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Abstract. This paper examines the implications of RHP-
zeros and poles on performance of multivariable feed-
back systems. The results quantify the fundamental limi-
tations imposed by RHP-zeros and poles in terms of lower
bounds on the peak of the weighted sensitivity and com-
plementary sensitivity functions.

1. INTRODUCTION

This paper considers linear time invariant systems on state-
space form

_x = Ax +Bu (1)

y = Cx+Du (2)

whereA, B, C andD are real matrices. These equations
may be rewritten as�

_x
y

�
=

�
A B
C D

� �
x
u

�
This gives rise to the short-hand notation

G =

�
A B
C D

�
(3)

which is frequently used to describe a state-space model
of a systemG. The transfer function ofG (of sizel�m)
defined by (3) can be evaluated as a function of the com-
plex variables, G(s) = C(sI � A)�1B + D. We often
omit to show the dependence on the complex variables
for transfer functions. The feedback controller is denoted
K. The loop transfer function is defined byL , GK.
The sensitivity and complementary sensitivity functions
are defined byS , (I + L)�1 andT , L(I + L)�1 =
LS = I � S.

The results in this paper quantify the fundamental limita-
tions imposed by RHP-zeros and poles in terms of lower
bounds on the peak of the weighted sensitivity and com-
plementary sensitivity functions. To derive the results we
have made use of output factorizations of RHP-zeros and
poles in all-pass filtersB(s). Further details on how to
do this factorizations can be found in (Havre and Skoges-
tad, 1996).

1 Present address: Institute of energy technology, P.O.Box 40, N-2007
Kjeller, Norway, E-mail: kjetil@ife.no.
2 Author to whom correspondence should be addressed. Fax: (+47) 73
59 40 80, E-mail: skoge@kjemi.unit.no.

The outline of the paper is as follows: fist we discuss
zeros and poles of multivariable systems and their di-
rections. Then we derive constraints on the sensitivity
and the complementary sensitivity functions imposed by
RHP-zeros and poles. Next we consider the lower bounds
on the peak of the weighted sensitivity and complemen-
tary sensitivity functions. At the end we give two exam-
ples and a conclusion. All proofs are given in appendix A.

2. ZEROS AND POLES OF MULTIVARIABLE
SYSTEMS

2.1 Zeros

Zeros of a system may arise when competing effects in-
ternal to the system are such that the output is zero even
when the inputs (and the states) are not themselves iden-
tically zero. For Single Input Single Output (SISO) sys-
tems, the zeros are the solutionss = zi toG(s) = 0, and
thus it could be argued that they are values ofs at which
G(s) looses rank (from rank 1 to rank 0). This is the basis
for the following definition for zeros for the multivariable
system (MacFarlane and Karcanias, 1976).

DEFINITION 1. (ZEROS). zi 2 C is a zero ofG(s) if the
rank ofG(zi) is less than the normal rank ofG(s). The
zero polynomial is defined asz(s) =

QNz

i=1(s�zi) where
Nz is the number of finite zeros ofG(s).

The normal rank ofG(s) is defined as the rank ofG(s) at
all s except a finite number of singularities (which are the
zeros). This definition of zeros is based on the transfer
function matrix, corresponding to a minimal realization
of a system. These zeros are sometimes called “transmis-
sion zeros”, but we shall simply call them “zeros”. We
continue with the definitions of input and output zero di-
rections.

DEFINITION 2. (ZERO DIRECTIONS). If G(s) has a zero
for s = z 2 C then there exist non-zero vectors labeled
the output zero directionyz 2 C

l and the input zero di-
rectionuz 2 Cm , such thatyHz yz = 1, uHz uz = 1 and

yHz G(z) = 0; G(z)uz = 0 (4)

It follows that the input and output zero directions lie in
the null-space and the left null-space ofG(z). The dimen-



sion of these spaces may be larger than the multiplicity of
the zerosz. In particular, this is the case for non-square
G. The definitions of input and output zero directions can
further be extended with the state input and output zero
directions through the use of generalized eigenvalues. For
a systemG(s), the zerosz of the system, the zero input
directionsuz and the zero input state directionsxz;I 2
C nx (nx is the number of states) can all be computed
from the generalized eigenvalue problem�

