Analytic Expressions for
 Minimum Energy Consumption in Multicomponent Distillation: A Revisit of the Underwood Equations

by
Ivar J. Halvorsen and Sigurd Skogestad
Norwegian University of Science and Technology (NTNU) Department of Chemical Engineering

Paper 221g presented at Separations Systems Synthesis Wednesday, November 3, 1999, at 10:00 AM in Obelisk A - Wyndham Anatole

AIChE Annual Meeting, Dallas TX 31. Oct - 5. Nov 1999
Email: Sigurd.Skogestad@chembio.ntnu.no, Ivar.J.HAlvorsen@ecy.sintef.no Web: http://www.chembio.ntnu.no/users/skoge http://www.chembio.ntnu.no/users/ivarh

NTNU Department of Chemical Engineering
AIChE Annual Meeting 1999, Dallas TX, 31. October-5. November

Motivation

1. Multicomponent separation can be difficult to understand
2. Extend Underwood's minimum reflux calculations to the entire operating range of product splits D/F and feasible component distribution
3. This is needed for integrated column sequences, e.g. Petlyuk columns

Main results:

1. Simple graphical visualization of minimum energy for all possible product splits, just based on feed data.
2. Obtain minimum energy for the Petlyuk column directly from the same diagram.

Result 2:
Find $\mathrm{V}_{\text {min }}$ for the Petlyuk column directly from the diagram:

$$
V_{\min }^{\text {Petlyuk }}=\max \left(V_{\min }^{A / B C}, V_{\min }^{A B / C}\right)
$$

Selected references:

Classical references for multicomponent distillation

- Underwood (1946, 1948a,b), Fractional distillation of multicomponent mixtures
- Shiras (1950), Calculation of Minimum Reflux in Distillation Columns
- Franklin, Forsyth (1953), The interpretation of minimum reflux conditions in multicomponent distillation

Minimum energy expressions for Petlyuk arrangements

- Fidkowski, Krolikowski (1986), Thermally Coupled Columns: Optimization proc.
- Carlberg, Westerberg (1989) Temperature-Heat Diagrams for Complex Columns. 3. Underwood's Method for the Petlyuk Column.

Books:

- King (1980), Separation Processes.
- Stichlmair (1998), Distillation: Principles and Practice.

Important:

The two product distillation column has only two degrees of freedom (DOF)

- Binary mixtures: \#DOFs == \#components:
$==>$ We may specify a product completely
- Multicomponent: \#DOFs < \#components
$==>$ We cannot specify all components in a product, just two!

Nice Implication of just two DOFs:

- Visualize the entire operating range in 2 dimensions.
- We choose the D-V plane

Revisit of Underwood's Equations

Starting points:

1. Net transport of a component through a stage

$$
\begin{equation*}
w_{i}=V_{n} y_{i, n}-L_{n+1} x_{i, n+1} \tag{1}
\end{equation*}
$$

(w is defined positive upwards)
w_{i} is constant in a section:
Assume:
-constant molar flows
-constant relative volatility
2. Vapour liquid equilibrium (VLE): $\quad y_{i}=\frac{\alpha_{i} x_{i}}{\sum_{i} \alpha_{i} x_{i}}$
3. Divide the material balance with V , multiply with the "Underwood" factor $\alpha_{i} /\left(\alpha_{i}-\phi\right)$, and take the sum over all components:

$$
\begin{equation*}
\frac{1}{V} \sum_{i} \frac{\alpha_{i} w_{i}}{\left(\alpha_{i}-\phi\right)}=\frac{\sum_{i} \frac{\alpha_{i}^{2} x_{i, n}}{\left(\alpha_{i}-\phi\right)}}{\sum_{i} \alpha_{i} x_{i, n}}-\frac{L}{V} \sum_{i} \frac{\alpha_{i} x_{i, n+1}}{\left(\alpha_{i}-\phi\right)} \tag{2}
\end{equation*}
$$

4. The solutions for ϕ which sets the left-hand side equal to one defines the Underwood roots:

$$
\begin{equation*}
\text { Definition equation: } V=\sum_{i} \frac{\alpha_{i} w_{i}}{\left(\alpha_{i}-\phi\right)} \text {, } \tag{3}
\end{equation*}
$$

