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Abstract - The paper discusses optimal operation of a general heat exchanger network with given structure, heat
exchanger areas and stream data including predefined disturbances.  A method that combines the use of steady state
optimization and decentralized feedback control is proposed.  A general steady state model is developed, which is
easily adapted to any heat exchanger network.  Using this model periodically for optimization, the operating
conditions that minimize utility cost are found.  Setpoints are constant from one optimization to the next, and special
attention is paid to the selection of measurements such that the utility cost is minimized in the presence of
disturbances and model errors.  In addition to heat exchanger networks, the proposed method may also be applied to
other processes where the optimum lies at the intersection of constraints.
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INTRODUCTION
Methods for heat exchanger network (HEN) synthesis
have been developed during the last decades and these
methods aim to design a HEN that yields a reasonable
trade-off between capital and operating cost in the
nominal case.  Since the mid 80’s several authors have
also investigated flexibility of HENs, e.g. Kotjabasakis
and Linnhoff (1986) which introduced sensitivity tables
to find which heat exchanger areas should be increased
in order to make a nominal design sufficiently flexible.
In Papalexandri and Pistikopoulos (1994), HEN
synthesis and flexibility are considered simultaneously
using mathematical programming.
The total design effort (on a systems level) required for a
HEN typically involves the following three stages:

a) Nominal design. Synthesize one or more networks
with good properties for nominal stream data.

b) Flexibility and controllability. Investigate the
networks with regard to flexibility and
controllability, and possibly introduce some
modifications (e.g. increased area) such that at least
one HEN shows satisfactory results.

c) Operation. Design a control system to operate the
HEN properly.  This involves control structure
selection and possibly some method for on-line
optimization.

For each step, some networks may be rejected or the
designer may go back to the preceding step to find other
alternatives.  The steps are usually carried out in a
sequential manner, however, the design may also be of a
more simultaneous character, depending on the methods
used.
Compared to synthesis of nominal and flexible HENs,
much less effort has been dedicated to find methods for
the operation of HENs (step c).  Mathisen et al. (1992)
investigated bypass selection for control of HENs,
without considering the utility consumption.  In
Mathisen et al. (1994) a method for operation of HENs

that minimizes utility consumption is proposed.   The
method is based on structural properties of the network,
however, the variable control configuration may result in
poor dynamic performance.  A method based on
repeated steady state optimization is suggested by
Boyaci et al. (1996), but their focus is not on the control
structure for closed loop implementation.
In this paper, a method for optimal operation of HENs is
proposed.  The method uses steady-state optimization
which is carried out on-line with regular time intervals.
The results of this optimization are then implemented by
specifying the optimal value (setpoint) of some variable
(“optimization variable”). It will be shown that the
choice of optimization variables affects the performance
of the (controlled) HEN when disturbances are present,
and a procedure for optimal selection of these variables
is presented.
With the term optimal operation, we mean that the
following two goals are fulfilled:

• Primary goal: Satisfy targets (usually outlet 
temperatures).

• Secondary goal: Minimize operating cost.

In the following, it is assumed that the stream data (heat
capacity flowrates and supply/target temperatures),
network structure and heat exchanger areas are given and
that the HEN is sufficiently flexible.  To manipulate the
network it is assumed that utility duties can be adjusted
and that a variable bypass is placed across each process-
to-process heat exchanger.  In case of stream splits, we
may also assume that split fractions can be varied.
The remaining part of the paper is organized as follows:
First, the complete method is outlined.  Then, the
procedure for selection of optimization variables will be
described in detail and applied to an illustrating
example. Next, the steady state optimization model is
presented, then the complete method is applied to an
example and finally some conclusions are drawn.