A� sI B
C D

��
xz;I
uz

�
=

�
0
0

�
(5)

In this setup we normalize the length ofuz, i.e.uHz uz =
1. This imply that the length ofxz;I is different from one.
Similarly one can compute the zerosz, the output zero
directionyz and the output zero state directionxz;O 2
C
nx through the generalized eigenvalue problem

[xHz;O yHz ]

�
A� sI B
C D

�
= [ 0 0 ] (6)

Where the length ofyz is normalized, so thatyHz yz = 1.
By taking the transpose of (6) one obtains�

AT � sI CT

BT DT

� �
�xz;O
�yz

�
=

�
0
0

�
(7)

From this we see that the input directions of the trans-
posed systemGT is equal to the conjugate of the output
directions ofG. In MATLAB the generalized eigenvalue
problem (6) can be solved via the transposed problem.

2.2 Poles

DEFINITION 3. (POLES). The polespi 2 C of a sys-
tem with state-space description (3) are the eigenvalues
�i(A), i = 1; : : : ; nx of the matrixA. The pole or char-
acteristic polynomial�(s) is defined as

�(s) = det(sI �A) =

nxY
i=1

(s� pi) (8)

Thus, the poles are the roots of the characteristic equa-
tion

�(s) = det(sI �A) = 0 (9)

The gain of the systemG evaluated ats = p,G(p) is infi-
nite in some directions at the input and the output. This is
the basis for the following definition of input and output
pole directions.

DEFINITION 4. (POLE DIRECTIONS). If s = p 2 C is a
pole ofG(s) then there exist an output directionyp 2 C

l

and an input directionup 2 Cm with infinite gain for
s = p.

The following result shows how to compute the pole di-
rections for a general system with state space realization
(3).

LEMMA 1. (POLE DIRECTIONS). For a systemG with
state space description (3) the pole directions associated
with the polep 2 C can be computed from

yp = CxR; up = BHxL (10)

wherexR 2 C nx and xL 2 C nx are the eigenvectors
corresponding to the two eigenvalue problems

AxR = pxR; xHLA = xHL p

3. CONSTRAINTS ON T AND S

The conditionS+T = I holds for MIMO-systems, and it
follows from Fan’s theorem in (Horn and Johnson, 1985,
p. 140 and p. 178)�i(A)���(B) � �i(A+B) � �i(A)+
��(B) with i = 1 that

j1� ��(S)j � ��(T ) � 1 + ��(S) (11)

j1� ��(T )j � ��(S) � 1 + ��(T ) (12)

This shows that we cannot have bothS andT small si-
multaneously and that��(S) is large if and only if��(T )
is large. For MIMO-systems the interpolation constraints
on T andS caused by RHP-poles and RHP-zeros have
directions. This follows since RHP-zeros and RHP-poles
themselves have directions as discussed in section 2.

CONSTRAINT 1. (RHP-ZERO). If G(s) has aRHP-zero
at z with output zero directionyz, then for internal sta-
bility of the feedback system the following interpolation
constraints must apply

yHz T (z) = 0; yHz S(z) = yHz (13)

In words, (13) says thatT must have a RHP-zero in the
same direction asG and thatS(z) has an eigenvalue of1
corresponding to the left eigenvectoryz.

CONSTRAINT 2. (RHP-POLE). If G(s) has aRHP-pole
at p with output directionyp, then for internal stability
of the feedback system the following interpolation con-
straints must apply

S(p)yp = 0; T (p)yp = yp (14)

Similar constraints apply toLI , SI andTI , but these are
in terms of the input zero and pole directions,uz andup.

For more detailed information on integral relations on
sensitivity function with RHP-poles and zeros refer to
(Zhouet al., 1996; Chen, 1995; Freudenberg and Looze,
1988; Boyd and Desoer, 1985).



4. LOWER BOUNDS ON kwPS(s)k1 AND
kwTT (s)k1

In this section we deduce lower bounds on the weighted
sensitivity functionskwPS(s)k1 andkwTT (s)k1 when
RHP-zeros and poles are present. We use theH1-norm
in terms of the maximum singular value.

