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Abstract. This paper examines the implications ofiiR
zeros and poles on performance of multivariable feed-
back systems. The results quantify the fundamental limi-
tations imposed by RpP-zeros and poles in terms of lower
bounds on the peak of the weighted sensitivity and com-
plementary sensitivity functions.

1. INTRODUCTION

This paper considers linear time invariant systems on state-,

space form

& = Ax + Bu
y=Cz+ Du

1)
)

whereA, B, C andD are real matrices. These equations

may be rewritten as
z A Bl |z
Y C Dl||u

This gives rise to the short-hand notation

o- i)

®3)

which is frequently used to describe a state-space model DEFINITION 1. (ZEROY). z;

of a systen7. The transfer function off (of sizel x m)
defined by (3) can be evaluated as a function of the com-
plex variables, G(s) = C(sI — A)"'B + D. We often
omit to show the dependence on the complex variable
for transfer functions. The feedback controller is denoted
K. The loop transfer function is defined dy £ GK.

The sensitivity and complementary sensitivity functions
are definedbys 2 (I + L) 'andT 2 L(I+ L)' =
LS=1-S5.

The results in this paper quantify the fundamental limita-
tions imposed by Rp-zeros and poles in terms of lower
bounds on the peak of the weighted sensitivity and com-
plementary sensitivity functions. To derive the results we
have made use of output factorizations efARzeros and
poles in all-pass filter®3(s). Further details on how to
do this factorizations can be found in (Havre and Skoges-
tad, 1996).
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The outline of the paper is as follows: fist we discuss
zeros and poles of multivariable systems and their di-
rections. Then we derive constraints on the sensitivity
and the complementary sensitivity functions imposed by
RHP-zeros and poles. Next we consider the lower bounds
on the peak of the weighted sensitivity and complemen-
tary sensitivity functions. At the end we give two exam-
ples and a conclusion. All proofs are given in appendix A.

ZEROS AND POLES OF MULTIVARIABLE
SYSTEMS

2.1 Zeros

Zeros of a system may arise when competing effects in-
ternal to the system are such that the output is zero even
when the inputs (and the states) are not themselves iden-
tically zero. For Single Input Single Output i) sys-
tems, the zeros are the solutions: z; to G(s) = 0, and

thus it could be argued that they are values af which

G(s) looses rank (from rank 1 to rank 0). This is the basis
for the following definition for zeros for the multivariable
system (MacFarlane and Karcanias, 1976).

€ Cisazero ofG(s) if the
rank of G(z;) is less than the normal rank @f(s). The
zero polynomial is defined ags) = Hfizl (s —z;) where
N is the number of finite zeros 6f(s).

The normal rank of(s) is defined as the rank ¢f(s) at

all s except a finite number of singularities (which are the
zeros). This definition of zeros is based on the transfer
function matrix, corresponding to a minimal realization
of a system. These zeros are sometimes called “transmis-
sion zeros”, but we shall simply call them “zeros”. We
continue with the definitions of input and output zero di-
rections.

DEFINITION 2. (ZERODIRECTIONS). If G(s) hasazero
for s = z € C then there exist non-zero vectors labeled
the output zero directiop. € C' and the input zero di-
rectionu, € C™, such thatyy, = 1, uffu, = 1 and

y7G(z) =0; G(2)u. =0 @)

It follows that the input and output zero directions lie in
the null-space and the left null-space®(fz). The dimen-



sion of these spaces may be larger than the multiplicity of
the zeros:. In particular, this is the case for non-square
G. The definitions of input and output zero directions can
further be extended with the state input and output zero

The following result shows how to compute the pole di-
rections for a general system with state space realization

3).

directions through the use of generalized eigenvalues. For LEMMA 1. (POLE DIRECTIONS). For a systemG with

a system(s), the zeros of the system, the zero input
directionsu. and the zero input state directions; €

C"= (n, is the number of states) can all be computed
from the generalized eigenvalue problem

= 1o)