OUTLINE OF METHOD
In order to perform a meaningful on-line optimization, it
is required that there is at least one extra degree of
freedom during operation, and most HENs have this
feature.  As an example consider the network in figure 5
where there are four manipulations (bypasses uA and uB

and heater and cooler duties) to control the three outlet
temperatures to their targets (primary goal).  Hence we
have one manipulation “in excess” which implies one
degree of freedom. This extra degree of freedom can be
used to minimize utility cost, i.e. to achieve the
secondary goal.  Note that the number of degrees of
freedom during operation is different from the synthesis
stage.  Within the “synthesis terminology”, the HEN in
figure 5 has minimum number of units and no degrees of
freedom. (Constraints on ∆Tmin  etc. have no relevance
during operation).  In some cases the degrees of freedom
during operation may be less than the number of excess
manipulations, however, this is not discussed any further
in this paper.
Figure 1 shows a schematic block diagram of the method
that will be described.  The optimizer contains a scalar
objective function (criterion) J which indicates how well
the HEN is operated, and a steady-state model of the
HEN.  As the objective function we will use total utility
cost of the HEN.  The model is optimized regularly and
reference values for the optimization variables are
passed to the controller K2.  The reference values
(setpoints) are constant in the period between each
optimization.

Optimizer

K2

HEN with
base control

u2 y2

d

(u2)
r2

Fig. 1.  General optimizing control structure.

All inputs (manipulations) u and outputs (measurements)
y are separated into u = [u1   u2]

T and y = [y1   y2]
T,

respectively.  y1 are those outputs which have given
target (reference) values and u1 are those manipulations
dedicated to keep y1 at their target values.  Satisfying the
targets for y1 is simply the primary goal, and note that in
figure 1, this is not even drawn since it is assumed that
this “base control” has been implemented.
We want to focus on the secondary goal; utility cost
minimization (variables associated with this goal have
index 2). u2 is the “excess” manipulation(s) which
represent the degree(s) of freedom that we will use to
minimize utility cost.  Of course, one could compute
optimal values for u2 and apply these directly (open-loop
implementation) as indicated by the dashed line in figure
1.  Alternatively, the optimizer could pass reference
values for some “extra” measurements y2 (closed-loop
implementation).  If the disturbance d was perfectly
known (and constant), it would not matter (at steady
state) which variables were chosen.  However, from the
explanation below it will be clear that the choice of
which variables that are passed from the optimizer down
to the control level affects how close to optimum the
HEN can be operated.

The variables r2 that are passed from the optimizer to the
control level will be denoted optimization variables.
Let the disturbance d be partitioned into the following
two contributions:

d = d0 + du

where d0 is the information that the optimizer has about
the disturbances when it performs an optimization, and
du (unknown disturbances) are all deviations from d0 and
the real disturbance until a new optimization is carried
out.  That is, du consists of for example  unknown distur-
bances and model errors in addition to changes of the
disturbances in the period between two optimizations
(optimization interval).  Measurement/estimation errors
will not be handled explicitly in this paper, but these
errors may be included in du and treated as any other
deviation.
Since the optimizer has no specific information about du,
the optimization is based on d = d0.  In practice,
however, du may vary within some known bounds.  The
effect of du ≠ 0 should be taken care of in the optimizer
in order to avoid that the HEN becomes infeasible
(primary goal can not be satisfied) for some
disturbances.  Figure 2 shows a typical situation for a
general plant with one degree of freedom (one extra
manipulation) and an objective function J that should be
minimized.  The plant has one disturbance input and two
candidate measurements A and B (y2 = [y2,A  y2,B]

T) that
can be controlled to a desired value using the extra
manipulation u2.  (Since subscripts 1 and 2 are used to
distinguish between the primary and secondary sets of
inputs and outputs, we uses letters A, B etc. to denote
individual elements of u and y).  Also, remember that
base control to keep primary outputs at fixed setpoints is
already implemented.
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Fig. 2.  Unconstrained process.