(for the top section we can also use $\left.V^{T}=\sum_{i} \frac{\alpha_{i} r_{i, D^{z}}}{\left(\alpha_{i}-\phi\right)} F=\sum_{i} \frac{\alpha_{i} x_{i, D}}{\left(\alpha_{i}-\phi\right)} D\right)$
Note the relations: $w_{i}=w_{i, T}=w_{i, D}=D x_{i, D}=r_{i, D} z_{i} F$ for the top section, and the bottom section: $w_{i}=w_{i, \text { Botoom }}=w_{i, B}=(-B) x_{i, B}=\left(-r_{i, B}\right) z_{i} F$, where the recoveries $r_{i, D}=\frac{D x_{i, D}}{F z_{i}}=\frac{w_{i, D}}{F z_{i}}$ and $r_{i, B}=\frac{B x_{i, B}}{F z_{i}}=\frac{-w_{i, B}}{F z_{i}}$, and we trivially have $r_{i, B}+r_{i, D}=1$
5. Simplify to:

$$
\begin{equation*}
\frac{L}{V} E\left(x_{n+1}, \phi\right)=\frac{\phi E\left(x_{n}, \phi\right)}{\sum_{i} \alpha_{i} x_{i, n}} \text { where } E\left(x_{n}, \phi\right)=\sum_{i} \frac{\alpha_{i} x_{i, n}}{\left(\alpha_{i}-\phi\right)} \tag{4}
\end{equation*}
$$

6. Can derive by division of equations :

$$
\begin{equation*}
\left(\frac{E\left(x_{n+m}, \phi_{k}\right)}{E\left(x_{n+m}, \phi_{j}\right)}\right)=\left(\frac{\phi_{k}}{\phi_{j}}\right)^{m}\left(\frac{E\left(x_{n}, \phi_{j}\right)}{E\left(x_{n}, \phi_{k}\right)}\right) \text { (compare to } \frac{x_{D}}{1-x_{D}}=\alpha^{N} \frac{x_{B}}{1-x_{B}} \text { for binary) } \tag{5}
\end{equation*}
$$

Together with $\sum_{i} x_{i, n+m}=1$, we have now N_{c} equations in order to compute x_{n+m}

Underwood equations can be used to relate the composition on one stage to a composition on another stage in a multicomponent separation.

Minimum energy computations: $m \rightarrow \infty$

Underwood roots in the top and bottom approach the

 common roots (φ) as vapour flow is reduced

Minimum energy: $V \rightarrow V_{\text {min }} \Leftrightarrow \phi_{i} \rightarrow \psi_{i+1} \rightarrow \varphi_{i}$
(Infinite energy: $V \rightarrow \infty \Rightarrow \phi_{i} \rightarrow \alpha_{i}$ and $\Psi_{i} \rightarrow \alpha_{i}$.)

Underwood's minimum reflux result

Underwood roots in the top and bottom sections are defined by:

$$
\begin{equation*}
V^{T}=\sum_{i} \frac{\alpha_{i} w_{i, T}}{\left(\alpha_{i}-\phi\right)} \text { and } v^{B}=\sum_{i} \frac{\alpha_{i} w_{i, B}}{\left(\alpha_{i}-\psi\right)} \text { where } w_{i, B}=w_{i, T}-z_{i} F \tag{10}
\end{equation*}
$$

As the vapour flow is reduced, the roots in the top section decrease, and the roots in the bottom section increase. Minimum reflux occur when the roots coincide

$$
\begin{equation*}
V_{\min } \Leftrightarrow \phi_{i}=\psi_{i+1}=\varphi_{i} \tag{11}
\end{equation*}
$$

Recall that $\mathrm{V}^{\top}-V^{B}=(1-q) F$ where q is the liquid fraction in the feed. By subtracting equation from we obtain the well known Underwood's "feed" equation:

$$
\begin{equation*}
(1-q)=\sum_{i} \frac{\alpha_{i} z_{i}}{\left(\alpha_{i}-\varphi\right)} \tag{12}
\end{equation*}
$$

$\mathrm{N}_{\mathrm{C}}-1$ common roots obey: $\alpha_{1}>\varphi_{1}>\alpha_{2}>\varphi_{2}>\ldots \varphi_{N c-1}>\alpha_{N c}$
Feed equation is only valid for the active common roots, but fortunately it can be solved once for all the $N_{c}-1$ potential common roots, and these depend only on the feed properties: α, z, q. The actual active common roots depends on the operation.

