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Abstract

This paper examines the limitations imposed by Right Half Plane (RHP) zeros and poles in
multivariable feedback systems. The main result is to provide lower bounds onkWXV (s)k1
whereX is the input or output sensitivity or complementary sensitivity.W andV are matrix
valued weights who might depend on the plant and who also might be unstable. Previously de-
rived lower bounds on theH1-norm of the sensitivity and the complementary sensitivity are thus
generalized to include bounds for reference tracking and disturbance rejection. Furthermore, new
bounds which quantify the minimuminput usage for stabilization in the presence of measurement
noise and disturbances, are derived. From the bounds we find thatoutput performance isonly
limited if the plant has RHP-zeros. For a one degree-of-freedom (1-DOF) controller the presence
of RHP-poles further deteriorate the response, whereas there is no additional penalty for having
RHP-poles if we use a two degrees-of-freedom (2-DOF) controller (where the disturbance and/or
reference signal is measured). For large classes of plants weprove that the lower bounds given
aretight in the sense that there exist stable controllers (possible improper) that achieve the bounds.

Keywords: System theory; AchievableH1-performance; Unstable systems; RHP-zeros and
poles; Stabilization.

1 Introduction

It is well known that the presence of RHP zeros and poles pose fundamental limitations on the achiev-
able control performance. This was quantified for SISO systems by Bode (1945) more than50 years
ago, and most control engineers have an intuitive feeling of the limitations for scalar systems. Rosen-
brock (1966; 1970) was one of the first to point out that multivariable RHP-zeros pose similar limita-
tions.

The main results in this paper are explicit lower bounds on theH1-norm of closed-loop transfer
functions. Of course, it is relatively straightforward to compute the exact minimum value of theH1-
norm for a given case using standard software, and a direct computation of the value of theH1-norm
is also possible, e.g. using the Hankel-norm as explained in (Francis, 1987). Therefore, we want
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to stress that the objective is to derive explicit (analytical) bounds that yield direct insight into the
limitations imposed by RHP-poles and zeros.

The basis of our results is theimportantwork by Zames (1981), who made use of the interpolation
constraintyHz S(z) = yHz and the maximum modulus theorem to derive bounds onH1-norm ofS for
plants with one RHP-zero. The results by Zames were generalized to plants with RHP-poles by Doyle,
Francis and Tannenbaum (1992) in the SISO case, and by Skogestad and Postlethwaite (1996), Havre
and Skogestad (1998) in the MIMO case.

In this paper we extend the work of Zames (1981) and Havre and Skogestad (1998) and quan-
tify the fundamental limitations imposed by RHP zeros and poles in terms of lower bounds on the
H1-norm of important closed-loop transfer functions. The main generalization of the previous result
is that from the results in this paper we can derive lower bounds onH1-norm of closed-loop trans-
fer functions other than sensitivity and complementary sensitivity. Further1 generalizations include
multivariable weights and unstable and non-minimum phase weights.

One important application of the lower bounds, is that we canquantifythe minimum usage needed
to stabilize an unstable plant in the presence of the “worst case” disturbance, measurement noise and
reference changes for the “best”2 possible controller. An additional important contribution of this
paper is that we prove that the lower bounds aretight in a large number of cases. That is, we give
analytical expressions for controllers whichachieveanH1-norm of the closed-loop transfer function
which is equal to the lower bound.

2 Elements from linear system theory

2.1 Zeros and zero directions.

Zeros of a system arise when competing effects, internal to the system, are such that the output is zero
even when the inputs and the states are not identically zero. Here we apply the following definition
of zeros (MacFarlane and Karcanias, 1976).

DEFINITION 1 (ZEROS). zi 2 C is a zero ofG(s) if the rank ofG(zi) is less than the normal rank of
G(s).

The normal rank ofG(s) is defined as the rank ofG(s) at alls except a finite number of singularities
(which are the zeros).