Figure 2a shows J  as a function of  y2,A with the
disturbance as a parameter.  The solid line is for du = 0,
and the two dashed lines represent the extremes for du.
Figure 2b shows similar curves as a function of y2,B.
Since we have to base our optimal values on du = 0,  we
can choose to keep either y2,A ≈ 0.5 or y2,B ≈ 0.45 using
feedback control.  From the figure, however, we see that
when keeping y2,B constant, J is less sensitive to both
variations in y2 (control error) and to unknown
disturbances, than when keeping y2,A constant. Therefore
we prefer to keep y2,B constant between the
optimizations. This simple example illustrates how the
choice of optimization variables affects the objective
function for an unconstrained process.  Figure 3 shows
similar curves as in figure 2 for a process where the
optimum is constrained, which is typical for most HENs.
(Minimum utility consumption corresponds to maximum
utilization of process-to-process exchangers which again
means that some bypasses are closed).
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Fig. 3.  Constrained process (typical for HENs).

In figure 3a the process is infeasible when y2,A becomes
too small (marked with “+”).  In a HEN this typically
happens when a bypass saturates such that a target
temperature no longer can be met.  When y2,B is kept at a
given value (figure 3b) the process is infeasible when the
value becomes too large.  More interesting in the
constrained case, however, is that the nominal optimum
(du = 0) is infeasible for some unknown disturbances.
That is, we have to “back off” from the nominal
optimum and find the optimal values that are feasible for
all unknown disturbances.  These values are indicated
with the vertical dashed lines in figure 3a and 3b.  Again
we see that it is preferred to keep y2,B (rather than y2,A)
constant.  However, a new obstacle has occurred; we
need a remedy in the optimizer to find the values that are
optimal also in the presence of the unknown
disturbances.  We do not want to compute optimum for
all possible disturbances during operation since this may
be too time consuming.  This problem can be solved by
computing proper constraints (“safety margins”) on u1

that are implemented in the optimizer. The optimal value
of these safety margins is strongly correlated to the
choice of optimization variables.
The following steps summarize the main parts of the
complete procedure for on-line optimization of HENs:

1. Determine which manipulations (u1) that should be
used to control the primary outputs y1 and design a
control configuration and controllers for the primary
goal (base control).

2. For each excess manipulation u2 choose a
measurement y2 (among all candidates) such that the
operation is insensitive to disturbances (see more
details in next section). The additional constraints
(safety margins) on u1 are also found.  Design
decentralized controllers to control y2.

3. Implement the steady state model including the
constraints found in step 2 in the optimizer.

During operation, the optimizer computes setpoints for
the optimization variables and apply these to the
controller K2  at regular intervals.

CHOICE OF OPTIMIZATION VARIABLES
This section describes a procedure for selection of
optimization variables (step 2 in the complete method
given above). The selection of outputs for optimizing
control is discussed in Morud (1995, chapter 8) and in
Skogestad and Postlethwaite (1996, chapter 10).  In the
latter a method that is based on choosing outputs that
maximizes σ( )G22  (smallest singular value) for a
properly scaled system is proposed.  In this paper a more
direct method is applied (which is also mentioned in
Skogestad and Postlethwaite, 1996).  Before the

procedure is presented, the following notation is
introduced:

 y2,cand  is a vector containing all candidates to y2.
 yopt is the optimal value of y2,cand for a given du.
yopt

s is a fixed value of  y2,cand such that the objective
function is minimized while the network is
feasible for all du.

J s is J( yopt
s ) for a given value of du.

 ∆u1 is  the  constraint  imposed  on  u1  such  that 
an optimization   problem  based   on  du = 0 
gives feasibility for all du.

The steps in the procedure are listed below and some of
the points will be further explained.  For simplicity, we
will assume there is only one degree of freedom (one
optimization variable).

a) Select (i) minimum and maximum values for du, (ii)
the objective function J, (iii) the entries of y2,cand, (iv)
the values for du that should be included in the
computations and (v) define the type of Jmean that will
be used for choosing optimization variable.

b) Compute yopt and Jopt for  “all” cases of du (i.e. the
values from step iv in the previous point), see table 1.
This table may also include row(s) for u2,opt (open-
loop implementation).  Note that du,j is case j of du

while yopt,i denotes element i in yopt.

