when we fix both degrees of freedom.
(Plots for model with infinite stages)
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6.5 Temperature difference over prefractionator (Y6)

Itis possible to find variables that have an extremal value when V ... . Such variables cannot be used for feedback

setpoint control approaches because the steady-state changes sign at the optimum. However, often it is difficult to
directly measure the criterion valu€)( In such cases other variables may be used instead as an indicator of the crite-
rion value and, used for example, in an on-line experimenting method (like EVOP).

One such variable the temperature difference over the pre-fractiongd8). We observe from the model with a finite
number of stages that the temperature difference over the pre-fractionator always has its maximum when the boilup is
atits minimum. Although it is simple to measure, the actual maximum value depends on disturbances and product puri-
ties, so it may be difficult to tell the difference between the effect of non-optimal operation, or a disturbance, like
changed feed composition.

6.6 Evaluation Of Feedback Candidates

A qualitative evaluation of the various alternative measurements introduced above is shown in Fig. 25. The criterion
function is the boilup/ and in particular we need to avoid movement in the “bad” direction normal to PR. The position

of the maximumb-composition in the main column is promising as a feedback variable since it at least for our case
study, is not affected by disturbances at all, but it may be difficult to measure or estimate. The other variables are
affected by disturbances and setpoints, thus keeping one of these constant may lead to operation away from the opti-
mum as illustrated in the figure.

Nevertheless, the improvement may be significant, compared to keeping for exgrapéeconstant value. Feedback
from the impurity of the heavy key in the top of the prefractionator (Y3 or Y4) is very interesting, but in this case one
or two composition measurements are probably required.
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Fig. 25 Some candidate feedback variables
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7. CONCLUSIONS

The Petlyuk distillation column will most likely require some kind of optimizing control in order to realize its full
potential for reduced energy consumption. This is because the solution surface of the criterion function is very steep
in one direction, and the operation is very sensitive to certain disturbances. The simplest strategy is to achieve “self-
optimizing” control by feedback control of a variable which characterize optimal operation. In this paper we have
obtained some relationships between optimal operation and some measurements which can be deduced from the com-
position profile or the states. This may be used to select candidate feedback variables. Optimization by feedback, or
“self-optimizing control”, should be compared to nonlinear model-based optimization methods, and evaluated for
complexity and performance.
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Appendix A
Al Model equations for the finite dynamic model

The model equations are quite standard and are described below. The component mass balanceiqonaustaug from the top) for components
j O[a, b, c] is given by:

Lia(og, j =%, )+ Viea(Wieg, = Yi) = 0 (A1)

With constant relative volatility, the equilibrium is given by:

9%
Yiij = (A.2)
> 0%,
]
The column is modeled by connecting the stages, and sections as shown in Fig. 1. We assume constant molar fdws, Yhus and

L; = L;_, inside a section, antil; = const . The liquid and vapor splits are assumed to be realized by splitting the flows at two specified ratios.
(Note that indices 1-6 here denote the 6 column sections)

L1 = Rl
Vi = RVs
The practical implementation of liquid split and side-stream withdrawal may involve full withdrawal of all downcomer flow into an external accu-

mulator, and controlled flow back into the column again. The vapor split may be more difficult to implement in practice, but practical solutions do
exist.

(A3)

The feed enthalpy factor is given in terms of the liquid fraajion

g>1 Subcooled liquid
g=1 Saturated liquid
0<g<1 Liquid and vapor
g=0 Saturated vapor
g<0 Superheated vapor

More precisely, the flow changes at the feed stiadi¢ dre given by:
Li_y = Lj+aF

(A.4)
Vi =V +(1-9)F
and the following expression is added to the component mass balance in {Af1) at
aF(zj-x ;) +(1-a)F(z-y; ) (A.5)

A simple temperature model is used here: We just assume that the temperature onigistégerfiole fraction average of the boiling poiritg ;
for each components)(

Ti= Y Tex, (A.6)

j=ab,c

A.2 Analytic expressions for minimum reflux of an infinite Petlyuk colg#aivorsen and Skogestad, 1999)

These results are based Bidkowski and Krolikowski (1986 he original equations were only valid for saturated liquid fegel], but this has
been extended to include any liquid fractiar) &nd the result is very simple. For sharp product splits and normalized feed, the minimum reflux
value for the Petlyuk column is given by:

[0 V4 a ARz
Linin = max%] AR ) a%2 + BB E (A.7)
ATOL UpA—@; Op—@

The roots (p;, ¢, ) are solutions of the Underwood equation for the prefractionator feed:

OaZp , Y9gZg  OcZo
+ + = (1- A8
A0 Um0 U0 (1-a) (A.8)

Note that the Underwood roots obeys the following inequatity> @, > ag > @,>0ac

The prefractionator has a V-shaped minimum reflux charactetigtit 1 ) as shown in the lower part of Fig. A.1 and for sharp a/c split it can
be expressed analytically by:

dopp + ag®,B

for BsBp
OaA—P; Ag—@
Limn® =0~ 5™ (A.9)
N +GB¢2B for B>p
—Fp

%A—‘Pz U=,

Equation (A.9) has a distinct minimum which represent the absolute minimum energy operating point for the prefractionator: This ithdenoted
preferred split(Stichimair,1988). Analytical values for prefractionator reflux (;) and middle key recoveng) at the preferred splitan be found

by equating the two straight lines of (A.9). Note that in genddiais dependent of feed composition and liquid fraction via (A.8), but in the special
case of saturated liquifip is only dependent on the relative volatilities:

Og—0O¢

Pe = Up—ac

for q=1 (A.10)
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Further elaboration of the result show that the minimum energy for the whole Petlyuk column occurs not at a single point, but is constant in the
range of fractional recoverieg) between thgreferred split(Bp), which yields minimum energy consumption in the prefractionator, and for a cer-

tain =g, for which we will find that the minimum energy requirements is fulfilled at the same time for both the upper and lower parts of the main
column, also denoted: balanced main columiThe prefractionator has to be operated at its minimum characteristies ,i{B) (A.9), with B
betweerfp andpg. We may have three different case34 Br, 2) Bp<Pr and 3)Bp=Pr, Where the last one is a special case where the solution is
reduced to a single point in th&I(;)-plane at the preferred split. Fig. A.1 show an example wher8g.

The analytical expression in (A.7) is deduced by requiring minimum reflux in the prefractionator and in the main column. The main column can be
regarded as two binary columns separating components a/b and b/c. Since the columns are connected, we cannot specify the reflux in each part
freely, thus when we set the main column refluxgnd the two degrees of freedom (h@randL,) all other flows are determined. Minimum reflux
requirement can then be expressed in these three variables for both parts of the main column.

We can find a functiorL #PPe"(3, L;)  which gives the minimum reflux requirement (into the main column top) when we only consider the upper
part of the main column, and similarly/oe"(B, L,)  gives the minimum reflux requirement (into the main column top) when we only consider the
lower part of the main column. Then the main column minimum reflux as given in (A.7) can be found by solving

Lmin(B, L) = max( LiPRer(B, Ly), Ligine"(B, Ly)) (A11)
subjecttoL; = Ly pin(B)
The lower part of the main The upper part of the main

column determine minimum column determine minimum
reflux for small valueof B reflux for large values of8

(EqA.13) (EqA.12)
’r\gﬁil?xcdc_);umn Balanced main column
S
Lmin(B)
> f
Prefractionator Constant Y EqA12)
reflux (Ly) Eq. (A.I3) ! 4
A
|
L1 mirlB)

Fig. A.1  Minimum reflux for the whole Petlyuk columh)has &flat
minimum regior(P* R*) for recoveries in the range between
the preferred split§p) and a balanced main columfg),
while minimum reflux ;) for the prefractionator itself has
a sharp minimum at the preferred split.

The properties of the solution surfate,; (B, L,) can be studied further by considering eafRsf(B, L,) LIowAEB, L ;) . Fortunately,
these functions are found to be lineafimndL;. Thus we can express these functions as straight lines if8fhg plane for a constarit. Solved
with respect to the prefractionator reflix)we can find the simple analytic expressions in (A.12) Ww}Per and (A.13)lqer
Zg0
L, = Lypper—P%A__ (12)
Zp8p
(@A)~ Cupper
1-B)zga
Ly = Ljgwer—zg— 1-Pzatc (A.13)

Zcag
LR+ 2+ 20 —(1-0

(ag—ag) -

Note that these equations are only valid when there is a pinch zone around the corresponding main column “feed” location and wedlave sharp
split in the prefractionator and shaafo andb/c splits in the two main column parts.