DEFINITION 2 (ZERO DIRECTIONS). If G(s) has a zero fors = z 2 C then there exist non-zero
vectors, denoted the input zero directionuz 2 C m and the output zero directionyz 2 C l , such that
uHz uz = 1, yHz yz = 1 and

G(z)uz = 0; yHz G(z) = 0 (1)

For a systemG(s) with state-space realization
�
A B

C D

�
, the zerosz of the system, the input zero

directionsuz and the state input zero vectorsxzi 2 C
n (n is the number of states) can all be computed

from the generalized eigenvalue problem�
A� sI B

C D

� �
xzi

uz

�
=

�
0

0

�
(2)

1In order to accomplish lower bounds onH1-norm of general closed-loop transfer functions, it was necessary to
generalize the previous results to include multivariable, unstable and non-minimum phase weights.

2The best possible controller in the sense that the controller which minimizes theH1-norm of the closed-loop transfer
function from the disturbances, measurement noise and references to the outputs.
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Similarly one can compute the zerosz and the output zero directionsyz fromGT .

2.2 Poles and pole directions.

Bode (1945) states thatthe poles are the singular points at which the transfer function fails to be
analytic. In this work we replace “fails to be analytic” with “is infinite”, which certainly implies that
the transfer function isnot analytic. When we evaluate3 the transfer functionG(s) at s = p, G(p) is
infinite in some directions at the input and the output. This is the basis for the following definition of
input and output pole directions.

DEFINITION 3 (POLE DIRECTIONS). If s = p 2 C is a distinct pole ofG(s) then there exist an input
directionup 2 C m and an output directionyp 2 C l with infinite gain fors = p.

For a systemG(s) with minimal state-space realization
�
A B

C D

�
the pole directionsup andyp for a

distinctpolep can be computed from (Havre, 1998, Section 2.4)

up = BHxpi= kB
Hxpik2 ; yp = Cxpo= kCxpok2 (3)

wherexpi 2 C n andxpo 2 C n are the eigenvectors corresponding to the two eigenvalue problems

xHpiA = pxHpi; Axpo = pxpo

Note, that the pole directions are normalized, i.e.kupk2 = 1 andkypk2 = 1. For the sake of simplicity
we will only consider distinct poles in this paper.

2.3 All-pass factorizations of RHP zeros and poles

A transfer function matrixB(s) is all-pass ifBT (�s)B(s) = I, which implies that all singular values
of B(j!) are equal to one.

A rational transfer function matrixM(s) with RHP-polespi 2 C + , can be factorized either at the
input (subscripti) or at the output (subscripto) as follows4

M(s) = Msi B
�1
pi (M); M(s) = B�1po (M)Mso(s) (4)

Msi,Mso – Stable (subscripts) versions ofM with the RHP-poles mirrored across the imaginary
axis.

Bpi(M), Bpo(M) – Stable all-pass rational transfer function matrices containing the RHP-poles (sub-
scriptp) of M as RHP-zeros.

The all-pass filters are

Bpi(M(s)) =
NpQ
i=1

(I � 2Re(pi)
s+ �pi

ûpiû
H
pi
); B�1pi (M(s)) =

1Q
i=Np

(I + 2Re(pi)
s� pi

ûpiû
H
pi
) (5)

Bpo(M(s)) =
1Q

i=Np

(I � 2Re(pi)
s+ �pi

ŷpiŷ
H
pi
); B�1po (M(s)) =

NpQ
i=1

(I + 2Re(pi)
s� pi

ŷpiŷ
H
pi
) (6)

3Strictly speaking, the transfer functionG(s) cannot be evaluated ats = p, sinceG(s) is not analytic ats = p.
4Note that the notation on the all-pass factorizations of RHP zeros and poles used in this paper is reversed compared

to the notation used in (Green and Limebeer, 1995; Skogestad and Postlethwaite, 1996; Havre and Skogestad, 1996). The
reason for this change of notation is to be consistent with what the literature generally defines as an all-pass filter.
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Bpo(M) is obtained by factorizing at the output one RHP-pole at a time, starting with

