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input output controllability

It is well known that the presence of RHP (‘unstable’)
zeros and poles pose fundamental limitations on the
achievable control performance. This was quantified for
SISO systems by Bode! more than 50 years ago, and
most control engineers have an intuitive feeling on the
limitations for scalar systems. Rosenbrock?®? pointed
out that multivariable RHP-zeros pose similar limita-
tions. Nevertheless, the quantification of the effect of
RHP-zeros and poles on closed-loop performance has
been much more difficult for MIMO than for SISO
systems. Important reasons are:

1. The definition of phase is difficult to generalize to
MIMO-systems.

2. The directionality of zeros and poles in multi-
variable systems has not been well understood.

The goal of this paper is therefore to address the fol-
lowing questions:

1. How is closed-loop performance influenced by the
location of the RHP-zeros and poles in MIMO-
systems?

2. How is closed-loop performance influenced by the
directionality of the RHP-zeros and poles in
MIMO-systems?
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3. How is closed-loop performance influenced by the
combined effect of RHP-zeros and poles and their
directions?

We will mainly quantify the fundamental limitations
imposed by RHP-zeros and poles in terms of lower
bounds on the peaks (H.,—norm) in the closed-loop
transfer functions S (sensitivity) and T (complementary
sensitivity).

Why consider peaks in S and T?

Figure 1 shows a one degree-of-freedom feedback con-
trol configuration. The plant G and the controller K
interconnection is driven by the reference commands r,
disturbances d and measurement noise #. The outputs to
be controlled are y, and u are the manipulated variables.
We assume that the performance is measured at the
output of the plant G in terms of the error signal
e =y —r. For the closed-loop system we have the fol-
lowing important relationships:

y(s) = T(s)r(s) + S(s)d(s) — T(s)n(s) (1)
e(s) = —S(s)r(s) + S(s)d(s) — T(s)n(s) (2)
u(s) = K(s)S(s)(r(s) — n(s) — d(s)) (3)

where sensitivity and complementary sensitivity func-
tions are defined by

S(s)2 (I + L(s))™ 4)
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Figure 1 One degree-of-freedom feedback control configuration

T2 L)+ L(s) ™ = L(s)S(s) =T S(s)  (5)

and L2 GK is the loop transfer function. The relation-
ships (1)~(3) imply several closed-loop objectives, in
addition to the requirement the K should stabilize G*

1. For disturbance rejection make &(S) small.

2. For noise attenuation make &(T) small.

3. For reference tracking make o(T) ~ o(T) = 1.
4. For control energy reduction make o(KS) small.

If the unstructured uncertainty in the plant model G is
represented by an additive perturbation, ie. G, =
G + A, then a further closed-loop objective is

5. For robust stability in the presence of an additive
perturbation make &(KS) small.

Alternatively, if the uncertainty is modelled by a multi-
plicative output perturbation such that G, = (I + A)G,
then we have:

6. For robust stability in the presence of a multi-
plicative output perturbation make &(7T) small.

The condition S+ 7T =TI holds for MIMO-systems,
and it then follows that we cannot have both S and T
small simultaneously, and that G(S) is large if and only
if o(T) is large.

Typical plots of the maximum singular values
(S(jw)) and 6(7T(jw)) are shown in Figure 2. For those
frequencies where 7(S(jw)) > 2, we have more than
100% control error and for those frequencies where
(7T (jw)) > 2, we have more than 100% amplification
of the noise. The peaks || S(s) || and || 7(s) |/oc there-
fore tell us a great deal about the performance of the
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Figure 2 Typical plots of 3(S(jw)) and &(T(jw))

*The terﬁ\‘éomrdﬁébﬂity’ is here used in a wider sense than the
meaning of state-controllability; see Ref 5, Definition 5.1, p. 160 and
the discussion on p. 123.

feedback system for the worst case direction and the
worst case frequency. Although S and T depend on the
controller K, the lower bounds on | S(s) | and
|| 7(s) |loo derived in this paper are independent of K. If
the lower bounds are large (typically larger than 4) then
the plant G is fundamentally difficult to control, i.e. the
‘controllability’* of the plant G is poor. In this paper we
look at the combined effect of RHP-zeros and poles and
we show that the lower bounds on || S(s) || and
|| T(s) llc can become quite large when the plant con-
tains both RHP-zeros and poles. Finally, it should be
noted that there are also other fundamental limitations
on performance than those imposed by RHP-zeros and
poles, (see e.g. Ref. 5).