We can interpret (A.12) as a level contour for the surface L PRe"(B, L ;) infte )-plane when we only consider the minimum reflux require-
ment for the upper part of the main column. Similarly equation (A.13) represents a contour linefbfower(B, L,) Brithep(ane when we
only consider the minimum reflux requirement for the lower part.

The operating points in thg3(L,)-plane fora balanced main column {lgBg) are found at the intersection of the lines described by (A.12) and
(A.13) for the same main column reflu ( LI9wer = Lupper ). For the case of saturated liquichfeBd the solution can be expressed by
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_ L(op—og)-Fzaag
R™ Log—(L+F(za+20))’

Zg0p 0
L =LA- A.14
LR Bl Lay—(L+z,+2z)acD (14

The reason for the flat optimum (see Fig. A.1) is that the level lines given by (A.12) and (A.13) coincide with the corresponding branches of the
minimum reflux characteristic for the prefractionator (A.9) at the optimum. The proaf fot follow the same proceduralaswski and Kro-

likowski (1986).The result is the simple analytical expression for the overall minimum reflux in equation (A.7) which is valid also for any liquid
fraction @).

We might have explected the optimum to be at the preferred prefractionator Sptit @ a balanced main column (R The fact that all points on
the straight line R are optimal is very important.

A.3 Mapping VB.L,) to V(R.R)

We here consider the surfavéR,R)) for the case with infinite number of stages. From equations (A.12) and (A.13) we see that for a fixed reflux
(L), the level contour oE(B,L ;) (and then als®¥/(B,L,))are straight line segments in thgl(,)-plane (See the dashed level line for constaint Fig.

A.1 which represent operating lines from equations (A.12) and (A.13)). Recall also the definition of the split ratios, and obs&yeamie
expressed as a functionlol,,andf3 in the case of sharp product splits (Feed is normalized):

L_1 _ V_2 _Li+z,+7B-(1-q)

R=T REY " Tiz+ (129

(A.15)

Thus, for constant reflu, any straight line in theB(L,)-plane map to a straight line in tH§,R )-plane.

The optimum which occur on a line segment in tRg-¢)-plane will then also be a straight line segment in ReR,)-plane. Fidkowski’s equations,
extended to handle any feed liquid fractiay), (together with equation (A.15) gives us the tool to compute all possible level lines on the surface
V(R,R)) with the feed composition, liquid fraction and component relative volatilities as parameters.

Each level line is a polygon with four characteristic corners:

C1. Operating therefractionatorat preferred split and minimum refl{ix; pBp), over-refluxing the main columiXL ;).

C2. Operating along theft branchof the prefractionator characteristig €L mi(B), B<Bp), L from intersection of (A.9) and (A.13)

C3. Operating wherthe main column is balanced;(kBg), while the prefractionator is over-refluxdd¥L 1 mi{B))

C4. Operating along théght branchthe prefractionator, above the balance pdigtl(; ,in(B), B>Bg), L from intersection of (A.9) and (A.12)

Note that corner lines C1,C2 and C3,C4 coincide at each end of the optimum line R),Rg-plane. (The list items above are valid f8<fg. In
the case op> g we have to reformulate item 2 and 4)

It is interesting to observe that the poiBy,L; p) map to a curve in thé(R)-plane when we increase the main column reflux. (Corner 1.)
And for g=1, operating along the right branch of the prefractionator, above the balance point (Corner 4) map into a single poRt R)tmane.

The constant energy level lines from corner 2 via corner 3 to corner 4 are directly described by the equations (A.12).and (A.13

A4 Nomenclature

B Bottom product flow f,g,h functions

D Top product flow t time

d Disturbance w Material flow

F Feed flow a Relative volatility

L Liquid flow B b-component recovery

R liquid split fraction in prefractionator top

Ry vapor split fraction

S side-stream flow Subscripts

T temperature a,b,c Component a,b,c

\Y vapor flow D,S,B  Product streams

q feed liquid fraction P Preferred split

X liguid mole fraction, R Balanced main column

y vapor mole fraction, F Feed stream
measurement i stage number (1=top)

z feed composition j component (a,b,c)

u control input vector  1-6 section numbers

bl

recovery