du,1 du,2 du,j

yopt, A yopt, A(du,1) yopt, A(du,2) yopt, A(du,j)
yopt, i yopt, i(du,1) yopt, i(du,2) yopt, i(du,j)
Jopt Jopt(du,1) Jopt(du,2) Jopt(du,j)

Table 1.  yopt and Jopt for all cases of du .

c) Keep y yi i2, ,cand, opt
s=  for each output candidate, and

evaluate J di j
s

u( ),  and the resulting Jmean.  In general,
the setpoint y iopt

s
,  should be optimized in order to

minimize Jmean, but for constrained processes it will
be some extreme value from table 1 (to ensure
feasiblity for all du).

du,1 du,2 du,j Jmean

JA
s JA

s (du,1) JA
s (du,2) JA

s  (du,j) Jmean, A

Ji
s

Ji
s  (du,1) Ji

s  (du,2) Ji
s  (du,j) Jmean, i

Table 2. J s for all cases of du .

d) Choose the variable that gives the smallest Jmean from
the last column in table 2 as optimization variable,
i.e. this measurement should be controlled to a set-
point which is updated periodically by the optimizer.

We have now found the best optimization variables. To
simplify the on-line optimization we may want to use
only the nominal disturbance set, du = 0. To ensure that
we find the correct value of yopt

s  (which ensures
feasiblity for all disturbances), we may impose some
constraint (“safety margin”) for the optimizer, e.g.
u1 ≥ ∆u1.  This will be explained in more detail for a
simple example at the end of the example section.  The
“safety margin”  on u1 should of course not be
implemented in the regulatory control level.



The next section describes the steady state model that
can be implemented in the optimizer.  Then the complete
method with emphasis on the choice of optimization
variables will be applied to a simple demonstration
example.
Until now we have only considered one degree of
freedom.  If there were two degrees of freedom, two
elements of y2,cand would have to be fixed  at a time.
Table 2 would need as many rows as there are
possibilities to pick two variables out of the total number
of candidate measurements.  For example, if there is 6
candidate measurements and 2 degrees of freedom, the
number of possibilities is62 4

!
! !  = 15.

REMARK 1.  It is clear that the value of ∆u1 may depend on d0.
We assume that this change is small and that the value can be
used for all d0.  In practice, one should carry out the procedure
for selection of optimization variables for different d0, to verify
that ∆u1 does not change too much.  The worst case value
should be chosen if it is not acceptable to violate the primary
goal, while a mean value can be used if a small violation to the
targets is tolerable.

STEADY STATE OPTIMIZATION MODEL
This section presents a steady state model that can be
adapted to any HEN.  It is developed primarily for
implementation in the optimizer, however, it may also be
used in the procedure for selection of optimization
variables (to generate tables 1 and 2).
Before we present the general model, consider the two
alternatives (equations (1) and (2), respectively) to
model a single heat exchanger with bypass given below,
see figure 4.

Thot,out

Thot,in

Tcold,out

Thot,out

Tcold,in

u

*

Fig. 4. Single heat exchanger with bypass.

At steady state it is of no consequence whether the
bypass is placed across the hot side or cold side, and the
choice in the figure is arbitrary. The temperature driving
force  ∆Tm( ⋅ ) may be logarithmic mean or some
approximation, and note particularly the difference
between equations (1a) and (2) regarding the arguments
of ∆Tm( ⋅ ).

Q UA T T T T T= ∆ m hot, in cold, in hot, out cold, out( , , , )* (1a)

         T uT u Thot, out hot, in hot, out
*= + −( )1 (1b)

Q UA T T T T T≤ ∆ m hot, in cold, in hot, out cold, out( , , , ) (2)

Equation (1) includes the hot exit temperature before it
is mixed with the bypass stream and this results in
bilinearities in (1b).  The inequality in (2) expresses a
constraint on Q when the boundary is placed outside the
bypass splitter and mixer.  The bypass fraction u does
not even occur in (2), but the equality part of (2)
corresponds to u = 0.  In the optimization model, we
choose the second alternative for each heat exchanger
since this eliminates the bilinearities in the bypass mixer.