AIChE Annual Meeting 1999, Dallas TX, 31. October-5. November

Underwood equations, examples of approach:

Binary example ($N_{C}=2$, components A, B):

There is one common root φ, easily solved from the feed eq.: $(1-q)=\frac{\alpha_{A} z_{A}}{\alpha_{A}-\varphi}+\frac{\alpha_{B} z_{B}}{\alpha_{B}-\varphi}$
We can specify both product rates in the top $\left(\mathrm{w}_{\mathrm{A}}, \mathrm{w}_{\mathrm{B}}\right)$, thus: $\quad V_{\text {min }}^{T}=\frac{\alpha_{A} w_{A}}{\alpha_{A}-\varphi}+\frac{\alpha_{B} w_{B}}{\alpha_{B}-\varphi}$

Ternary example ($N_{c}=3$, components A, B and C):
There are two common roots ($\alpha_{A}>\varphi_{1}>\alpha_{B}>\varphi_{2}>\alpha_{3}$), easily solved from the feed eq.

- TRAP: There are only 2 DOFs => We cannot specify all 3 of w_{A}, w_{B} and w_{C}.

Example: We specify $\mathrm{w}_{\mathrm{A}}=0.9 \mathrm{z}_{\mathrm{A}} \mathrm{F}$, and $\mathrm{w}_{\mathrm{B}}=0.5 \mathrm{z}_{\mathrm{B}} \mathrm{F}$, what is $\mathrm{V}_{\text {min }}$ and what is w_{C} ?
When does φ_{1} apply, and when does φ_{2} apply, and do sometimes both apply?
KEY: Determine the non-distributing / distributing components!

Summary of Underwood's Equations for

 Minimum Energy CalculationsFeed equation
gives common
" $V_{\text {min" }}$-roots φ

How to use Underwood's minimum energy results:

1. Compute all the common roots from the feed equation:

$$
(1-q)=\sum_{i} \frac{a_{i} z_{i}}{\left(a_{i}-\varphi\right)}
$$

2. Determine the total set $\left(N_{D}\right)$ of the distributed components (including components at the limit of being distributed)

There will be $N_{A}=N_{D^{-}}$- active Underwood roots that correspond to these distributed components.
3. Apply the set of definition equations (in the top or in the bottom) corresponding to each active root.

$$
\begin{gathered}
V_{\text {min }}^{T}=\sum_{i=1}^{N_{c}} \frac{a_{i} r_{i, D_{i}}^{z_{i}}}{\left(a_{i}-\varphi_{a 1}\right)} \\
\bullet \\
V_{\text {min }}^{T}= \\
\sum_{i=1}^{N_{c}} \frac{a_{i} r_{i, D_{i}}^{z_{i}}}{\left(a_{i}-\varphi_{a N_{a}}\right)}
\end{gathered}
$$

This gives N_{A} equations and N_{A} unknowns when we specify 2 DOFs. (The non-distributed components have recoveries of either 1 or 0)

Visualisation of minimum energy and component distribution for the ternary example (feed components ABC)

Visualization of the operation in the D-V plane

- Any feasible point in the 2-dimensional plane spanned by 2 independent DOFs (here D,V) determines the operation completely.
- In every polygon region, a particular set of components distribute.
- The "active Underwood roots" are always adjacent, and are in the set laying between the volatilities of the distributed components. Thus each polygon region corresponds to a set of active Underwood roots.
- On the straight line boundaries between the polygon regions, one particular component is at the limit of being distributed to both products.
- The "mountain" tops: Sharp splits between adjacent key components (neighbours i relative volatility)
- Minimum points: "Preferred split", or optimal distribution of intermediate components.

Ternary Example: Specification of 95% recovery of light and heavy components in the products

5-Component example:

$P_{i j}$ marks $V_{\text {min }}$ for sharp split of keys i, j.
$\mathrm{V}>\mathrm{V}_{\text {min }}$ all above the "mountains"

All computations are generalized and is valid for any number of components.