M = B�1p1o(M)Mp1o

where
B�1p1o(M(s)) = I + 2Re(p1)

s� p1
ŷp1 ŷ

H
p1

and ŷp1 = yp1 is the output pole direction ofM for p1. This procedure may be continued to factor
out p2 from Mp1o whereŷp2 is the output pole direction ofMp1o (which need not coincide withyp2,
the pole direction5 of M ) and so on. A similar procedure may be used to factorize the poles at the
input ofM . Note that the sequence get reversed in the input factorization compared to the output
factorization.

In a similar sequential manner, the RHP-zeros can be factorized either at the input or at the output
of M

M(s) = MmiBzi(M(s)); M(s) = Bzo(M)Mmo(s) (7)

Mmi, Mmo – Minimum phase (subscriptm) versions ofM with the RHP-zeros mirrored across the
imaginary axis.

Bzi(M), Bzo(M) – Stable all-pass rational transfer function matrices containing the RHP-zeros (sub-
scriptz) of M .

We get

Bzi(M(s)) =
1Q

j=Nz

(I �
2Re(zj)

s+ �zj
ûzj û

H
zj
); B�1zi (M(s)) =

NzQ
j=1

(I +
2Re(zj)

s� zj
ûzj û

H
zj
) (8)

Bzo(M(s)) =
NzQ
j=1

(I �
2Re(zj)

s+ �zj
ŷzj ŷ

H
zj
); B�1zo (M(s)) =

1Q
j=Nz

(I +
2Re(zj)

s� zj
ŷzj ŷ

H
zj
) (9)

Alternative all-pass factorizations are in use, e.g. the inner-outer factorizations used in (Morari
and Zafiriou, 1989) which are the same as (8) and (9) except for the multiplication of a constant
unitary matrix. Reasons for using the factorizations given here are:

1) The factorizations of RHP-zeros given here are analytic and in terms of the zeros and the zero
directions, whereas the inner-outer factorizations in (Morari and Zafiriou, 1989) are given in
terms of the solution to an algebraic Riccati equation.

2) To factorize RHP-poles using the inner-outer factorization one needs to assume thatG�1 exist.

2.4 Closing the loop

In this paper we consider the general two degrees-of-freedom (2-DOF) control configuration shown
in Figure 1. In the figure the performance weights are given in dashed lines. We have included
both referencesr and measurement noisen in addition to disturbancesd as external inputs. The
three matricesGd, R andN can be viewed as weights on the inputs, and the inputs~d, ~r and~n are
normalized in magnitude. Normally,N is diagonal and[N ]ii is the inverse of signal to noise ratio.
For most practical purposes, we can assume thatR andN are stable. However, from a technical point
of view it suffices that the unstable modes inN andR can be stabilized through the inputsu. For

5In fact: ŷp2 = B�Hp1o
(M)js=p2yp2 . HereBjs=s0 means the rational transfer function matrixB(s) evaluated at the

complex numbers = s0. Thus, it provides an alternative toB(s0), and it will mainly be used to avoid double parenthesis.
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Figure 1: Two degrees-of-freedom control configuration withK = [K1 K2]

the disturbance plantGd we assume that all the unstable modes ofGd also appears inG (which is
required if the unstable modes ofGd are state controllable inu).

The controller can be divided into a negative feedback part fromy (K2) and a feed forward part
from r (K1)

u = K1r �K2ym = K1r �K2(y + n) (10)

The closed-loop transfer functionF from

v =

2
4
~r
~d

~n

3
5 to z =

2
4
z1
z2
z3

3
5
T

=

2
4
WP (y � r)

WTy

Wuu

3
5

is

F (s) =

2
4
WP (SGK1 � I)R WPSGd �WPTN

WTSGK1R WTSGd �WTTN

WuSIK1R �WuK2SGd �WuK2SN

3
5 (11)

where the sensitivityS, the complementary sensitivityT and the input sensitivitySI are defined by

S , (I +GK2)
�1 (12)

T , I � S = GK2(I +GK2)
�1 (13)

SI , (I +K2G)�1 (14)

We also define the input complementary sensitivity

TI , I � SI = K2G(I +K2G)�1 (15)

By settingK1 = K2 in the above equations, the one degree-of-freedom (1-DOF) control configuration
can be analyzed.