In this setup we normalize the lengthwof, i.e.uffu, =
1. This imply that the length of ., ; is different from one.
Similarly one can compute the zeresthe output zero
directiony, and the output zero state directieno €
C"= through the generalized eigenvalue problem

[A—s[ B] 5)

c D

H
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Where the length of. is normalized, so that"y, = 1.
By taking the transpose of (6) one obtains

AT —s1 CT 0| _ 0
BT DT g- |~ |0

From this we see that the input directions of the trans-
posed systen&” is equal to the conjugate of the output
directions ofG. In MATLAB the generalized eigenvalue
problem (6) can be solved via the transposed problem.

)

2.2 Poles

DEFINITION 3. (POLES). The polesp; € C of a sys-
tem with state-space description (3) are the eigenvalues
Ai(A),i=1,...,n, of the matrixA. The pole or char-
acteristic polynomiab(s) is defined as

Nz

(s) = det(sI — A) = [[ (s — ps)

i=1

(8)

Thus, the poles are the roots of the characteristic equa-
tion

¢(s) =det(sI — A) =0 9

The gain of the systei@ evaluated at = p, G(p) is infi-

nite in some directions at the input and the output. This is
the basis for the following definition of input and output
pole directions.

DEFINITION 4. (POLE DIRECTIONS). If s=p e Cisa
pole ofG(s) then there exist an output directigp € C'
and an input directioru, € C™ with infinite gain for

s =p.

state space description (3) the pole directions associated
with the polep € C can be computed from

yp =CzR; up= Bfy; (20)
wherexyp € C" andzy € C"= are the eigenvectors
corresponding to the two eigenvalue problems

Axp =prr; zHA=2Hp

3. CONSTRAINTSONT AND S

The conditionS +7T" = I holds for MMO-systems, and it
follows from Fan’s theorem in (Horn and Johnson, 1985,
p.140andp.178);(A)—5(B) < 0;(A+B) < 0;(A)+
7(B) with ¢ = 1 that

This shows that we cannot have badttand 7" small si-
multaneously and that(S) is large if and only ifa(T")

is large. For MMO-systems the interpolation constraints
onT andS caused by Rp-poles and RpP-zeros have
directions. This follows since iRP-zeros and RP-poles
themselves have directions as discussed in section 2.

CONSTRAINT 1. (RHP-ZERO). If G(s) has aRHP-zero

at z with output zero directiony., then for internal sta-

bility of the feedback system the following interpolation

constraints must apply
y: T(2) = 0;

yS(z) =y (13)

In words, (13) says thaf' must have a Rp-zero in the
same direction a§' and thatS(z) has an eigenvalue df
corresponding to the left eigenvectgr.

CONSTRAINT 2. (RHP-POLE). If G(s) has aRHP-pole
at p with output directiony,, then for internal stability

of the feedback system the following interpolation con-
straints must apply

S®)yp = 0; (14)

T(p)yp = yp

Similar constraints apply té, S; andT}, but these are
in terms of the input zero and pole directions,andu,,.

For more detailed information on integral relations on
sensitivity function with Rip-poles and zeros refer to
(Zhouet al,, 1996; Chen, 1995; Freudenberg and Looze,
1988; Boyd and Desoer, 1985).



4. LOWER BOUNDS ON ||wpS(s)|leo AND
lwrT(s)]loo

In this section we deduce lower bounds on the weighted
sensitivity functiong|wp S(s)||eo @and||wrT(s)||eo When
RHP-zeros and poles are present. We usefhg-norm

in terms of the maximum singular value.

4.3 Limitations imposed by R4P-zeros

The following result is originally from Zames (1981).

THEOREM 1. (RHP-ZERO AND |[wpS(s)||s). Suppose
the plantG(s) has aRHP-zero ats = z. Letwp(s) be

a scalar transfer function. Then for closed-loop stability
the weighted sensitivity function must satisfy

lwpS(s)lloc = sup&(wpS(jw)) = fwe(z)]  (15)

REMARK 1. Condition (15) shows that there are inherent performance
limitations imposed by RpP-zeros.