Ternary example: Composition Profile Behaviour

Example of computation: Procedure for sharp split between adjacent components (the mountain tops):

Key components j and $j+1\left(r_{j, D}=1\right.$ and $\left.r_{j+1, D}=0\right)$. The procedure is then simply:

1. Compute the common root $\left(\varphi_{j}\right)$ for which $\alpha_{j}>\varphi_{j}>\alpha_{j+1}$
from the feed equation: $(1-q)=\sum_{i} \frac{a_{i} z_{i}}{\left(a_{i}-\varphi\right)}$
2. Compute the minimum energy by applying the definition equation for φ_{j}. $\frac{V_{\text {min }}^{T}}{F}=\sum_{i=1}^{j} \frac{a_{i} z_{i}}{\left(a_{i}-\varphi_{j}\right)}$.
Note that the recoveries $r_{i, D}= \begin{cases}1 & \text { for } \mathrm{i} \leq j \\ 0 & \text { for } \mathrm{i}>j\end{cases}$

Example of computation: Procedure for the "preferred split", i.e. when all components distribute:

1. Compute all the $N_{C}-1$ common roots (φ) from the feed equation.
2. Set $r_{1, D}=1$ and $r_{N_{c} D}=0$ and solve the following linear equation set ($N_{c}-1$ equations) with respect to $V^{T}, r_{2, D}, r_{3, D} \cdots r_{N_{c}-1}\left(N_{c}-1\right.$ variables):

$$
\begin{gather*}
V^{T}=\sum_{i=1}^{N_{c}} \frac{a_{i} r_{i, D_{i}}^{z_{i}}}{\left(a_{i}-\varphi_{1}\right)} \\
V^{T}=\sum_{i=1}^{N_{c}} \frac{a_{i} r_{i, D_{i}}}{\left(a_{i}-\varphi_{N_{c}-1}\right)} \tag{13}
\end{gather*}
$$

Simple Matlab ${ }^{\text {TM }}$ function prototypes

$[\varphi] \quad=U W$ roots $(\alpha, z, q) \quad$ Compute the common roots from the feed equation
$[\mathrm{Vs}, \mathrm{Ds}, \mathrm{Rs}]=\mathrm{UWmulti}(\alpha, \mathrm{z}, \mathrm{q}) \quad$ Compute all the polygon points in the D-V plane
$[V, D, R]=U W r s p e c(\alpha, z, q, r i, r j) \quad$ Compute an operation point from specification the recoveries (r) of keys i, j
$[V, D, R]=U W x \operatorname{spec}(\alpha, z, q, x i, x j)$ Compute an operation point from specification the product composition (x) of keys i, j
$[R] \quad=U W v d s p e c(\alpha, z, q, V, D)$ Compute all recoveries R as function of V and D
V : Normalized top section vapour flow ($\mathrm{F}=1$)
D: Normalized distillate product flow ($\mathrm{F}=1$)
R: All component recoveries
$R=\left[r_{1}, r_{2}, r_{3}, \ldots, r_{N c}\right]$ (in the distillate product)
α : Relative volatilities
z: Feed composition

$$
\alpha=\left[\alpha_{1}, \alpha_{2}, \alpha_{3}, \ldots . \alpha_{\mathrm{Nc}}\right]
$$

q : Feed liquid fraction
Note that the distillate flow $\mathrm{D}=\mathrm{FRz}^{\top}$, and the top composition $\mathrm{x}_{\mathrm{i}, \mathrm{D}}=\mathrm{r}_{\mathrm{i}} \mathrm{z}_{\mathrm{i}} /(\mathrm{D} / \mathrm{F})$

PART 2: Underwood equations for fully thermally coupled columns:

Recall that we only use the net material flow w the definition of the Underwood roots, thus the equations can also be applied for fully thermally coupled sections ${ }^{1}$:

Ordinary
2-product

Or for structures like these:

[^0]
Application to Petlyuk Arrangements


```
\(V^{S 3}-V^{S 4}=V^{S 1}=>\) The "feed" equation for column (34) equals the "top" equation for column (12) thus the roots \(\varphi_{i}^{S 34}=\phi_{i}^{S 1}\)
\(V^{S 6}-V^{S 5}=V^{S 2}=>\) The "feed" equation for column (56)
```

equals the "bottom" equation for column (12) thus the roots $\varphi_{i}^{556}=\psi_{i}^{S 2}$

Assume operation at the "Preferred split" for the prefractionator.