3 Lower bounds on theH1-norm of closed-loop transfer func-
tions

In this section we derive general lower bounds on theH1-norm of closed-loop transfer functions
when the plantG has one or more RHP zeros and/or poles, by using the interpolation constraints and
the maximum modulus principle. The bounds are applicable to closed-loop transfer functions on the
form

W (s)X(s)V (s) (16)
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whereX may beS, T , SI or TI . The idea is to derive lower bounds onkWXV (s)k1 which are
independent of the controllerK. In general, we assume thatWXV is stable. The “weights”W and
V must be independent ofK, they may be unstable provided that the unstable modes can be stabilized
by feedback conntrol of the plantG (e.g.unstable disturbance modelGd or non-minimum phase plant
G with an unstableG�1). This implies that the unstable modes ofW andV also appear inL = GK2.
Otherwise, the system is not stabilizable. The results are stated in terms of four theorems.

Theorems 1 and 2 provide lower bounds on theH1-norm of closed-loop transfer functions on the
formsWSV andWSIV caused by one or more RHP-zeros inG. By maximizing over all RHP-zeros,
we find the largest lower bounds onkWSV (s)k1 andkWSIV (s)k1 which takes into account one
RHP-zero and all RHP-poles in the plant.

THEOREM 1 (LOWER BOUND ON kWSV (s)k1). Consider a plantG with Nz � 1 RHP-zeroszj,
output directionsyzj andNp � 0 RHP-polespi 2 C + . LetW andV be rational transfer function
matrices, whereW is stable. Assume that the closed-loop transfer functionWSV is (internally)
stable. Then the following lower bound onkWSV (s)k1 applies:

kWSV (s)k1 � max
RHP-zeroszj in G

kWmo(zj) yzjk2 � ky
H
zj
V B�1zi (Bpo(G)V )js=zjk2 (17)

Proof. see Section A.

THEOREM 2 (LOWER BOUND ON kWSIV (s)k1). Consider a plantG with Nz � 1 RHP-zeroszj,
input directionsuzj andNp � 0 RHP-polespi 2 C + . LetW andV be rational transfer function
matrices, whereV is stable. Assume that the closed-loop transfer functionWSIV is (internally)
stable. Then the following lower bound onkWSIV (s)k1 applies:

kWSIV (s)k1 � max
RHP-zeros,zj in G

kB�1zo (WBpi(G))W js=zjuzjk2 � ku
H
zj
Vmi(zj)k2 (18)

Theorems 3 and 4 provide lower bounds on theH1-norm of closed-loop transfer functions on the
formsWTV andWTIV caused by one or more RHP-poles inG. By maximizing over all RHP-poles,
we find the largest lower bounds onkWTV (s)k1 andkWTIV (s)k1 which takes into account one
RHP-pole and all RHP-zeros in the plant.

THEOREM 3 (LOWER BOUNDS ON kWTV (s)k1). Consider a plantG withNp � 1 RHP-polespi,
output directionsypi andNz � 0 RHP-zeroszj 2 C + . LetW andV be rational transfer function
matrices, whereV is stable. Assume that the closed-loop transfer functionWTV is (internally)
stable. Then the following lower bound onkWTV (s)k1 applies:

kWTV (s)k1 � max
RHP-poles,pi in G

kB�1zo (WBzo(G))W js=piypik2 � ky
H
pi
Vmi(pi)k2 (19)