Notation

We consider linear time invariant dynamical systems on
state-space form

X = Ax + Bu (6)
y=Cx+ Du (7)

In Equations (6) and (7), u are the external inputs x are
the states and y are the outputs. 4, B, C and D are real
matrices of dimensions nxn, nxm, Ixn and I xm
where »n is the number of states, m is the number of
inputs and / is the number of outputs. The short-hand
notations

Gé[”c‘ g] and (4, B, C, D) ®8)

are frequently used to describe a linear state—space
model of the continuous system G given by Equations
(6) and (7). The rational transfer function matrix G(s)
(of size / x m) defined by Equation (8) can be evaluated
as a function of the complex variable s,

G(s)=C(sI—A)'B+D (9)

We often omit to show the dependence on the complex
variable s for transfer functions. We consider the feedback
control configuration shown in Figure I with the closed
loop transfer functions given in Equations (1-3) where the
sensitivity and the complementary sensitivity functions (S
and 7T) are defined by Equations (4) and (5). With the
term ‘peak of a rational transfer function matrix’ we
mean its H,,-norm, defined as (see also Figure 2)

1 M) ke 2 P a(M(ju)) (10)

RHP-zeros z and poles p are in this paper defined to
be in the closed RHP, denoted C,, i.e. zeC, implies
Re z >0, and pe@+ implies Re p > 0. However, for
some of the results in this paper the location of some
RHP-zeros or RHP-poles are restricted to be in the
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open RHP, denoted C,, i.e. zeC, implies Re z > 0, and
peC, implies Re p > 0.

Outline

The outline of the paper is as follows. First we give an
literature overview and then we discuss zeros and poles
of multivariable systems and their directions. We derive
constraints on the sensitivity and the complementary
sensitivity functions imposed by RHP-zeros and poles.
Next, we consider the lower bounds on the peak in the
weighted sensitivity and complementary sensitivity
functions. At the end we give a multivariable example
and a conclusion. All proofs are given in Appendix A.

Previous work on limitations imposed by
RHP-zeros and poles

Bode!, in his book on network analysis and feedback
amplifiers, was probably the first to study a priori con-
straints on the achievable performance of SISO-systems.
His analysis was focused on gain-phase relationships in
the frequency domain which resulted in many useful
interpretations applicable to feedback control. Hor-
owitz® summarizes and generalizes Bode’s work to con-
trol systems. The well-known Bode sensitivity integral'
states that for stable SISO-systems with pole-zero excess
of two or larger, the integral of the logarithmic magni-
tude of the sensitivity function over all frequencies must
equal zero

Jln|S(jco)|dw=O (11)
0

This implies that a peak in |S] larger than 1 is unavoid-
able. Later, Bode’s criterion has been extended to plants
with RHP-zeros and poles by Freudenberg and
Looze”8. From these results it is clear that even larger
peaks are expected when the plant contains RHP-zeros
and/or RHP-poles.

A related result from optimal control theory is the
Kalman inequality®

F(S:(jw)) < 1, Vo (12)

where S, & (I+ K(sI— 4)""'B)™" and K is the optimal
state feedback gain matrix. The Kalman inequality is
valid for both stable and unstable MIMO-systems under
optimal state feedback control, with diagonal weight on
the manipulated variables in the performance objective
(Ref. 5, pp. 357-358). This inequality is not in conflict
with the Bode’s sensitivity integral nor with the extended
version valid for RHP-zeros. The reason for this is that
optimal control with state feedback yields a loop transfer
function with a pole-zero excess of one so Bode’s sensi-
tivity integral does not apply. Secondly, there are no
RHP-zeros when all the states are measured so the
extended Bode’s sensitivity integral can not be applied.

The combination of no RHP-zeros when all the states
are measured, and the introduction of optimal control
theory (i.e. the Kalman inequality) may have had a
misleading role in multivariable feedback design, which
resulted in that very little attention where given to mul-
tivariable zeros during the 1960s and 1970s. As one
example, in their book, Anderson and Moore!'? do not
mention the effect of zeros on closed-loop performance
for multivariable system at all. However, some quanti-
fication of the effect of RHP-zeros has been made dur-
ing the 1970s. For MIMO systems Kwakernaak and
Sivan (Ref. 11, pp. 306-307) state that perfect tracking
with state feedback can be achieved if and only if the
rational transfer function matrix from the inputs to the
outputs has no RHP-zeros.