- Then all roots of the feed-equation in (12) are also roots of the top and bottom equations of (12) $\varphi_{i}^{S 12}=\phi_{i}^{S 1}=\psi_{i+1}^{S 2}$
- Then all roots also carry over as the minimum energy roots for column (34) and (56)
\square

Illustration of how Underwood roots carry over to the next column through the full thermal coupling

Minimum vapour flow in the upper part of the main column (34):

Prefractionator at its preferred split implies: All roots "carry over" to the main column:

$$
\begin{equation*}
V_{\text {min }}^{S 3}=\sum_{i} \frac{\alpha_{i} w_{i}^{S 3}}{\alpha_{i}-\varphi^{S 34}}=\sum_{i} \frac{\alpha_{i} w_{i}^{S 3}}{\alpha_{i}-\varphi^{S 12}} \tag{14}
\end{equation*}
$$

Example: Normalized ternary feed ($\mathrm{F}=1, \alpha=\left[\alpha_{1}, \alpha_{2}, 1\right]$).
Pure top product implies: $w_{1}^{S 3}=z_{1}$, and $w_{2}^{S 3}=w_{2}^{S 3}=0$.
This is a sharp $A / B C$ split and a point $P_{A B}$ in a DV-plane for column (34).
Identical UW-roots implies identical $\mathrm{V}_{\text {min }}$-expression as at P_{AB} the DV-plane for the prefractionator column (12).

At $\mathrm{P}_{\mathrm{AB}} \varphi_{1}^{S 12}$ is the only active root (omit superscript $\varphi^{S 12}=\varphi$):

$$
\begin{equation*}
V_{\text {min }}^{S 3}=\frac{\alpha_{1} z_{1}}{\alpha_{1}-\varphi_{1}} \text { which is identical to } V_{\text {min }}^{A / B C} \text { for prefractionator! } \tag{15}
\end{equation*}
$$

Minimum energy for the Petlyuk column, sharp product splits:

$$
\begin{equation*}
V_{\min }^{\text {Petlyuk }}=\min \left(V^{S 6}\right), \text { subject to product purity specifications } \tag{16}
\end{equation*}
$$

There are several degrees of freedom in operation, but it can be shown (e.g. Fidkowski (1986)) that when the prefractionator is operated at the preferred split, the optimum can be expressed as ${ }^{1}$:

$$
\begin{equation*}
V_{\min }^{\text {Petlyuk }}=\max \left(V_{\text {min }}^{S 3}-(1-q), V_{\text {min }}^{S 6}\right),\left(\text { note that } V^{S 6}=V^{S 3}-(1-q)\right) \tag{17}
\end{equation*}
$$

Similarly as for $v_{\text {min }}^{S 3}$, we find: $v_{\text {min }}^{S 6}=\frac{\alpha_{3} z_{3}}{\alpha_{3}-\varphi_{2}}=V_{\text {min }}^{A B / C}$ for prefractionator!

For our ternary example, and sharp product splits we obtain:

$$
\begin{equation*}
V_{\text {min }}^{\text {Petlyuk }}=\max \left(\frac{\alpha_{1} z_{1}}{\alpha_{1}-\varphi_{1}}-(1-q), \frac{\alpha_{3} z_{3}}{\alpha_{3}-\varphi_{2}}\right) \tag{19}
\end{equation*}
$$

This result is identical to the minimum reflux result of Fidkowski (1986).(for $\mathrm{q}=1$)

[^1]
Non-sharp product splits:

With our approach we can very easily put up the expression for non-sharp products too.

Assume we specify small amounts of the intermediate component 2 in both top and bottom, and that the recoveries of light and heavy keys in the top and bottom in slightly less than one. (Then the side-stream i also defined).