THEOREM 4 (LOWER BOUNDS ONkWTIV (s)k1). Consider a plantG withNp � 1 RHP-polespi,
input directionsupi andNz � 0 RHP-zeroszj 2 C + . LetW andV be rational transfer function
matrices, whereW is stable. Assume that the closed-loop transfer functionWTIV is (internally)
stable. Then the following lower bound onkWTIV (s)k1 applies:

kWTIV (s)k1 � max
RHP-poles,pi in G

kWmo(pi) upik2 � ku
H
pi
V B�1zi (Bzi(G)V )js=pik2 (20)

Remarks on Theorems 1–4:
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1) The somewhat messy notation can easily be interpreted. As an example take the last factor of
(17): Factorize the RHP-poles at the output ofG into an all-pass filterBpo(G) (yields RHP-
zeros), multiply on the right withV (may add RHP-zeros ifV is non-minimum phase), then
factorize at the input the RHP-zeros of the product into an all-pass transfer function, take its
inverse, multiply on the left withyHzjV and finally evaluate the result fors = zj.

2) The lower bounds (17)–(20) are independent of the feedback controllerK2 if the weightsW
andV are independent ofK2.

3) The internal stability assumption on the closed-loop transfer functionsWXV , whereX 2

fS; SI ; T; TIg, means thatWXV are stable, and we have no RHP pole/zero cancellations
between the plantG and the feedback controllerK2.

4) The assumption on stability ofW andV in Theorems 1–4 is in practicenot restrictive, since
when the assumption isnot fulfilled we can generally rewrite the transfer function and apply
another theorem instead.

EXAMPLE 1. Consider deriving a bound onH1-norm of the closed-loop transfer functionK2SGd

(input usage due to disturbances). We can use the relationK2SGd = G�1TGd and apply Theorem 3
with W = G�1 andV = Gd, but we must assume thatGd is stable. However, we can use the relation
K2SGd = TIG

�1Gd and apply Theorem 4 withW = I andV = G�1Gd, and in this case we can also
allowGd to beunstable.

4 Tightness of lower bounds

Theorems 1 to 4 provide lower bounds onkWXV (s)k1 whereX 2 fS; SI ; T; TIg. The question is
whether these bounds are tight, meaning that there exist controllers which achieve these bounds? The
answer is “yes” if there is only one RHP-zero or one RHP-pole. Specifically, we find that the bounds
on kWSV (s)k1 andkWSIV (s)k1 are tight if the plantG has one RHP-zero and any number of
RHP-poles. Similarly, we find that the bounds onkWTV (s)k1 andkWTIV (s)k1 are tight if the
plantG has one RHP-pole and any number of RHP-zeros. We prove tightness of the lower bounds by
constructing controllers which achieve the bounds.

THEOREM 5 (CONTROLLER WHICH MINIMIZES kWSV (s)k1). Consider a plantG with oneRHP-
zeroz, output directionyz, andNp � 0 RHP-polespi 2 C + . Let W and V be rational transfer
function matrices, whereW is stable. A feedback controller (possible improper) which stabilizes
WSV , is given by

K2(s) = G�1smo(s)P (s)Q�1(s) (21)

where

Q(s) = W�1
mo (s)Wmo(z)V0 B

�1
po (G)js=zMmi(z)M

�1
mi (s) (22)

P (s) = B�1zo (Gso) (I � Bpo(G)Q) (23)

V0 = yzy
H
z + k20U0U

H
0 and Mmi(s) = (Bpo(G)V (s))mi

where the columns of the matrixU0 2 Rl�(l�1) together withyz forms an orthonormal basis forRl

and k0 is any constant.P (s) is stable since theRHP-zero fors = z in I � Bpo(G)Q cancels the
RHP-pole fors = z in B�1zo (Gso), in a minimal realization ofP . With this controller we have

lim
k0!0

kWSV (s)k1 = kWmo(z) yzk2 � ky
H
z V B

�1
zi (Bpo(G)V )js=zk2 (24)
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From Theorem 5 it follows that the bound (17) is tight when the plant has one RHP-zero.
We can proove that the three other bounds in Theorems 2, 3 and 4 are tight, under conditions

similar to those given in Theorem 5.