Zames and coworkers'>"'® consider minimizing the
‘H-norm of the sensitivity matrix multiplied by suitable
weighting matrices. In Zames'? it is shown how feed-
back can reduce the weighted sensitivity and in parti-
cular how the weighted sensitivity can be made
arbitrarily small whenever the plant has no RHP-zeros.
In Zames and Bensoussan'# an alternative approach is
developed which is not dependent on a priori para-
meterization, but specialized to diagonal feedback.
Zames'? derives a lower bound on the weighted sensitivity
function (see Theorem 5 below), which is based on the
interpolation constraint on the sensitivity function valid
for RHP-zeros in G. The results in this paper are based
on this and a similar interpolation constraint on the
complementary sensitivity function valid for RHP-poles
in G. We then follow much of the same approach made
by Zames to derive the lower bounds.

Boyd and Desoer!’, Freudenberg and Looze®, Boyd
and Barratt'® and Chen!® have studied the limitations
imposed by RHP-zeros and poles in terms of sensitivity
integral formulas for MIMO-systems. A breakthrough
was made by Boyd and Desoer who obtained inequality
versions of the sensitivity and Poisson integral formulas,
based on the recognition that the logarithm of the lar-
gest singular value of an analytic transfer function
matrix is a subharmonic function. The work by Chen
differs from the work by Boyd and Desoer in that Chen
seeks equality versions of the sensitivity and Poisson
integral formulas. Based on the results by Boyd and
Desoer, Freudenberg and Looze and Boyd and Barratt
generalize the integral constraints on the sensitivity (like
Bode’s sensitivity integral) to MIMO-systems. Although
these integral relationships are interesting, it seems dif-
ficult to derive any concrete bounds on achievable per-
formance from them. However, for the case when G has
one RHP-zero z with output direction y, and one RHP-
pole p with output direction y,, the following bound is
given by Boyd and Desoer!’

|2+ P

I156) o2 -0

cos /(yp, ¥:) (13)

where /(y,, y:) is the angle between the pole and zero
directions y, and y,.
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The following similar but improved bound for the
same case (one RHP-zero and one RHP-pole) is given
by Chen!%20,

[} 8(5) lloo> €2

) (14)

\/sin2 L(ypryz) + Iz +p|2 cos? L(yp, yz)

Iz — pl
where
= = - .. _ 1 m
()= 5 J Jloglx_H.y — |V 1083 (Sim(x + jy))dxdy
C.

(15)

and Q(z) > 0 (see the text in Chen!® following proof of
Corollary 5.1 on p. 1712). Note that the factor Q(z) can
not be evaluated without knowledge about the con-
troller K, and even when K is known it is hard to eval-
uate Q(z). In any case, it appears®! that Q(z) = 0 for the
optimal controller minimizing {| S(s) ||. Using alge-
braic rather than integral constraints, we derive in this
paper a tight bound which is similar to Equation (14)
with Q(z) = 0. However, the bounds presented here
extend Equation (14) to the case where the plant G has
more than one RHP-pole (Theorem 7). Furthermore,
we derive similar results in terms of the weighted com-
plementary sensitivity || wrT(s) ||« for the case where
the plant G has one or more RHP-poles and any num-
ber of RHP-zeros (Theorem 8).

Zeros and poles of multivariable systems

Zeros

Rosenbrock?, Kailath?? and Zhou et al.?? all define the
zeros as the roots of the non-zero numerator poly-
nomials in the Smith-McMillan form. A slightly differ-
ent approach which yield the same set of zeros is taken
by Desoer and Schulman?’. They consider a left
coprime polynomial matrix factorization of G(s),
G(s) = D;j'(s)Ni(s) and define the zeros as the complex
numbers z where the rank of N,(z) is less than the nor-
mal rank of N(s). This is similar to the definition we
use, which is taken from MacFarlane and Karcanias?:

Definition 1 (Zeros): z;eC is a zero of G(s) if the rank
of G(z;) is less than the normal rank of G(s).

The normal rank of G(s) is defined as the rank of G(s)
at all s except a finite number of singularities (which are
the zeros). This definition of zeros is based on the
transfer function matrix, corresponding to a minimal
realization of a system. These zeros are sometimes called
‘transmission zeros'?’, but we shall simply call them
‘zeros’.

*That || x;; ||2 is generally different from 1 is the primary reason why
we denote x,; vector and not a direction.
tStrictly speaking, the transfer function G(s) cannot be evaluated at
§ = p, since G(s) is not analytic at s = p.