4.3 Limitations imposed by RHP-zeros

The following result is originally from Zames (1981).

THEOREM 1. (RHP-ZERO AND kwPS(s)k1). Suppose
the plantG(s) has aRHP-zero ats = z. LetwP (s) be
a scalar transfer function. Then for closed-loop stability
the weighted sensitivity function must satisfy

kwPS(s)k1 = sup
!

��(wPS(j!)) � jwP (z)j (15)

REMARK 1. Condition (15) shows that there are inherent performance
limitations imposed by RHP-zeros.
REMARK 2. Note that (15) involves the maximum singular value (the
“worst” direction), and therefore the RHP-zero may not be a limitation
in other directions.
REMARK 3. The assumption of a scalar weight is somewhat restrictive.
However, the assumption is less restrictive if one follows a scaling pro-
cedure and scales all outputs by their allowed variations such that their
magnitudes are of approximately equal importance.

4.4 Limitations imposed by RHP-poles

The following result is based on the interpolation con-
straintsS(p)yp = 0 andT (p)yp = yp which apply when
G(s) has a RHP-pole ats = p.

THEOREM 2. (RHP-POLE AND kwTT (s)k1). Suppose
the plantG(s) has aRHP-pole ats = p. LetwT (s) be
a scalar transfer function. Then for closed-loop stabil-
ity the weighted complementary sensitivity function must
satisfy

kwTT (s)k1 = sup
!

��(wTT (j!)) � jwT (p)j (16)

4.5 RHP-poles combined with RHP-zeros

By considering the effect of one RHP-zero and one RHP-
pole separately we derived in (15) and (16) the conditions

kwPS(s)k1 � c1jwP (z)j (17)

kwTT (s)k1 � c2jwT (p)j (18)

with c1 = c2 = 1. These conditions may be optimistic in
that the lower bound may be to small, and indeed we may
havec1 � 1 andc2 � 1 for the case when we have both
a RHP-pole and a RHP-zero with some alignment in the
same direction.

Consider a plantG(s) with RHP-polespi and RHP-zeros
zj , and factorizeG(s) in terms ofBlaschke productsas
follows

G(s) = Bp(s)Gp(s); G(s) = B�1z (s)Gz(s)

whereBp(s) andBz(s) are stable all-pass transfer matri-
ces (all singular values are equal to1 for s = j!) contain-
ing the RHP-poles and RHP-zeros, respectively.Bp(s) is
obtained by factorizing at the output one RHP-pole at a
time, starting withG(s) = Bp1(s)Gp1(s) where

Bp1(s) = I +
2Rep1
s� p1

ŷp1ŷ
H
p1

and ŷp1 = yp1 is the output pole direction forp1. This
procedure may be continued to factor outp2 fromGp1(s)
whereŷp2 is the output pole direction ofGp1 (which need
not coincide withyp2, the pole direction ofG), and so on.
A similar procedure may be used for the RHP-zeros. We
get

Bp(s) =

NpY
i=1

(I +
2Re(pi)

s� pi
ŷpiŷ

H
pi) (19)

Bz(s) =

NzY
j=1

(I +
2Re(zj)

s� zj
ŷzj ŷ

H
zj) (20)

REMARK. For further details regarding state-space realizations of the
factorizations and properties of the all pass filters. see (Havre and Sko-
gestad, 1996). the output factorization of RHP-zeros are also given in
(Zhouet al., 1996, p.145).

With those two factorization we have the following theo-
rem.

THEOREM 3. (MIMO SENSITIVITY PEAK). Suppose the
plantG(s) hasNz RHP-zeroszj with output directions
yzj andNp RHP-polespi with output directionsypi. De-
fine the all-pass transfer matrices in (19) and (20) and
compute the real constants

c1;j = kyHzjBp(zj)k2 � 1 (21)

c2;i = kBz(pi)ypik2 � 1 (22)

Then for closed-loop stability the weighted sensitivity func-
tion must satisfy for eachzj

kwPS(s)k1 � c1;j jwp(zj)j (23)

and the weighted complementary sensitivity function must
satisfy for eachpi

kwTT (s)k1 � c2;ijwT (pi)j (24)

For the case with one RHP-zero and one RHP-pole we
have the result given in Corollary 1. A similar result was
first proved by Boyd and Desoer (1985) and an alterna-
tive proof is given in Chen (1995) who presents a slightly
improved bound. One disadvantage with the lower bound
in (Boyd and Desoer, 1985, (3.15) on p. 164) is that it is
zero when the angle between the pole and the zero direc-
tion is90� whereas the bound presented next is unity.