5 Applications of lower bounds

The lower bounds onkWXV (s)k1 in Theorems 1 and 4 can be used to derive a large number of
interesting and useful bounds.

5.1 Output performance

The previously derived bounds in terms of theH1-norms ofS andT given in (Zames, 1981; Skoges-
tad and Postlethwaite, 1996) and in Havre and Skogestad (1998) follow easily, and further general-
izations involving output performance can be derived. Here we assume that the performance weights
WP andWT are stable and minimum phase.

Weighted sensitivity,WPS. SelectW = WP , V = I, and apply the bound (17) to obtain

kWPS(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
B�1po (G)js=zjk2 (25)

Note, this generalizes the previously found bounds to the case with a matrix valued weight.

Disturbance rejection. SelectW = WP , V = Gd, and apply the bound (17) to obtain

kWPSGd(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
Gd B

�1
zi (Bpo(G)Gd)js=zjk2 (26)

Reference tracking. SelectW = WP , V = R, and apply the bound (17) to obtain

kWPSR(s)k1 � max
RHP-zeros,zj

kWP (zj) yzjk2 � ky
H
zj
RB�1zi (Bpo(G)R)js=zjk2 (27)

Note that we can also look at the combined effect of disturbances and references by selectingV =

[Gd R ].

Measurement noise rejection.SelectW = WP , V = N , and apply the bound (19) to obtain

kWPTN(s)k1 � max
RHP-poles,pi

kB�1zo (WPBzo(G))WP js=piypik2 � ky
H
pi
Nmi(pi)k2 (28)

where we must assume thatN has no RHP-poles corresponding to RHP zeros or poles inG. Normally
N is stable.

5.2 Input usage

The above provide generalizations of previous results, but we can also derive some new bounds in
terms of input usage from Theorems 3 and 4. These new bounds provide very interesting insights, for
example, into the possibility of stabilizing an unstable plant with inputs of bounded magnitude.
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The basis of these new bounds is to note that the transfer function from the outputs to the inputs,
K2S, can be rewritten asK2S = TIG

�1 orK2S = G�1T . WhenG is unstable,G�1 has one or more
RHP-zeros, so it is important that the bounds in Theorem 4 can handle the case whenV = G�1 has
RHP-zeros. Otherwise,G�1 evaluated at the pole ofG, would be zero in a certain direction, and we
would not derive any useful bounds. Here we assume that the weightWu on the inputu is stable and
minimum phase.

Disturbance rejection. Apply the equalityK2S = TIG
�1, selectW = Wu, V = G�1Gd, and use

the bound (20) to obtain

kWuK2SGd(s)k1 � max
RHP-poles,pi

kWu(pi) upik2 � ku
H
pi
G�1GdB

�1
zi (G

�1
miGd)js=pik2 (29)

where we have used the identityBzi(G)G�1 = G�1mi. Again, reference tracking is included by replac-
ingGd byR.

Measurement noise rejection.Apply the equalityK2S = TIG
�1, selectW = Wu, V = G�1N ,

and use the bound (20) to obtain

kWuK2SN(s)k1 � max
RHP-poles,pi

kWu(pi) upik2 � ku
H
pi
G�1NB�1zi (G

�1
miN)js=pik2 (30)

We may look at the combined effect of reference tracking, disturbance rejection and measurement
noise by using (20) withW = Wu andV = G�1 [Gd R N ].