REMARK 2. Note that (15) involves the maximum singular value (the
“worst” direction), and therefore theH®-zero may not be a limitation

in other directions.

REMARK 3. The assumption of a scalar weight is somewhat restrictive.
However, the assumption is less restrictive if one follows a scaling pro-
cedure and scales all outputs by their allowed variations such that their
magnitudes are of approximately equal importance.

4.4 Limitations imposed by RHP-poles

The following result is based on the interpolation con-
straintsS(p)y, = 0 andT'(p)y, = y, which apply when
G(s) has a Rip-pole ats = p.

THEOREM 2. (RHP-POLE AND ||wrT'(s)||s). Suppose
the plantG(s) has aRHP-pole ats = p. Letwr(s) be

a scalar transfer function. Then for closed-loop stabil-
ity the weighted complementary sensitivity function must
satisfy

[wrT(s)lloo = sup&(wrT(jw)) 2 [wr(p)|  (16)

4.5 RHP-poles combined with RHP-zeros

By considering the effect of oneH®-zero and one RpP-
pole separately we derived in (15) and (16) the conditions

lwpS(s)lleo > e1|wp(2)]

lwrT(5)|loo = c2wr(p)]

(17)
(18)

with ¢; = ¢ = 1. These conditions may be optimistic in
that the lower bound may be to small, and indeed we may
havec; > 1 andes > 1 for the case when we have both
a RupP-pole and a RP-zero with some alignment in the
same direction.

Consider a plant/(s) with RHP-polesp; and RiP-zeros
z;, and factorizeG(s) in terms ofBlaschke productas
follows

G(s) = By(5)Gy(s), Gls) = B ()Ga(s)

whereB,(s) andB.(s) are stable all-pass transfer matri-
ces (all singular values are equalltfor s = jw) contain-
ing the R4P-poles and RP-zeros, respectivelyB,(s) is
obtained by factorizing at the output oneiRpole at a
time, starting withG(s) = Bp1(s)Gp1(s) where

2Rep1 . .g
Yp1Y
s—p rldpl

Bpl(S) = I+

andg,1 = yp1 is the output pole direction fgp;. This
procedure may be continued to factor psifrom G, (s)
whereg, is the output pole direction @), (which need
not coincide withy,, the pole direction of7), and so on.
A similar procedure may be used for theiRzeros. We
get

2

2Re(p;) . .
By =[[0+ 225,52 o)
i=1 v
N.
T 2Re(z;) . .
B.(s)=T]( + S_(Z{)y;jyg) (20)
=1 !

REMARK. For further details regarding state-space realizations of the
factorizations and properties of the all pass filters. see (Havre and Sko-
gestad, 1996). the output factorization ofifRzeros are also given in
(Zhouet al,, 1996, p.145).

With those two factorization we have the following theo-
rem.

THEOREM 3. (MIMO SENSITIVITY PEAK). Suppose the
plant G(s) has N, RHP-zerosz; with output directions
y-; and N, RHP-polesp; with output directiong,,;. De-
fine the all-pass transfer matrices in (19) and (20) and
compute the real constants

c1j = lWEBy ()2 > 1 (21)
c2,i = ||B=(pi)ypill2 > 1 (22)

Then for closed-loop stability the weighted sensitivity func-
tion must satisfy for each;

lwpS(s)lleo > c1,j|wp(z;)] (23)

and the weighted complementary sensitivity function must
satisfy for eaclp;

lwrT (s)lloo > 2,ilwr(pi) (24)

For the case with one H-zero and one Rp-pole we
have the result given in Corollary 1. A similar result was
first proved by Boyd and Desoer (1985) and an alterna-
tive proof is given in Chen (1995) who presents a slightly
improved bound. One disadvantage with the lower bound
in (Boyd and Desoer, 1985, (3.15) on p. 164) is that it is
zero when the angle between the pole and the zero direc-
tion is90° whereas the bound presented next is unity.