COROLLARY 1. (ONE RHP-ZERO AND ONE RHP-POLE).
Given the systemG(s) with oneRHP-pole and oneRHP-
zero. The constantsc1 andc2 in (21) and (22) are given
by the equation

c = c1 = c2 =

s
sin2(�) +

jz + pj2

jz � pj2
cos2(�) (25)

where� = cos�1(jyHz ypj).

For SISO-systems, Theorem 3 simplifies to:

COROLLARY 2. (SISO SENSITIVITY PEAK). Suppose
theSISO-systemG(s) hasNz RHP-zeroszj , andNp RHP-
polespi. Then for closed-loop stability the weighted sen-
sitivity function must satisfy foreach RHP-zerozj

kwPS(s)k1 � c1;j jwP (zj)j (26)

c1;j =

NpY
i=1

jzj + �pij

jzj � pij
� 1 (27)

and the weighted complementary sensitivity function must
satisfy foreach RHP-polepi

kwTT (s)k1 � c2ijwT (pi)j (28)

c2;i =

NzY
j=1

j�zj + pij

jzj � pij
� 1 (29)

This result is stated in (Skogestad and Postlethwaite, 1996,
Theorem 5.5, p. 171), it follows easily from Theorem 3
by setting the pole and zero directions equal to1.

PEAK IN S AND T . From Theorem 3 we get by selecting
wP (s) = 1 andwT (s) = 1

kS(s)k1 � maxzeros;j c1;j (30)

kT (s)k1 � maxpoles;i c2;i (31)

Thus, a peak for��(S(j!)) and��(T (j!)) larger than 1 is
unavoidable if the plant has both a RHP-pole and a RHP-
zero (unless their relative angle� is 90�).

5. EXAMPLES

EXAMPLE 1. BALANCING A ROD. This example is taken
from Doyle et al. (1992). Consider the problem of bal-
ancing a rod in the palm of one’s hand. The objective is
to keep the rod upright, by small hand movements, based
on observing the rod either at its far end (outputy1) or
the end in one’s hand (outputy2). The linearized transfer
functions for the two cases are

G1(s) =
�g

s2 (Mls2 � (M +m)g)

G2(s) =
ls2 � g

s2 (Mls2 � (M +m)g)

Herel [m] is the length of the rod andm [kg] its mass.
M [kg] is the mass of your hand andg [� 10 m/s2] is
the acceleration due to gravity. In both cases, the plant
has three unstable poles: two at the origin and one atp =q

(M+m)g
Ml

. A short rod with a large mass gives a large
value of p, (the pole is far from the imaginary axis in
the RHP) and this in turn means that the system is more
difficult to stabilize. For example, withM = m andl =
1 [m] we getp = 4:5 [rad/s] and we desire a bandwidth
of about9 [rad/s] (corresponding to a response time of
about0:1 [s]).

If one is measuringy1 (looking at the far end of the rod)
then achieving this bandwidth is the main requirement.
However, if one tries to balance the rod by looking at
one’s hand (y2) there is also a RHP-zero atz =

p
g

l
.

If the mass of the rod is small (m=M is small), thenp is
close toz and stabilization is in practice impossible with
any controller. However, even with a large mass, stabi-
lization is very difficult becausep > z whereas we would
normally prefer to have the RHP-zero far from the origin
and the RHP-pole close to the origin (z > p). So although
in theory the rod may be stabilized by looking at one’s
hand (G2), it seems doubtful that this is possible for a hu-
man. To quantify these problems use (26) withc1 from
(27), or use (28) withc2 from (29). We get

c1 = c2 =
jz + pj

jz � pj
=
j1 + 
j

j1� 
j
; 
 =

r
M +m

M

Consider a light weight rod withm=M = 0:1, for which
we expect stabilization to be difficult. We obtainc1 =
c2 = 42, and we must have

kS(s)k1 � 42 and kT (s)k1 � 42

so poor control performance is inevitable if we try to bal-
ance the rod by looking at our hand (y2).