We can assume that the same UW-roots will apply since we are not far from the sharp split points, and the result can be written directly from our knowledge of the definition equations for the Underwood roots for sections 3 and 6:

$$
\begin{equation*}
V_{\min }^{\text {Petlyuk }}=\max \left(\frac{\alpha_{1} r_{1}^{S 3} z_{1}}{\alpha_{1}-\varphi_{1}}+\frac{\alpha_{2} r_{2}^{S 3} z_{2}}{\alpha_{2}-\varphi_{1}}-(1-q), \frac{r_{3}^{S 6} z_{3}}{1-\varphi_{2}}+\frac{\alpha_{2} r_{2}^{S 6} z_{2}}{\alpha_{2}-\varphi_{2}}\right) \tag{20}
\end{equation*}
$$

The expression is exact for $r_{1}^{S 3} \approx 1, r_{2}^{S 3} \approx 0$ and $r_{3}^{S 6} \approx 1, r_{2}^{S 6} \approx 0$
Note, if $V_{\text {min }}^{\text {Petlyuk }}=V_{\text {min }}^{S 6}=>V^{S 3}>V_{\text {min }}^{S 3}$, and $r_{1}^{S 3}<1$ may be infeasible! ${ }^{1}$

1. This example shows that some product specifications are infeasible to combine with minimum energy operation.

Super-simple procedure for the minimum energy requirement for 3 product Petlyuk Column

1. Compute the Minimum energy "mountains" for the feed to the prefractionator
2. Compute the energy requirement to produce the Petlyuk top product specification in a single column, and plot it into the diagram $\left(V_{\text {min }}^{A / B C}\right)$
3. Compute the energy requirement to produce the Petlyuk bottom product specification in a single column and plot it into the diagram ($V_{\text {min }}^{A B / C}$)
4. The minimum energy requirement for the Petlyuk column is simply the maximum value of 2 and 3 (adjusted for 1-q): $V_{\min }^{\text {Petlyuk }}=\max \left(V_{\text {min }}^{A / B C}, V_{\text {min }}^{A B / C}\right.$)
5. This also gives us information of the extent of the flat region. If the difference is large, there is a large flat region.

This procedure also holds for non-sharp splits, and even for any multicomponent feed mixture ($\mathrm{Nc}>3$).

Example: Application to a 3 product Petlyuk Column:

- Sharp A/BC split
\diamond Sharp AB/C split
- Preferred split (sharp A/C)

$$
V_{\min }^{S 3}=f\left(D^{S 3}\right) \text { for } D^{S 1}=D_{\text {bal }}
$$

distribution boundaries
Feed:

$$
\alpha=\left[\begin{array}{lll}
4 & 2 & 1
\end{array}\right]
$$

$$
z=\left[\begin{array}{lll}
0.33 & 0.33 & 0.33
\end{array}\right]
$$

$$
q=1.0
$$

$$
V_{\min }^{\text {Petlyuk }}=1.37
$$

$v_{\text {min }}^{\text {Conventional }}=2.03$
Petlyuk savings = 33\%
AIChE Annual Meeting 1999, Dallas TX, 31. October-5. November

Example: application to 3-product Petlyuk arrangement with 5-component feed

We want pure $A+B$ in the top, and pure $C+D$ in the side and pure E in the bottom
 Minimum energy:

Solution: Operate the prefractionator between $\mathrm{P}_{\mathrm{Bal}}$ and P_{BE}
The energy requirement to the Petlyuk column is found as $\max \left(P_{B C}, P_{D E}\right)=P_{B C}$

- Underwood's equations are very useful for minimum energy calculations
- Results can be visualized in the D-V plane as a set of informative "mountain" regions.

- Underwood roots can "carry" over to the next column.
- Determine minimum energy requirements for Petlyuk column with a quick glance at the $\mathrm{D}-\mathrm{V}$ plane plots.

0

[^0]: 1. In this case we cannot ensure that the net material flow from the feed to the top always is positive. We may have situations with "reverse" transport of some components. This may lead to some special treatment of the equations, but Underwood's equations are still useful as they are based on the true material balance.
[^1]: 1. The optimum is really flat for operation in a region on one side of the preferred split, always including the preferred split point, but let us skip that here.