COROLLARY 1. (ONE RHP-ZERO AND ONE RHP-POLE).
Given the syster@(s) with oneRHP-pole and onéRHP-
zero. The constants andc; in (21) and (22) are given
by the equation

0201202:\/sin (9) +

whereg = cos~!(lyHy,|).

|z + p|?

|z — pl?

cos*(¢)  (25)

For Sso-systems, Theorem 3 simplifies to:

COROLLARY 2. (9SO SENSITIVITY PEAK). Suppose
theSiso-systenGG(s) hasN. RHP-zerosz;, andN,, RHP-
polesp;. Then for closed-loop stability the weighted sen-
sitivity function must satisfy farach Rir-zeroz;

lwpS(s)lleo > e1,jlwp(2))] (26)
= |z + Bl
Zj T Pi

;= — - - >1 27

C1,j Z];[1 |Zj_pi| = ( )

and the weighted complementary sensitivity function must .

satisfy foreach RiP-polep;

lwrT(s)||oo > c2ilwr (pi)] (28)
N. | _
Coi = H 1z + pil >1 (29)
iz =il

This resultis stated in (Skogestad and Postlethwaite, 199
Theorem 5.5, p. 171), it follows easily from Theorem 3
by setting the pole and zero directions equal.to

PEAK IN S AND T'. From Theorem 3 we get by selecting
wp(s) =1andwyr(s) =1

(30)

||S(S)||oo > MaXyzeros,j C1,j

(31)

||T(S)||OO > maXpoles,i C2,i

Thus, a peak foF (S(jw)) anda (T'(jw)) larger than 1 is
unavoidable if the plant has both aiRpole and a RP-
zero (unless their relative angeis 90°).

5. EXAMPLES

EXAMPLE 1. BALANCING A ROD. This example s taken
from Doyle et al. (1992). Consider the problem of bal-
ancing a rod in the palm of one’s hand. The objective is
to keep the rod upright, by small hand movements, based
on observing the rod either at its far end (output or

the end in one’s hand (outpyt). The linearized transfer
functions for the two cases are

_ -9

Gi(s) = s2 (Mls? — (M +m)g)
B Is* — g

Ga(s) = s2 (Mls? — (M +m)g)

Herel [m] is the length of the rod angh [kg] its mass.
M [kg] is the mass of your hand angd[~ 10 m/] is
the acceleration due to gravity. In both cases, the plant
has three unstable poles: two at the origin and one-at

(M“”)g . A short rod with a large mass gives a large

value Ofp, (the pole is far from the imaginary axis in
the RHP) and this in turn means that the system is more
difficult to stabilize. For example, with/ = m andl =

1 [m] we getp = 4.5 [rad/s] and we desire a bandwidth
of about9 [rad/s] (corresponding to a response time of
about0.1 [s]).

If one is measuring; (looking at the far end of the rod)
then achieving this bandwidth is the main requirement.
However, if one tries to balance the rod by looking at
one’s hand {) there is also a Rp-zero atz = /7.

If the mass of the rod is smalb{/}M is small), therp is
close toz and stabilization is in practice impossible with
any controller. However, even with a large mass, stabi-
lization is very difficult becausg > = whereas we would
normally prefer to have the H-zero far from the origin
and the RiP-pole close to the origirn(> p). So although

in theory the rod may be stabilized by looking at one’s
hand (72), it seems doubtful that this is possible for a hu-
man. To quantify these problems use (26) withfrom
(27), or use (28) with, from (29). We get

M+m
M

240l _ [1+4]
e—pl T Ll

Cl =Cy =

6, Consider a light weight rod witim /M = 0.1, for which

we expect stabilization to be difficult. We obtatn =
¢y = 42, and we must have

15(5)lloc 2 42 and  [|T(s)[|c0 > 42

so poor control performance is inevitable if we try to bal-
ance the rod by looking at our hang}.