Definition 2 (Zero Directions): If G(s) has a zero for
s = zeC then there exist non-zero vectors labeled the
output zero direction y,eC’ and the input zero direction
u.€C™, such that yy, = 1, u¥u, = 1 and

G(2)u, =0; yG(z)=0 (16)

The definitions of input and output zero directions can
further be extended with the state input and output zero
vectors through the use of generalized eigenvalues. For
a system G(s), the zeros z of the system, the input zero
directions u, and the state input zero vectors x,,¢C" can
all be computed from the generalized eigenvalue pro-
blem

S E R

In this setup we normalise the length of u,, i.e. ufu, = 1.
This imply that the length of x,; is different from one.*
Similarly, one can compute the zeros z, the output
zero directions y, and the state output zero vectors
x,,€C" through the generalized eigenvalue problem

w1 Bl =10 o (18)

with the length of y, is normalised, so that y7y, = 1. Let
(4, B, C, D) be a minimal realization of G(s), computing
the zeros from the eigenvalue problems (17) and (18)
yields the ‘transmission zeros’?>,

Poles

Rosenbrock?, MacFarlane and Karcanias?®, Callier and
Desoer®® and Zhou et al.?® all define the poles as the
roots of the denominator polynomials in the Smith—
McMillan form of G(s). For a linear time invariant
system with minimal state—space description Equations
(6) and (7), these roots corresponds to the eigenvalues of
the 4 matrix (Ref. 26, pp. 75-78). Thus, the poles are
the roots of the characteristic equation

n

¢(s) = det(s/ — 4) = [[(s = p) = 0 (19)

=1

Bode! states that the poles are the singular points at
which the transfer function fails to be analytic. The sin-
gularities appear in the denominator so when the system
G is evaluated' at s = p, G(p) is infinite in some direc-
tions at the input and the output. This is the basis for
the following definition of input and output pole direc-
tions.

Definition 3 (Pole Directions): Let s = peC be a dis-
tinct pole of G(s) then there exist unique input and
output directions #,eC™ and y,eC’ such that

G(p)uy = 00: y'G(p) = oo (20)

More precisely G(p)u, = y, - 00 and y/G(p) = u/ - 0c.
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The following result shows how to compute the pole
directions for a system with state—space realization.

Lemma 4 (Pole Directions): For a system G with a
minimal state-space realization (4, B, C, D), the pole
directions associated with the distinct pole peC can be
computed from

Up = Bpri/ I Bpri l2s ¥p = Cxpo/ || Cxpo |2

(21)

where x,C" and x,,cC” are the eigenvectors corre-
sponding to the two eigenvalue problems

Hy_ H. -
XA =Xx,pi AXpo = PXpo

Constraints on S and T

To have internal stability, we cannot allow right half
plane pole-zero cancellations between the plant and
controller, and this may be formulated as ‘interpolation
constraints’ on closed-loop transfer functions, such as S
and 7. For MIMO-systems these interpolation con-
straints have directions.

Constraint 1 (RHP-zero): If G(s) has a RHP-zero at
s =z with output zero direction y,, then for internal
stability of the feedback system the following interpola-
tion constraints must apply

yT(z)=0; yS(z) =7 (22)

In words, Equation (22) says that 7 must have a RHP-
zero in the same direction as G and that S(z) has an
eigenvalue of 1 with corresponding left eigenvector y,.

Constraint 2 (RHP-pole): If G(s) has a RHP-pole at
s = p with output direction y,, then for internal stability
of the feedback system the following interpolation con-
straints must apply

SP)yy =0, T(P)y, =y (23)

Similar constraints apply to Sy and 77, but these are in
terms of the input zero and pole directions, u, and u,.

All-pass factorizations of RHP-zeros and poles

A transfer function matrix B(s) is all-pass if
B(—s)" B(s) = I, which implies that all singular values of
B(jw) are equal to one.

A plant G(s) with RHP-poles p;eC, and RHP-zeros
z;eC,, can be factorized at the output as follows*

*Note that the notation on the all-pass factorizations of RHP-zeros
and poles used in this paper is reversed compared to the notation used
in Refs 5, 27 and 28. The reason to this change of notation is to get
consistent with what the literature generally defines as an all-pass
filter.

G(s) = B,y (G(5))Gio(s);  G(5) = Bzo(G(5))Grmo(5)

(24)

where G, is minimum phase, G, is stable, and B,,(G)
and B;,(G) are stable all-pass rational transfer function
matrices where B,,(G) contains the RHP-poles of G as
RHP-zeros and B,,(G) contains the RHP-zeros of G.
B,,(G) is obtained by factorizing at the output one
RHP-pole at a time, starting with G(s) = B;II(G)G,,I(S)
where

_ 2R€(p]) A A
1 _ H
Bpl (G) =1+ s— Yp1Yp,

and j,, = y,, is the output pole direction for p;. This
procedure may be continued to factor out p; from
Gpi(s) where j,, is the output pole direction of G,
(which need not coincide with y,;, the pole direction of
G), and so on. A similar procedure may be used for the
RHP-zeros. We get?®

= N +[_), P
o (25)
_ 5 2Re(p;) »
Bpo](G) = (1+ _pl P’y;g)
i=1 !