The difference between the two cases, measuringy1 and
measuringy2, highlights the importance of sensor loca-
tion on the achievable performance of control.

EXAMPLE 2. RHP-POLE AND RHP-ZERO WITH ALIGN-
MENT. We consider the following plant

G(s) =

�
1

s�p
0

0 1

s+p

�h
cos� � sin�
sin� cos�

i
| {z }

U�

�
s�z

0:1s+1
0

0 s+z
0:1s+1

�
;

z = 2; p = 3 (32)

which has a RHP-zero atz = 2 and a RHP-pole atp = 3.
For � = 0� the rotation matrixU� = I , and the plant
consists of two decoupled subsystems

G0(s) =

� s�z
(0:1s+1)(s�p) 0

0 s+z
(0:1s+1)(s+p)

�
The subsystemg11 has both a RHP-pole and a RHP-zero,
and closed-loop performance is expected to be poor. On
the other hand, there are no particular control problems
related to subsystemg22. With � = 90�, U� =

�
0 �1
1 0

�
,

which gives
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Figure 1. MIMO-plant with angle� between RHP-pole and RHP-zero.
Response to step in reference withH1-controller for four different
values of�. Solid line:y1; Dashed line:y2.

G90(s) =

�
0 � s+z

(0:1s+1)(s�p)
s�z

(0:1s+1)(s+p) 0

�
and we again have two decoupled subsystems, but this
time in the off-diagonal elements. The main difference,
is that there is no interaction between the RHP-pole and
RHP-zero in this case, so we expect this plant to be eas-
ier to control. For other values of� we do not have de-
coupled subsystems, and there will be some interaction
between the RHP-pole and RHP-zero. Since the pole is
located at the output of the plant, its output direction is
fixed, we findyp = [ 1 0 ]

T for all values of�. On the
other hand the zero direction changes from[ 1 0 ]

T for
� = 0� to [ 0 1 ]

T for � = 90�. Thus, the angle between
the pole and zero direction,�, will also vary between0�

and90� as� varies from0� to 90�, as seen from Table 1,
where we also givec1 andc2 for four rotation angles,� =
0�; 30�; 60� and90�. The table also shows the values of

TABLE 1: Results from Example 2.

� 0� 30� 60� 90�

yz

h
1
0

i h
0:33
�0:94

i h
0:11
�0:99

i h
0
1

i
� = cos�1 jyHz ypj 0� 70:9� 83:4� 90�

c = c1 = c2 5:0 1:89 1:15 1:0

kS(s)k1 7:00 2:60 1:59 1:98
kT (s)k1 7:40 2:76 1:60 1:31

(S=KS) 9:55 3:53 2:01 1:59

kS(s)k1 andkT (s)k1 using controllers obtained by an
H1-optimalS=KS-design using the following weights

Wu = I ; Wp = (
s=M + !�B

s
)I (33)

with M = 2 and!�B = 0:5. The weightwP for the
weighted sensitivity means that we requirekS(j!)k1
less than 2, and require tight control up to a frequency
of about!�B = 0:5 rad=s. The minimumH1-norm for
theS=KS problem is given by the value of
 in the Ta-
ble 1. The corresponding responses to a step change in
the referencer = [ 1 �1 ]T are shown in Figure 1.

Several things are worth noting:

1. We see from the simulation for� = 0� in Figure 1
that the response fory1 is very poor. This is as ex-
pected because of the closeness of the RHP-pole and
zero (z = 2; p = 3).

2. The boundc1 onkS(s)k1 in (30) is tight in this case.
This can be shown numerically by selectingWu =
0:01I , !B = 0:01 andMs = 1 (Wu and!B are small
so the main objective is to minimize the peak ofS).
We find that theH1-designs for the four angles yield
kS(s)k1 = 5:04; 1:905; 1:155; 1:005, which is very
close toc1.

3. The angle� between the pole and zero, is quite dif-
ferent from the rotation angle� at intermediate values
between0� and90�. The reason for this is the influ-
ence of the RHP-pole in output1, which yields a strong
gain in this direction, and thus tends to push the zero
direction toward output2.