Simplified lower bound on kK2S(s)k1. Two useful simplified lower bounds onkK2S(s)k1 can
easily be derived. First, apply the equalityK2S = TIG

�1, selectW = I, V = G�1, and use the
bound (20) to obtain

kK2S(s)k1 � max
RHP-poles,pi

kuHpiG
�1B�1zi (G

�1
mi)js=pik2 = kuHpiG

�1
so js=pik2 (31)

where the last identity follows fromBzi(G
�1
mi) = Bzi(G

�1) = Bpo(G).
Similarly, we obtain from (19), withW = G�1 andV = I

kK2S(s)k1 � max
RHP-poles,pi

kB�1zo (G
�1
mo)G

�1js=pi ypik2 = kG�1si js=pi ypik2 (32)

where the last identity follows fromBzo(G�1mo) = Bzo(G
�1) = Bpi(G).

6 Two degrees-of-freedom control

For a 2-DOF controller the closed-loop transfer function from references~r to outputsz1 = Wp(y� r)

becomes
WP (SGK1 � I)R (33)

We then have the following “special” lower bound on this transfer function.
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THEOREM 6. Consider a plantG with Nz � 1 RHP-zeroszj andNp � 0 RHP-polespi 2 C + . Let
the performance weightWP be minimum phase and let (for simplicity)R be stable. Assume that
the closed-loop transfer functionWP (SGK1 � I)R is stable. Then the following lower bound on
kWP (SGK1 � I)R(s)k1 applies:

kWP (SGK1 � I)R(s)k1 � max
RHP-zeroszj in G

kWP (zj)yzjk2 � ky
H
zj
Rmi(zj)k2 (34)

The bound (34) is tight if the plant has oneRHP-zeroz.

Note that this bound does not follow directly from Theorems 1–4. The bound in (34) should be
compared to the following bound for a 1-DOF controller (which follows from Theorem 1, assuming
thatWP is minimum phase).

kWPSR(s)k1 � max
RHP-zeroszj in G

kWP (zj)yzjk2 � ky
H
zj
RB�1zi (Bpo(G)R)js=zjk2 (35)

We see that for the 2-DOF controller only the RHP-zeros pose limitations.

7 Example

In this section we consider the following multivariable plantG

G(s) =

� s�z
s�p �0:1s+1

s�p
s�z

0:1s+1 1

�
; with z = 2:5 and p = 2

The plantG has one multivariable RHP-zeroz = 2:5 and one RHP-polep = 2. The corresponding input and
output zero and pole directions are

uz =

�
1

0

�
; yz =

�
0:371

0:928

�
; up =

�
0:385

0:923

�
; yp =

�
1

0

�

The RHP-polep can be factorized intoG(s) = B�1po (G)Gso(s) where

Bpo(G) =

� s�p
s+p 0

0 1

�
and Gso(s) =

� s�z
s+p �0:1s+1

s+p
s�z

0:1s+1 1

�

From the lower bound (17), withW = I andV = I, we find

kS(s)k1 � kyHz B
�1
po (G)js=zk2 =

[ 0:371 0:928 ]

�
9 0

0 1

�
2

= 3:4691

Next, we use Theorem 5 (withW = I andV = I) to find the feedback controller which minimizeskS(s)k1.
With k0 = 10�2 we get the following balanced minimal state-space realization of the feedback controllerK2

K2(s) = G�1smoPQ
�1(s)

s

=

2
4 �10 188:4 �75:49

0 306 �122:6

203 �6508 2605

3
5 which achieves kS(s)k1 = 3:4691

Note the large gain in the controller (large elements in theD matrix). The reason is the small value ofk0 =

10�2, k0 must be small to get theH1-norm ofS close to the lower bound. Note, it is not surprising that we get
large gains in the controller (and large input usage) since no weight has been put on the transfer functionK2S.
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Next, consider minimizing the input usage, i.e. to minimize theH1-norm ofK2S. We have two lower
bounds onkK2S(s)k1, but they are identical since the bounds are tight. We use the equalityK2S = TIG

�1

and the lower bound (20) withW = I andV = G�1, to obtain6

kK2S(s)k1 � kuHp G
�1B�1zi (G

�1
mi)js=pk2 = kuHp G

�1
so (p)k2 = 3:077

In (Havre, 1998, Section 5.7) reference tracking is also considered, and the benefit of applying2-DOF

controller when the plant is unstable is illustated.