B..(G) = I- V¥V )
( ) E( S+ZJ‘ 4] zl) (26)
-1 1 2Re(z) o .n
Bzo(G)z H(I+ . ,szyzj)
=N, §—z;

If N, =0 we define B,,(G) =1 and if N, =0 define
Boo(G) = 1.

For further details regarding the state-space realiza-
tions of the factorizations and properties of the all-pass
filters, see Ref. 29. The output factorization of RHP-
zeros is also given in Ref. 23, p. 145 and in Refs 19 and
20. It can be traced back to Wall er al.3® We note that
similar factorizations of RHP-zeros and poles apply at
the plant input.

Alternative all-pass factorizations are in use, e.g. the
inner-outer factorization used in Morari and Zafiriou?'
which is the same as Equation (26) except for the mul-
tiplication of a constant unitary matrix. Reasons for
using the factorizations (25) and (26) are:

1. The factorization of RHP-zeros given here is ana-
Iytic and in terms of the zeros and the zero direc-
tions, whereas the inner-outer factorization in
Morari and Zafiriou®' is given in terms of the
solution to an algebraic Riccati equation.

2. To factorize RHP-poles using the inner-outer fac-
torization one needs to assume that G~! exit.
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Lower bounds on || wpS(s) || and
| wrT(s) [loo

Limitations imposed by RHP-zeros

The following result is originally from Zames'? and it
is based on the interpolation constraints imposed by
RHP-zeros in G.

Theorem 5 (RHP-zero and || wpS(s) ||eo): Suppose the
plant G(s) has an RHP-zero at s = z. Let wp(s) be a
scalar stable transfer function. Then for closed-loop
stability the weighted sensitivity function must satisfy

| weS(s) lleo> [we(2)] (27)

The proof of Theorem 5 is given in Zames'”. Condition
Equation (27) shows that there are inherent perfor-
mance limitations imposed by RHP-zeros. It involves
the maximum singular value, || wpS(s) ||eo= sup,
o(wpS(jw)), which is the ‘worst’ direction, and the
RHP-zero may therefore not be a limitation in the other
directions.

Limitations imposed by RHP-poles

The following ‘symmetric’ result is based on the inter-
polation constraints imposed by RHP-poles in G. It
extends the SISO result given in Doyle et al.32

Theorem 6 (RHP-pole and || wrT(s) ||o): Suppose the
plant G(s) has an RHP-pole at s = p. Let wr(s) be a
scalar stable transfer function. Then for closed-loop
stability the weighted complementary sensitivity func-
tion must satisfy

I wrT(s) lloo2 (wr(p)] (28)

RHP-poles combined with RHP-zeros

By considering the effect of one RHP-zero and one
RHP-pole separately we derived in Equations (27) and
(28) the conditions

I weS(s) o2 c1we(z)| (29)

I wrT(s) lloo> e2|wr(p)] (30)

with ¢; = ¢; = 1. These conditions may be optimistic in
that the lower bound may be too small, and indeed we
show that ¢; > 1 and ¢; > 1 for the case when we have
both an RHP-zero and an RHP-pole with some align-
ment in the same direction.

Theorem 7 (MIMO Sensitivity Peak): Suppose the
plant G(s) has N; > 1 RHP-zeros z; with output direc-
tions y; and N, >0 RHP-poles pC, with output
directions y,;. Let the performance weight wp be a scalar
stable minimum phase transfer function. Define the all-
pass transfer function matrix in Equation (25). Then for

closed-loop stability the weighted sensitivity function
must satisfy

| wpS(s) 12 max 1 oy(2)

(31)
where c1; =|| y/B,, (G)l,_y; 2> 1

Theorem 8 (MIMO Complementary Sensitivity Peak):
Suppose the plant G(s) has N, > 0 RHP-zeros z;eC,
with output directions y,, and N, > RHP-poles p; with
output directions y,,. Let the performance weight wr be
a scalar stable minimum phase transfer function. Define
the all-pass transfer function matrix in Equation (26).
Then for closed-loop stability the weighted com-
plementary sensitivity function must satisfy

| wrT(s) [loo=> max cz,i|wr(p;)|
e (32)
where €2,i :” Bz_o (G)|s=piypi HZZ 1

Note that ¢ ; and ¢ ; are independent of the controller
K and only depend on the location of RHP-zeros and
poles and their directions. As we shall see in the exam-
ples the values of ¢;; and c; can be much larger than
one when the plant has both an RHP-zero and an RHP-
pole located close to each other and with some align-
ment in their directions.