If u is needed, it can be found after the optimization of
the network by solving one nonlinear equation for each
bypass fraction.  (Solving one unknown in one nonlinear
equation n times is much simpler than solving n
unknowns in n nonlinear equations simultaneously).  As
it will be shown, the value of u is often not required
explicitly as it normally is the manipulated input in a
feedback control loop.
The steady state model for a general HEN uses the
following sets of heat exchangers:

PHX : Set of all Process-to-process Heat eXchangers.
HBT : Subset of PHX with Hot side outlet directly 

  entering a Bypass controlled Target.
CBT : Subset of PHX with Cold side outlet directly 

  entering a Bypass controlled Target.
HUT : Subset of PHX with Hot side outlet entering a 

  Utility controlled Target (through a cooler).
CUT : Subset of PHX with Cold side outlet entering a 

  Utility controlled Target (through a heater).
HS : Subset of PHX with Hot side inlet directly 

  entering from a (hot) Supply.
CS : Subset of PHX with Cold side inlet directly 

  entering from a (cold) Supply.

The general HEN model shown below (eq. 3 to 11b) is
an NLP problem.  The variable c in equation (3) denotes
the cost (pr. energy unit) for the utilities.

min( )coolers coolers heaters heaters

CUTHUT

c Q c Qi i j j
ji

+
∈∈
∑∑ (3)

subject to
Equalities, (4) to (8)

Q CP T Ti i i i= −hot hot in hot out( ), , i ∈PHX (4a)

Q CP T Ti i i i
t= −hot hot in hot ou( ), , i ∈PHX (4b)

Q CP T Ti i i i
tcoolers hot hot out( )= −, i ∈HUT (5a)

Q CP T Ti i i i
heaters cold t cold out( )= − , i ∈CUT (5b)

T Ti i
hot out t, = i ∈HBT (6a)

T Ti i
cold out t, = i ∈CBT (6b)

T Ti i
hot in s, = i ∈HS (7a)

T Ti i
cold in s, = i ∈CS (7b)

Interconnection equations (problem specific) (8)

Inequalities, (9) to (11b)

Q U A Ti i i i i≤ α ∆ m i ∈PHX (9)

Qi ≥ 0 i ∈PHX (10)

Qi
coolers ≥ 0 i ∈HUT (11a)

Qi
heaters≥ 0 i ∈CUT (11b)

Note that the index denotes heat exchangers and not
streams (which is common in many other models), and
that ∆Tm denotes the temperature driving force outside
the bypass stream as in (2).  As an example, the network
in figure 5 will lead to the following sets: PHX = {A,B},
HUT = {B}, CUT = {A}, HBT = ∅, CBT = {B},



HS = {A} and CS = {A,B}, and the only interconnection

equation (8) is T TA B
hot out hot in, ,= .

During each optimization, T t, T s, CP and UA for each
heat exchanger are treated as constants.  The model is
valid without modifications for networks with fixed
stream split fractions since CP denotes heat flow
capacity in each heat exchanger.  For networks with
variable stream splits, CP in the split streams can be
regarded as variables, and equations that preserve the
mass balance in the splitter(s) and energy  balance in the
mixer(s) must be included.  During operation, variable
stream splits can be used as manipulated inputs.
The constant α in (9) is a factor that may limit the duty
of a heat exchanger somewhat below its theoretical
maximum.  This is simply the way that the constraint on
u1 is implemented.  Instead of implementing u1 ≥ ∆u1

directly (which is impossible since the model does not
include u1), the corresponding value for α has to be
computed.  This is done separately for each heat
exchanger that controls a primary output.  For heat
exchangers associated with u2, we have α = 1.
The model does not include any upper constraints on the
duty of the utility exchangers, and this implies the
assumption that these are designed to handle the required
duty.  If this is not the case, additional constraints have
to be added to the model, e.g. an upper limit on the duty.
The only possible source of nonlinearities in the model
(for networks without variable splits) is the term ∆Tm in
(9). In other words, if arithmetic mean (as opposed to
logarithmic mean) is used as the temperature driving
force, the model can be solved as an LP problem. The
following procedure for solving the model has proven to
be reliable: First, use arithmetic mean in (9) for all
exchangers and solve the corresponding LP problem.
Second, replace arithmetic mean with logarithmic mean
(or e.g. Paterson or Chen approximations) and solve the
NLP problem using the LP solution as the initial value.