The difference between the two cases, measuyirgnd
measuringy», highlights the importance of sensor loca-
tion on the achievable performance of control.

EXAMPLE 2. RHP-POLE AND RHP-ZERO WITHALIGN-
MENT. We consider the following plant

1 0 . s—z
G(s) = | 77 cosa —sina) | 57557 0 )
0 lerp sina  cosa 0 ﬁ ’
—_—— :
Uaq
z2=2,p=3 (32)

which has a Rp-zero atz = 2 and a RiP-pole atp = 3.
For . = 0° the rotation matrixXU, = I, and the plant
consists of two decoupled subsystems

(O.IS—T-I)Z(s—p) 0

Go(s) = 0

The subsystem,; has both a Rp-pole and a RP-zero,

and closed-loop performance is expected to be poor. On
the other hand, there are no particular control problems
related to subsystegy,. With a = 90°, U, = [0 —01],
which gives
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Figure 1. MMo-plant with anglep between RiP-pole and Rip-zero.
Response to step in reference with.,-controller for four different
values ofg. Solid line:y,; Dashed lineys.

_ stz
(0.1s+1)(s—p)

0

0
Goo(s) =

—Zz

(0.15—?—1)(3—&-1))

and we again have two decoupled subsystems, but this
time in the off-diagonal elements. The main difference,
is that there is no interaction between thefpole and
RHP-zero in this case, so we expect this plant to be eas-
ier to control. For other values af we do not have de-
coupled subsystems, and there will be some interaction
between the Rp-pole and Rip-zero. Since the pole is
located at the output of the plant, its output direction is
fixed, we findy, = [1 0]" for all values ofa. On the
other hand the zero direction changes from 0]" for
a=0°t0[0 1]" fora = 90°. Thus, the angle between
the pole and zero directiog, will also vary betweei°
and90° asa varies from0° to 90°, as seen from Table 1,
where we also give; ande, for four rotation anglesy =
0°,30°,60° and90°. The table also shows the values of

TABLE 1: Results from Example 2.

| o [ 0° 30° 60° 90° |
1 0.33 0.11 0

Yz {OJ l—0.94J l—o.ggJ [1J
¢ =cos ! |yHy,| | 0° 70.9° 83.4° 90°
c=c1 =c3 5.0 1.89 1.15 1.0
15(8)]]oo 7.00 2.60 1.59 1.98
1T (5)]|oo 7.40 2.76 1.60 1.31
Y(S/KS) 9.55 3.53 2.01 1.59

[1S(s)||s @nd||T'(s)|| Using controllers obtained by an
Hoo-0ptimal S/ K S-design using the following weights

s/M + wj,
s

W.=1;, W,=( )1 (33)

with M = 2 andwy = 0.5. The weightwp for the
weighted sensitivity means that we requjf&(jw)||co
less than 2, and require tight control up to a frequency
of aboutwy = 0.5 rad/s. The minimum?{.,-norm for
the S/K S problem is given by the value of in the Ta-

ble 1. The corresponding responses to a step change in

the reference = [1 —1]7 are shown in Figure 1.

Several things are worth noting:

. We see from the simulation fef = 0° in Figure 1
that the response fay, is very poor. This is as ex-
pected because of the closeness of ti-Role and
zero ¢ = 2,p = 3).

. The bound; on||S(s)|| In (30) is tight in this case.
This can be shown numerically by selectifig, =
0.017, wp = 0.01 andM, = 1 (W, andwp are small
so the main objective is to minimize the peak$)t
We find that the/{ ,.-designs for the four angles yield
15(5)||o0 = 5.04,1.905,1.155,1.005, which is very
close toc; .

. The anglep between the pole and zero, is quite dif-
ferent from the rotation angle at intermediate values
between)° and90°. The reason for this is the influ-
ence of the Rp-pole in output, which yields a strong
gain in this direction, and thus tends to push the zero
direction toward outpLa.