For the special case with one RHP-zero and one
RHP-pole we have the following result.

Corollary 9 (One RHP-zero and one RHP-pole):
Given the system G(s) with one RHP-pole and one
RHP-zero. In this case the constants ¢; and ¢, in Equa-
tions (31) and (32) are given by the equation

cC=C =0 = \/Sin2(¢)+|z+p2
|z = pl

t2

cos’(¢) >1 (33)

where ¢ = cos™' (|y¥y,|).

For SISO-systems, Theorems 7 and 8 become:

Corollary 10 (SISO Sensitivity Peak): Let the G(s) be
a SISO-system with N, > 1 RHP-zeros z; and N, > 0
RHP-poles p;eC... Let the performance weight wp be a
stable minimum phase transfer function. Then for
closed-loop stability the weighted sensitivity function
must satisfy

| weS(s) |loc> rnzfj_lxcule(Zj)l

No\ = (34)
where ¢ ; = H% >1
1 1%~ Pi

Corollary 11 (SISO Complementary Sensitivity Peak):
Let the G(s) be a SISO-system with N, > 0 RHP-zeros
z;¢C, and N, > 1 RHP-poles p;.

Let the performance weight wr be a stable minimum
phase transfer function. Then for closed-loop stability
the weighted complementary sensitivity function must
satisfy
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 wrT(s) lloo> max cs,ijwr(ps)|

(35)
where ¢;; = H:? +§'I 2
J i

Equations (34) and (35) follow easily from Theorems 7
and 8 by setting the zero and pole directions equal to 1
and assuming that all RHP-poles are observable and all
RHP-zeros are ‘transmission zeros’.

Peaks in S and T. From Theorem 7 we get by select-
ing wp(s) =1

1S6) flooZ  max c1; (36)

and from Theorem 8 we get by selecting wr(s) = 1

> )
| T(s) lloo> RH},‘};’I;YW. €2, (37)

Thus, a peak for 3(S(jw)) and &(T(jw)) larger than 1 is
unavoidable if the plant has both an RHP-zero and an
RHP-pole (unless their relative angle ¢ is 90°).

Example

We consider the following plant

1 . s—z

o= ][ e [

0 5jlsine cose |, -
z=2,p=3

which has an RHP-zero at z =2 and an RHP-pole at
p = 3. For a = 0° the rotation matrix U, = I, and the
plant consists of two decoupled subsystems

S=2 0
Gols) = [(““*5 R }
0.1+ ) (5+p)

The subsystem g;; has both an RHP-zero and an RHP-
pole, and closed-loop performance is expected to be
poor. On the other hand, there are no particular control
problems related to subsystem gy, With o = 90°,

U, = [(1) _01 ] , which gives
_ 54z
(0.1s+1)(s—p)

G90(S) = [ s—z
(0.1s

+1)(s+p)

we have again two decoupled subsystems, but this time
in the off-diagonal elements. The main differences is
that there is no interaction between the RHP-zero and
the RHP-pole in this case, so we expect this plant to be
easier to control. For other values of @ we do not have

decoupled subsystems, and there will be some interac-
tion between the RHP-zero and the RHP-pole. Since
the pole is located at the output of the plant, its output
direction is fixed, we find y, = [1 0]” for all values of
a. On the other hand, the zero direction changes from
[1 0] fora=0°to [0 1] for a =90°. Thus, the
angle between the pole and zero direction, ¢, will also
vary between 0° and 90° as « varies from 0° to 90°, as
seen from Table I, where we also give ¢; and ¢; for four
rotation angles, a = 0°, 30°, 60° and 90°. The table also
shows the values of || S(s) ||l and || 7(s) ||lco using Hoo-
optimal controllers minimizing

. wpS . o (S/IM+wp
min I [w,,KS] lo With w, =1; wp = (————S 1

(38)

where M =2 and wj =0.5. The weight wp for the
weighted sensitivity means that we require || S(s) || less
than 2, and require tight control up to a frequency of
about w} = 0.5 rad s~'. The minimum H,-norm for the
stacked S/KS problem Equation (38), is given by the
value of y in Table 1. Plots of the sensitivity S and the
complementary sensitivity 7 are given in Figure 3. The
responses to the step change in the reference r = [1 — 1]7
are shown in Figure 4. Several things are worth noting:

1. We see from the simulation for ¢ = 0° in Figure 4
that the response for y; is very poor. This is as
expected because of the closeness of the RHP-zero
and pole (z=2,p=13).