4. For� = 0� we havec1 = c2 = 5 sokS(s)k1 � 5
andkT (s)k1 � 5, so it is clearly impossible to get
kS(s)k1 less than2, as required by the performance
weightwP .

5. TheH1-optimal controller is unstable for� = 0�

and30�. This is not surprisingly, because for� = 0�

the plant is two SISO systems one of which needs an
unstable controller to stabilize it, sincep > z.

6. CONCLUSION

We have presented lower bounds on the peak in weighted
sensitivity and complementary sensitivity functions for
systems with RHP-zeros and poles. Peaks in the sensitiv-
ity and complementary sensitivity functions are unavoid-
able if the plant has both a RHP-zero and a RHP-pole with
some alignment.

We expect the bounds derived to have importance for the
selection of performance weights for controller design
and analysis.
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A. PROOFS OF THE RESULTS

Proof of Lemma 1. We have fors = p,G(p) = C(pI �A)�1B +D.
Sincep is an eigenvalue ofA andxR is the eigenvector correspond-
ing to the polep, (pI � A)xR = 0. ThereforexR is the output state
direction with infinite gain for(pI � A)�1. The output pole direction
becomesyp = CxR as long askDk is finite. The input pole direc-
tion up follows similarly as the conjugate of the output direction of the
transposed systemGT . 2

Proof of (13). The output direction is given byyHz G(z) = 0. For in-
ternal stability the controller cannot cancel the RHP-zero and it follows
thatL = GK has a RHP-zero in the same direction, i.e.yHz L(z) = 0.
Now S = (I + L)�1 is stable and thus has no RHP-pole ats = z. It
then follows fromT = LS thatyHz T (z) = 0 andyHz (I � S) = 0. 2

Proof of (14). The square matrixL(s) = GK(s) has a RHP-pole ats =
p, and if we assume thatL(s) has no RHP-zero ats = p, thenL�1(p)
exists and the output pole directionyp is given byL�1(p)yp = 0.
SinceT is stable, it has no RHP-pole ats = p, soT (p) is finite. It then
follows fromS = TL�1 thatS(p)yp = T (p)L�1(p)yp = 0. 2

Proof of Theorem 1. Introduce the scalar function

f(s) = yHz wP (s)S(s)yz

which is analytic in the RHP. We then have

kwPS(s)k1 � kf(s)k1 � jf(z)j = jwP (z)j (A.1)

The first inequality follows since the singular value measures the max-
imum gain of a matrix independent of direction, so��(A) � kAwk2
and��(A) � kwAk2 for any vectorw with kwk2 = 1. The second in-
equality follows from the maximum modulus theorem. The final equal-
ity follows sincewP (s) is a scalar and from the interpolation constraint
yHz S(z) = yHz we getyHz S(z)yz = yHz yz = 1. 2

Proof of Theorem 2. Introduce the scalar function

f(s) = yHp wT (s)T (s)yp

which is analytic in the RHP sincewTT (s) is stable. We then have

kwTT (s)k1 � kf(s)k1 � jf(p)j = jwT (p)j (A.2)

The first inequality follows since the singular value measures the max-
imum gain of a matrix independent of direction andkypk2 = 1. The
second inequality follows from the maximum modulus theorem. The fi-
nal equality follows sincewT (s) is a scalar and from the interpolation
constraintT (p)yp = yp we getyHp T (p)yp = yHp yp = 1. 2

Proof ofc1;j in Theorem 3. We consider one RHP-zeroz with direction
yz at a time (the subscriptj is omitted). Factorize theNp RHP-poles
pi in G(s) = BpGm(s), whereBp(s) is given by (19). It follows that
Gm(s) is stable,Bp(s) has all singular values and absolute value of
all eigenvalues equal to one fors = j! and��(Bp(s)) � 1 whenever
Re(s) � 0, see (Havre and Skogestad, 1996, Lemma 2). The loop
transfer function can then be written

L(s) = GK(s) = BpGmK(s) , Bp(s)Lm(s)

then
S = TL�1 = TL�1m (s)B�1p (s) , SmB

�1
p (s)