8 Conclusion

� We have derived tight lower bounds on closed-loop transfer functions valid for multivariable
plants. The bounds are independent of the controller and therefore reflects the controllability of
the plant.

� The bounds extend and generalize the results by Zames (1981), Doyle et al. (1992), Skogestad
and Postlethwaite (1996) and the results given in Havre and Skogestad (1998), to also handle
non-minimum phase and unstable weights. This allows us to derivenewlower bounds on input
usage due to disturbances, measurement noise and reference changes.

� The new lower bounds on input usage make it possible toquantifythe minimum input usage for
stabilization of unstable plants in the presence of worst case disturbances, measurement noise
and reference changes.

� It is proved that the lower bounds aretight, by deriving analytical expressions for stable con-
trollers which achieves anH1-norm of the closed-loop transfer functions equal to the lower
bound for large classes of systems.

� Theorem 6 expresses the benefit of applying a2-DOF controller compared to a1-DOF controller
when the plant is unstable and has a RHP-zero.
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A Proofs of the results

Proof of Theorem 1. We prove (17) by applying the following six steps:

1) Factor out RHP-zeros inWSV : RHP-poles inG appears as RHP-zeros inS. Factor outS = eS Bpo(G)
to obtain

WSV (s) = Bzo(W )Wmo
eS Bpo(G)V

= Bzo(W ) Wmo
eS (Bpo(G)V )mi| {z }
(WSV )m

Bzi(Bpo(G)V )

WSV is stable by assumption. From the assumption on internal stability it follows thatS is stable (if one
closed-loop transfer function is stable then internal stability implies that all the other closed-loop transfer
functions are stable). Then it is only the RHP-zeros inS which can cancel RHP-poles inV andW . So,
factorizing the zeros inC + of W does not introduce instability in(WSV )m, since none of these cancel
unstable modes inS or V . Similarly, we can factorize the zeros inC + of V . However, when factorizing
the zeros inS we must avoid factorizing the zeros which cancel poles inC + of V . Otherwise,(WSV )m
becomes unstable. By factorizing only the zeros in a minimal realization ofBpo(G)V we accomplish
this. SinceW is stable there are no canncellations against the zeros inS due to poles inG. It then
follows that(WSV )m is stable.
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2) Introducef(s) = max
kx1k2=1; kx2k2=1

xH1 (WSV )m x2, then

kWSV (s)k1 = k(WSV (s))mk1 � kf(s)k1

3) Apply the maximum modulus theorem tof(s) at the RHP-zeroszj of G

kf(s)k1 � jf(zj)j

4) Resubstitute the factorization of RHP-zeros inS, i.e. useeS = S B�1po (G)

f(zj) = max
kx1k2=1; kx2k2=1

xH1 Wmo S B
�1
po (G) (Bpo(G)V )mi js=zjx2

= max
kx1k2=1; kx2k2=1

xH1 Wmo S V B�1zi (Bpo(G)V )js=zjx2

5) Use the interpolation constraint for RHP-zeroszj in G, i.e. useyHzjS(zj) = yHzj

f(zj) = max
kx1k2=1; kx2k2=1

xH1 Wmo S V B
�1
zi (Bpo(G)V )js=zjx2

� max
kx1k2=1; kx2k2=1

xH1 Wmo yzjy
H
zj
S V B�1zi (Bpo(G)V )js=zjx2

= max
kx1k2=1; kx2k2=1

xH1 Wmo yzjy
H
zj
V B�1zi (Bpo(G)V )js=zjx2

6) Evaluate the lower bound

kWSV (s)k1 � jf(zj)j � kWmo(zj)yzjk2 � ky
H
zj
V B�1zi (Bpo(G)V )js=zjk2

Since these steps apply to all RHP-zeros inG, the bound (17) follows. 2
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