2. The bound ¢; on || S(s) || in Equation (36) is
tight in this case. This can be shown numerically
by selecting w, = 0.01, wg = 0.01 and M; =1 (w,
and wp are small so the main objective is to mini-
mize the peak of S). We find that the H . -designs
for the four angles yield

a 0° 30° 60° 90°
| S(s) oo 5.04 1905  1.155 1.005
¢ 5.0 1.89 1.15 1.0

3. The angle ¢ between the zero and the pole direc-
tions, is quite different from the rotation angle a
at intermediate values between 0° and 90°. The
reason for this is the influence of the RHP-pole in
output 1, which yields a strong gain in this

Table 1 Results

0° 30° 60° 90°

1 0.33 0.11 0

Iz 0] |-094 099 |1
p=cos'pHy,| 00 709° 83.4°  90°
c=c¢ =0 5.0 1.89 1.15 1.0
Hoo— NG - 7.00 2.60 1.59 1.98
designs [17(5) | oo 7.40 2.76 1.60 1.31
using Stable K? No No Yes Yes
(38) y(S/KS) 9.55 3.53 2.01 1.59
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Figure4 MIMO-plant with angle ¢ between the RHP-zero and the RHP-pole directions. Response to step in reference with Hu-controller for four

different values of ¢. Solid line: y;; dashed line: y;

direction, and thus tends to push the zero direction
toward output 2.

4. For a =0° we have ¢; =¢c; =15 so || S(s) [|ec> 5
and || T(s) [l«> 5, so it is clearly impossible to get
|| S(s) lloo less than 2, as required by the perfor-
mance weight wp.

5. The H.-optimal controller is unstable for a = 0°
and 30°. This is not surprisingly, because for
a = 0° the plant is two SISO-systems one of which
needs an unstable controller to stabilize it, since
P>z

Conclusion

We have presented lower bounds on the peak in weigh-
ted sensitivity and complementary sensitivity functions
for systems with RHP-zeros and poles. Peaks in the
sensitivity and complementary sensitivity functions are
unavoidable if the plant has both a RHP-zero and a
RHP-pole with some alignment. These lower bounds on
the sensitivity functions demonstrate the fundamental
limitations imposed by open-loop characteristics as

RHP-zeros and poles. The intentions with the deriva-
tion of these lower bounds are:

To derive measures which quantify the effect of
open-loop RHP-zeros and poles has on closed
loop performance. These measures are indepen-
dent of the controller and the control configura-
tion and therefore reflects the controllability of the
plant.

To get better understanding of the directionality of
RHP-zeros and poles.

We also expect that the derived bounds will be useful
when selecting performance weights for controller
design and analysis.
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Appendix A: Proofs of the results

Proof of Lemma 4. We have for s=p,
G(p) = C(pI — A)"' B+ D. Since p is an eigenvalue of A
and x,, is the eigenvector corresponding to the pole p,
(pI — A)xp, = 0. Therefore x,, is the output state direc-
tion with infinite gain for (p/ — 4)"'. The normalized
output pole direction becomes y, = Cxpo/ || Cxpo |2 as
long as || D|| is finite. The input pole direction u,
follows similarly as the conjugate of the output direc-
tion of the transposed system G7.

Proof of Equation (22): The output direction is given
by y#G(z) = 0. For internal stability the controller can-
not cancel the RHP-zero and it follows that L = GK has
a RHP-zero in the same direction, i.e. y’L(z) = 0. Now,
S = (/4 L)' is stable and thus has no RHP-pole at
s = z. It then follows from 7 = LS that y”T(z) = 0 and
V(1= 8(2)) = 0=yt = yS(2).

Proof of Equation (23): The square matrix
L(s) = GK(s) has an RHP-pole at s =p, and if we
assume that L(s) has no RHP-zero at s = p, then L™'(p)
exists and the output pole direction y, is given by
L7 '(p)y, = 0. Since T is stable, it has no RHP-pole at
s=p, so T(p) is finite. It then follows from S = TL~!
that S(p)yy, = T(p)L™ ' (p)y, =0 and that
T(p)yp = (1= S(p))yp = yp.

Proof of Theorem 6. Introduce the scalar function

fis) = 3, wr(s)T(s)y,

which is analytic in the RHP since wrT(s) is stable. We
then have

Il wrT(s) lloo2 1 A5) lloo2 [AP)| = [wr(p)| (A1)

The first inequality follows since the singular value
measures the maximum gain of a matrix independent
of direction and || y, ||l,= 1. The second inequality fol-
lows from the maximum modulus theorem. The final
equality follows since wy(s) is a scalar transfer func-
tion, and from the interpolation constraint T(p)y, = y,
we get ' T(p)y, = yilyp = 1.