EXAMPLE
The HEN used in the example is shown in figure 5.  The
primary outputs are the outlet temperatures of each
stream which should be controlled to their target values
of 30, 160 and 130°C for streams H1, C1 and C2,
respectively.  That is, we have

[ ]y T T T
T

1 1= H
o

C1
o

C2
o

where superscript o denotes outlet temperature.  There is
a total of four manipulations (two bypasses and two
variable utility duties) which gives

[ ]u u u q qc h

T
= A B

There are two disturbances; ±10°C in the supply
temperature of stream H1 and ±0.05 kW/°C in the CP of
stream C2.  These values represent the maximum
variations d that may be present.  The smaller
variations/errors (du) that may occur within the
optimization interval is defined in step 2a) of the
procedure.  UA for heat exchangers A and B are 0.523
and 1.322 kW/°C, respectively.  For simplicity it is
assumed that the utility exchangers are able to deliver
sufficient duty for all possible cases.  With this
assumption and the given UA-values all target
temperatures can be reached for all combinations of
disturbances mentioned above.
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Fig. 5. Heat exchanger network used in example.

Applying the procedure step by step yields:

Step 1.  Assign primary manipulations.
We use the main rule for selection of manipulations in
HENs which is to choose the manipulation closest to the
measurement (e.g. Mathisen, 1994, chapter 4).  This
implies that the primary manipulations u1 become qc, qh

and uB and these control the outlet temperatures of
streams H1, C1 and C2, respectively.
Step 2. Choice of optimization variable.
There is one excess manipulation, u2 = uA, and the steps
a) to d) below illustrate the selection of optimization
variable.
2a) We assume:
(i) du = [±3°C, ±0.01kW/°C]T (maximum variations/

errors of the disturbances within the optimization
interval).

(ii) The objective function is J = qc + qh (utility
consumption)

(iii) Possible candidates to y2 are y2,cand = [T1  T2  T3  uA]T

(see figure 5).  Note that the open-loop implemen-
tation (uA) is an alternative.

(iv) The computations are done for the four “corner
points”  of du in addition to du = 0.

(v) Jmean is the arithmetic mean of the five cases in step
(iv). (We require that target temperatures have to be
reached for the five cases).

2b)  yopt and J for different du are shown in table 3. The
table is generated for d0 = [0  0]T, i.e. for nominal values
of the disturbances (190°C and 0.5kW/°C).  Also a row
for uB,opt is included for extra information.
2c)  Table 4 shows J for optimal fixed values of y2,cand.
Note that in this example, the values for y2,cand can be
found without optimization, but simply from table 3 and
physical insight (see remark 2).  If there is a possibility
that the optimum is not constrained one would have to
resort to conventional optimization.
2d)  From the last column of table 4 it is clear that
keeping T1 constant is preferred.
Step 3.  Implementation of optimizer.
The model (including the sets and connection equations)
was described in the previous section.  The constraint
(“safety margin”) that should be included in the
optimizer is uB ≥ 0.105.  We will explain how this value
is obtained, but before that we explain the details in the
implementation of this constraint.  To implement the
constraint, we first find qB = 55kW for du = 0 (55kW is
the deficit heat of stream C2).  Then we find αB = 0.946
from qB = αB UAB∆Tm,B, where the last term is the
logarithmic mean for heat exchanger B for du = 0 and
T1 = 151.9°C.  Implementing αB = 0.946 (and αA = 1.0)
in eq. (9) will ensure the required safety margin on uB

when unknown disturbances du are present.