. Fora = 0° we havec; = ¢ = 550(|S(8)||oc > 5
and||T(s)|lc > 5, S0 itis clearly impossible to get
[IS(s)|| less thar2, as required by the performance
weightwp.

5. The H.-optimal controller is unstable for = 0°

and30°. This is not surprisingly, because far= 0°

the plant is two 80 systems one of which needs an

unstable controller to stabilize it, sinpe> z.

6. CONCLUSION

We have presented lower bounds on the peak in weighted
sensitivity and complementary sensitivity functions for
systems with RP-zeros and poles. Peaks in the sensitiv-
ity and complementary sensitivity functions are unavoid-
able if the plant has both aH®-zero and a Rp-pole with
some alignment.

We expect the bounds derived to have importance for the
selection of performance weights for controller design
and analysis.
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A. PROOFS OF THE RESULTS

Proof of Lemma 1We have fors = p, G(p) = C(pI — A)~'B + D.
Sincep is an eigenvalue off andx p is the eigenvector correspond-
ing to the polep, (pI — A)xr = 0. Thereforezp is the output state
direction with infinite gain fo(p7 — A)~!. The output pole direction
becomesy, = Czpg as long ag|D|| is finite. The input pole direc-
tion u), follows similarly as the conjugate of the output direction of the
transposed systei” . m]

Proof of (13) The output direction is given by? G(z) = 0. For in-
ternal stability the controller cannot cancel thafRzero and it follows
that L = GK has a RiP-zero in the same direction, i.gf’ L(z) = 0.
Now S = (I + L)~ ! is stable and thus has naHR-pole ats = 2. It
then follows fromT" = LS thaty7 T(z) = 0 andyZ (I — S) = 0.0

Proof of (14) The square matriX(s) = GK (s) has a Rip-pole ats =
p, and if we assume thdt(s) has no Rip-zero ats = p, thenL~1(p)
exists and the output pole directigyp is given by L=!(p)y, = 0.
SinceT is stable, it has no Rr-pole ats = p, soT'(p) is finite. It then
follows from S = TL~! thatS(p)yp = T(p)L =1 (p)yp = O. ]

Proof of Theorem lintroduce the scalar function
f(s) =yl wp(s)S(s)y-
which is analytic in the Rp. We then have

lwpS(s)lleo 2 [1f(s)lloc = [f(2)] = lwp(2)] (A1)

The first inequality follows since the singular value measures the max-
imum gain of a matrix independent of direction, 04) > ||Aw||2
anda(A) > |lwA||2 for any vectorw with ||wl||2 = 1. The second in-
equality follows from the maximum modulus theorem. The final equal-
ity follows sincew p (s) is a scalar and from the interpolation constraint
Y 5(2) = yif we gety S(2)y. = yHy. = 1. o

Proof of Theorem 2ntroduce the scalar function

F(s) =y wr (s)T(s)yp
which is analytic in the Rp sincewrT'(s) is stable. We then have

lwrT(s)lloo > [1£(s)llec > |f(p)] = lwr(p)]  (A2)

The first inequality follows since the singular value measures the max-
imum gain of a matrix independent of direction &ty ||> = 1. The
second inequality follows from the maximum modulus theorem. The fi-
nal equality follows sincevr(s) is a scalar and from the interpolation
constraintT (p)y, = yp We gety T(p)y, =yl y, = 1. |

Proof ofc; ,; in Theorem 3We consider one Rp-zeroz with direction

y. at atime (the subscript is omitted). Factorize thév,, RHP-poles

p; in G(s) = BpGm(s), whereBy(s) is given by (19). It follows that
Gm(s) is stable,B,(s) has all singular values and absolute value of
all eigenvalues equal to one fer= jw anda(By(s)) > 1 whenever
Re(s) > 0, see (Havre and Skogestad, 1996, Lemma 2). The loop
transfer function can then be written