Proof of c¢;; in Theorem 7: We consider one RHP-
zero z with output direction y, at a time (the subscript j
is omitted). Factorize the N, RHP-poles p; in
G(s) = B;ol (G)Gsos), where B;OI(G) is given by Equa-
tion (A25). It follows that G, (s) is stable, B,,(G) has all
singular values and absolute value of all eigenvalues
equal to one for s = jw and E(B;Ol (G(s))) > 1 whenever
Re(s) > 0 (see Ref. 29, Lemma 2). The loop transfer
function can then be written

L(s) = GK(s) = B, GK(5)2 B, (G) Ln(s)
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then

= TL;(5)B,0(G(s)) 2

Introduce the scalar function f{s) = y#wp(s)Sm(s)y
which is analytic (stable) in RHP. We want to choose y
so that |f{s)| obtains maximum

S=TL SmBpo(G(5))

J(5) = max, Ifs) 1= max, b2wp(s)Sm(5)

We then get

Il weS(s) loo=ll WeSm(s) lloo 2l J(5) lleo> |/(2)] =
max we()y: B,y (G)lo—oyl = Iwr(2)| | YB,y (G II2

(A2)

The first equality follows since B, 1(G(s)) is all-pass for
s = jw. The first inequality follows since the singular
value measures the maximum gain of a matrix indepen-
dent of direction, so 6(4) >|| Aw |2 and 5(A4) >| w4 |2
for any vector w with || w |2= 1. The second inequality
follows from the maximum modulus theorem. The sec-
ond equality follows from

YESn(z) = yIS(2)B,, (G)l,—. = ¥I'B;) (G);=.

and the fact that wp(s) is a scalar. The last equality fol-
lows from the fact that the largest singular value mea-
sures the largest gain and is equivalent to the two-norm.
The fact that ¢;; > 1 follows from a,(BW' (G(8))) = 1Vi
when Re(s) > 0 (Ref. 29, Lemma 2).

Proof of ¢y ; in Theorem 8: We consider one RHP-pole
p with output direction y, at a time (the subscript i is
omitted). Factorize the N, RHP-zeros z; in
G(s) = B;o(G)Gmo(s), where B.,(G) is given by Equa-
tion (A26). It follows that G,,(s) is minimum phase,
B.,(G) has all singular values and absolute value of all
eigenvalues equal to one for s = jw (see Ref. 29, Lemma
2). The loop transfer function becomes

L(s) = GK(5) = B.o(G)GrmoK(5)2 Byo(G)Lom(s)

Factorize T= LS = BZO(G)L,,,SQ B,,(G)T,, and intro-
duce the scalar function f(s) = y"wrT,(s)y, which is

analytic in RHP. We want to choose y so that |f{s)|
obtains maximum

J(s) = max |f(s)] = max [y"wr(s)T()p|
[I¥ll2=1 [iyll2=1

We then get

I wrT(s) loo=Il wrTm(s) o2l J(s) looZ [/(p)| =

max wr®) !Bz, (G)=pyol = [wr @)l || B2, (G)s_pp Iz

(A3)

The first equality follows since B,,(G(s)) is all-pass for
s = jw. The first inequality follows since the singular
value measures the maximum gain of a matrix indepen-
dent of direction, so 5(A4) >|| Aw |2 and &(4) >|| w4 |2
for any vector w with || w ||2= 1. The second inequality
follows from the maximum modulus theorem. The second
equality  follows from Tw(p)y, = By, (G)s=p
T(p)y, = By, (G)|s—p¥p- The last equality follows from the
fact that the largest singular value measure the largest gain
and is equivalent to the two-norm. The fact that ¢;; > 1
follows from a;(B;, (G(s))) > 1Vj when Re(s) > 0.

Proof of ¢ = ¢; = ¢; in Corollary 9: Note that when
N; = N, =1 both z and p are real and positive, soz = z
and p = p. Consider c¢;

2Re( )

o=l (I+ —— Nyp N2
I 0 UH

=110 y:1|y oz ¥p ll2
p—z 2

_ (Ad)
p+z
= UU"y, + o ~y:¥ s |12

= \/;inzw) + :i fi :i cos? (@)

The matrix U contains a basis for the orthogonal sub-
space to y;, y5. The angle between y, and y} is 90—,
cos(90 — ¢) = sm(¢>) and Equation (A4) follows, We
can interpret Equation (A4) as a weighted projection of
¥, on the subspaces yi, with weight 1, and y,, with

weight %};. In Ref. 17 (Equation (3.15), p. 164) it is the
projection on the orthogonal subspace y; which lacks.

By interchanging the roles of the pole and zero direc-
tions the bound the bound ¢ follows similarly.