Introduce the scalar functionf(s) = yHz wP (s)Sm(s)y which is ana-
lytic (stable) in RHP. We want to choosey so thatjf(s)j obtains maxi-
mum

J(s) = max
kyk=1

jf(s)j = max
kyk=1

jyHz wP (s)Sm(s)yj

We then get

kwP (s)S(s)k1 = kwP (s)Sm(s)k1 � kJ(s)k1 � jJ(z)j =

max
kyk=1

jwP (z)j jy
H
z Bp(z)yj = jwP (z)j ky

H
z Bp(z)k2 (A.3)

The first equality follows sinceBp(s) is all pass fors = j!. The first
inequality follows since the singular value measures the maximum gain
of a matrix independent of direction, so��(A) � kAwk2 and��(A) �
kwAk2 for any vectorw with kwk2 = 1. The second inequality fol-
lows from the maximum modulus theorem. The second equality fol-
lows from yHz Sm(z) = yHz S(z)Bp(z) = yHz Bp(z) and the fact
thatwP (s) is a scalar. The last equality follows from the fact that the
largest singular value measure the strongest gain direction and is equiv-
alent to the second normk � k2. The fact thatc1;j � 1 follows from
�i(Bp(s)) � 18i whenRe(s) � 0. 2

Proof ofc2;i in Theorem 3. We consider one RHP-polep with direction
yp at a time (the subscripti is omitted). Factorize theNz RHP-zeros
zi in G(s) = B�1z (s)Gm(s), whereBz(s) is given by the (20). It
follows that thatGm(s) is minimum phase,Bz(s) has all singular val-
ues and absolute value of all eigenvalues equal to one fors = j!, see
(Havre and Skogestad, 1996, Lemma 2). The loop transfer function be-
comes

L(s) = GK(s) = B�1z GmK(s) , B�1z Lm(s)

FactorizeT = LS = B�1z LmS , B�1z Tm and introduce the scalar
function f(s) = yHwTTm(s)yp which is analytic in RHP. We want
to choosey so thatjf(s)j obtains maximum

J(s) = max
jyj=1

jf(s)j = max
jyj=1

jyHwT (s)Tm(s)ypj

We then get

kwT (s)T (s)k1 = kwT (s)Tm(s)k1 � kJ(s)k1 � jJ(p)j =

max
jyj=1

jwT (p)j jy
HBz(p)ypj = jwT (p)j kBz(p)ypk2 (A.4)

The first equality follows sinceBz(s) is all pass fors = j!. The first
inequality follows since the singular value measures the maximum gain
of a matrix independent of direction, so��(A) � kAwk2 and��(A) �
kwAk2 for any vectorw with kwk2 = 1. The second inequality fol-
lows from the maximum modulus theorem. The second equality follows
from Tm(p)yp = Bz(p)T (p)yp = Bz(p)yp. The last equality fol-
lows from the fact that the largest singular value measure the strongest
gain direction and is equivalent to the second normk � k2. The fact that
c2;i � 1 follows from�ij(Bz(s)) � 18j whenRe(s) � 0. 2

Proof ofc = c1 = c2 in Corollary 1. Note that whenNz = Np = 1
bothz andp are real and positive, so�z = z and�p = p. Considerc2

c2 =




(I + 2Re(z)

p� z
yzy

H
z )yp





2

=




[U yz ]

h
I 0

0 p+�z

p�z

i h
UH

yHz

i
yp





2

=




UUHyp +
p+ �z

p� z
yzy

H
z yp





2

=

r
sin2(�) +

j�z + pj2

jz � pj2
cos2(�)

The matrixU contains a basis for the orthogonal subspace toyz, y?z .
The angle betweenyp andy?z is 90 � �, cos(90 � �) = sin(�) and
(A.5) follows. We can interpret (A.5) as a weighted projection ofyp

on the subspacesy?z , with weight1, andyz , with weight j�z+pj
2

jz�pj2
. In

(Boyd and Desoer, 1985, (3.15) on p. 164) it is the projection on the
orthogonal subspacey?z which lacks. By interchanging the roles of the
pole and zero directions the bound the boundc1 follows similarly. 2