L(s) = GK(s) = ByGmK(s) 2 Bp(s)Lim(s)

then

S=TL™"=TL, (s)B; ' (s) = Sm By ' (s)
Introduce the scalar functiofi(s) = yX wp(s)Sm (s)y which is ana-
Iytic (stable) in RiP. We want to choosg so that| f(s)| obtains maxi-
mum

J(s) = max |f(s)| = max [y wp(s)Sm(s)yl
lyli=1 lyli=1

We then get

llwp(s)S(s)lloo = llwp(s)Sm(s)lleo 2 IT(s)lloc = |T(2)| =

[max, lwp (2)] [y Bp(2)yl = [wp(2)] lyZ Bp(2)]l2 (A3)

The first equality follows sincé3,(s) is all pass fors = jw. The first
inequality follows since the singular value measures the maximum gain
of a matrix independent of direction, 8¢ A) > ||Aw||2 anda(A) >
[lwA||2 for any vectorw with |jw||2 = 1. The second inequality fol-
lows from the maximum modulus theorem. The second equality fol-
lows fromyX S, (2) = yH¥S(2)Bp(2) = yI By(2) and the fact
thatwp(s) is a scalar. The last equality follows from the fact that the
largest singular value measure the strongest gain direction and is equiv-
alent to the second norfi- ||2. The fact thatc; ; > 1 follows from
oi(Bp(s)) > 1ViwhenRe(s) > 0. O

Proof ofcs ; in Theorem 3We consider one Rp-polep with direction

yp at a time (the subscriptis omitted). Factorize th&V, RHP-zeros

z; In G(s) = BZ 1(s)Gm(s), whereB,(s) is given by the (20). It
follows that thatG'm, (s) is minimum phaseB: (s) has all singular val-

ues and absolute value of all eigenvalues equal to one ferjw, see
(Havre and Skogestad, 1996, Lemma 2). The loop transfer function be-
comes

L(s) = GK(s) = BY ' GrK(s) £ B 'Lin(s)

FactorizeT = LS = By 'L,,S £ B T, and introduce the scalar
function f(s) = y™ w7 Tm (s)y, which is analytic in RiP. We want
to choosey so that| f(s)| obtains maximum

J(s) = max | f(s)| = max |y" wr(s)Tm (s)yp|
lyl=1 lyl=1

We then get

llwr ()T (s)[loo = [lwr (s)Tm (s)lloc 2 [[T(s)lloo = [T (p)] =

max [wr (p) [y B=(p)yp| = [wr(p)| |B: (P)ypll2  (A-4)
The first equality follows sincé3.(s) is all pass fors = jw. The first
inequality follows since the singular value measures the maximum gain
of a matrix independent of direction, 8¢ A) > ||Aw||2 anda(A) >
[lwA||2 for any vectorw with |jw||2 = 1. The second inequality fol-
lows from the maximum modulus theorem. The second equality follows
from T, (p)yp = B:(p)T(p)yp = B:(p)yp. The last equality fol-
lows from the fact that the largest singular value measure the strongest
gain direction and is equivalent to the second n¢irnf|>. The fact that
c2,; > 1follows fromo;j(B.(s)) > 1VjwhenRe(s) > 0. O

Proof of¢c = ¢1 = ¢2 in Corollary 1. Note that whenV, = N, = 1
both z andp are real and positive, so= z andj = p. Considerca

2Re(z
2 = H(1+ Jyzyf’)yp
p—=z 2

[ weifo ] [ ]
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The matrixU contains a basis for the orthogonal subspacg.tay;-.

The angle betweep, andyZ is 90 — ¢, cos(90 — ¢) = sin(¢) and
(A.5) follows. We can interpret (A.5) as a weighted projectionypf

on the subspaceg,-, with weight 1, andy., with weight %. In
(Boyd and Desoer, 1985, (3.15) on p. 164) it is the projection on the
orthogonal subspaag- which lacks. By interchanging the roles of the
pole and zero directions the bound the boupdollows similarly. O