The actual value for the safety margin (∆uB = 0.105) is
obtained as follows: The values of uA and uB for the five
cases in table 4 corresponding to T1 = 151.9°C are given
in table 5.



          Case 1    Case 2    Case 3    Case 4    Case 5
uA 0.207 0.354 0.354 0 0
uB       0.105      0.155      0.051      0.155      0.051
  Table 5.  Values of uA and uB when T1 = 151.9°C.

For cases 4 and 5, uA saturates at zero which implies that
it is no longer possible for uA to keep T1 = 151.9°C.  The
optimizer uses d0 (case 1) where uB takes the value of
0.105.  Thus, in order to handle cases 4 and 5, a safety
margin of ∆uB = 0.105 has to be used by the optimizer.
Note that if we accepted that T1 deviated from its
setpoint (due to saturation in uA) it would be possible to
further reduce utility consumption somewhat.  Then the
setpoint for T1 could be reduced  slightly below 151.9°C.
until uB saturated for some disturbance.  In this example
we require that setpoins for secondary measurements
have to be satisfied.
The reason for implementing  the “safety margin” on uB

as an inequality constraint is that other values of d0 may
give uB,opt > 0.105. Requiring uB = 0.105 in such cases
will result in infeasibility.
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Figure 6.  Results for example.

The value for Jmean of 148.9 kW in table 4 should be
compared to the mean value of Jopt from table 3 which is
146.5 kW. Figure 6 visualizes the results for the example
when T1 is the optimization variable (solid curve).  The
different cases are the same as in tables 3 and 4. For
comparison, the optimal values (when du is perfectly
known) are shown in the lower dashed curve, and the
upper dashed curve shows the result for the “traditional”
scheme without optimization.  (The latter is implemented
by fixing uA at a value such that the network is feasible
for all possible disturbances, i.e. d = [±10, ±0.05]T, using
uB only).  From the results given in figure 6 and table 4,
it is clear that the main reduction in utility consumption
compared to the traditional case is due to the periodic
optimization, whereas the choice of optimization

variable contributes less.  For other examples, the choice
of optimization variable can have a more significant
effect on the utility reduction.

REMARK  2.  From figure 5, it is clear that decreasing T1, T3 (by
decreasing uA) or uA will reduce utility consumption (J).  I.e.
optimal values for these variables in table 3 are minimum
values (smaller values will violate the primary goal).
Therefore, the case with the largest value has to be chosen as
this is the smallest value feasible for all du.  For T2, a similar
(but opposite) argument leads to choosing the smallest value in
table 3.

SUMMARY AND CONCLUSIONS
A method for optimal operation of heat exchanger
networks based on periodic steady state optimization is
proposed. An important issue is optimal choice of
measurements that are kept constant between each
optimization using feedback control.  The objective
functions used during operation and for choice of
optimization variables are identical.  Optimal operating
conditions for heat exchanger networks are normally
located at the intersection of constraints, and additional
constraints (“safety margins”) have to be implemented in
the optimizer in order to maintain the target temperatures
when unknown disturbances are present.
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T1, opt 150.0 149.0 151.0 151.9 151.9
T2, opt 106.7 105.4 104.0 107.4 107.4
T3, opt 95.0 95.1 94.9 98.0 95.8
uA, opt 0.000 0.105 0.292 0.000 0.000
uB, opt 0.000 0.000 0.000 0.154 0.049
Jopt 145.0 147.0 149.0 146.9 144.7
          Table 3.  Values for yopt and Jopt for all cases of du  in the example.  Case 1 is the nominal disturbance.

Case 1 Case 2 Case 3 Case 4 Case 5 Jmean

J Ts( . )1 1519= 148.9 153.0 150.8 147.0 144.8 148.9

J Ts( . )2 104 0= 153.0 151.2 149.0 159.2 155.0 153.0

J Ts( . )3 98 0= 151.0 152.9 155.1 146.9 149.1 151.0

J uA
s( . )= 0 292 151.1 151.2 149.0 153.2 151.0 151.1

Table 4. J s for the possible choices of measurement and for all cases of du in the example.


