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Abstract—Dynamic matrix control (DMC) is based on two assumptions which limit the feedback
performance of the algorithm. The first assumption is that a stable step response model can be used to
represent the plant. The second assumption is that the difference between the measured and the

predicted output can be modeled as a step disturbance acting on the output.
These assumptions lead to the following limitations:

1. Good performance may require an excessive number of step response coefficients.
2. Poor performance may be observed for disturbances affecting the plant inputs.
3. Poor robust performance may be observed for multivariable plants with strong interactions.

Limitations 1 and 2 apply when the plant’s open-loop time constant is much larger than the desired
closed-loop time constant. Limitation 3 is caused by gain uncertianty on the inputs.

In this paper we separate the DMC algorithm into a predictor and an optimizer. This enables us to
highlight the DMC limitations and to suggest how they can be avoided. We demonstrate that a new
model predictive control (MPC) algorithm, which includes an observer, does not suffer from the listed

limitations.

1. INTRODUCTION

Dynamic matrix control (DMC) has been success-
fully used in industry for more than a decade.
Several authors have reported improved control
performance by use of DMC as compared to “tradi-
tional” control algorithms (Cutler and Ramaker,
1980; Prett and Gillette, 1980; Garcia and
Morshedi, 1986). DMC has the ability to deal with
constraints, which probably is one of the major
reasons for its popularity. It also allows set point
changes to be “announced” in advance and it facili-
tates feedforward control. However, the feedback
properties of a DMC controller are limited by two
restrictive assumptions which are implicit in the
algorithm:

Al. A stable step response model can be used to
represent the plant.

A2. The difference between the measured and
the predicted output can be modeled as a
step disturbance acting on the output.

The objective of this paper is to clearly point out
these assumptions and to illustrate in which situa-
tions they may limit the feedback properties of
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DMC. Obviously, there are other algorithms in the
literature which do not suffer from these deficien-
cies. In this paper, however, we wanted to adhere to
the DMC structure because of its popularity and its
capability to handle constraints. We demonstrate
that the limitations can be avoided by use of a new
observer based algorithm, by Lee et al. (1994),
which is a direct extension of DMC.

DMC belongs to the family of model predictive
control (MPC) algorithms. The main idea behind
these algorithms is to use an explicit model of the
plant to predict the open-loop future behavior of the
controlled outputs over a finite time horizon. The
predicted behavior is then used to find a finite
sequence of control moves which minimizes a parti-
cular objective function without violating prespeci-
fied constraints. Usually only the first input move is
implemented and the procedure is repeated at the
next sampling instant.

This algorithm can be separated into two parts, a
predictor and an optimizer. By splitting up the
algorithm in this manner, similarities with state-
observer state-feedback controllers become appar-
ent. In fact, Lee et al. (1994) show that uncon-
strained DMC is equivalent to an optimal state
observer (Kalman filter) and linear quadratic feed-
back, using a receding horizon approach and special
assumptions about disturbances and measurement
noise.
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In this paper we use the predictor—optimizer rep-
resentation of DMC. In this framework the limi-
tations of DMC can be traced to the predictor part
of the algorithm. We only consider unconstrained
DMC, but the results carry over to the general case
with constraints, since the issue of constraints only
affects the optimizer.

The limitations we want to illustrate are:

L1. Good performance may require an excessive
number step response coefficients.

L2. Poor performance may be observed for
“ramp-like” disturbances acting on the plant
outputs. In particular, this occurs for input
disturbances for plants with large time con-
stants,

Poor robust performance, due to input gain
uncertainty (which is always present in prac-
tice), may be observed for multivariable
plants with strong interactions.

L3.

In addition, there is the obvious limitation that the
plant has to be stable.

This paper is organized as follows. In Section 2 we
present the algorithms we will use. The purpose is to
give a coherent overview of the algorithms and to
point out the implicit assumption made in DMC. We
also use this section to define the nomenclature.
Readers not familiar with MPC are referred to
Garcia et al. (1989). In Section 3 we use a simple
single-input-single-output (SISO) plant and a multi-
input-multi-output (MIMO) distillation column to
illustrate the limitations of DMC and demonstrate
that the algorithm by Lee ef al. (1994) can be used to
avoid these limitations. Section 4 contains a
Discussion and Section 5, Conclusions.

2. MODEL PREDICTIVE CONTROL

2.1. Dynamic matrix control

2.1.1. Modeling the plant. In the original DMC
formulation (Cutler and Ramaker, 1980) a step
response model of the plant is used to predict the
future behavior of the controlled variables.

Let the step response of a SISO system be repre-
sented by the sequence:

[s152..

(1

where the kth element is the output at time & caused
by a unit step input at time 0. For a stable plant this
sequence will asymptotically reach a constant value,
i.e. 5,~5,,,. For a MIMO system with n, inputs and
n, outputs we get:

cSn-1SnSpa1 - - ']v
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Sii S St i
Sa0 S22 S$2 i | .

Si= i=1,...,n. (2)
sn‘ul.l Sﬂ\..l.l L snv‘,.n,,.r

The step response model can be represented in
the following state space form, which is equivalent
to that presented by Li et al. (1989):

Y(k+1)=MY(k)+SAu(k), 3
y(k)=NY(k), (€))]
where
Au(k)y=u(k)—u(k—1), 5
Y(k)=[y(K)'y(k+1)"...y(k+n=1)TT" (6)
o I, 0 ... 0 0
0O 0 I, . 0 0
M=o 0 o . 1, 0 nxay;
0 0 0o .. 0 1,
o 0 0 ... 0 I,
A
S,
5=s,., )
Sn—l
and
any
N=[l, 0 0 0 0). (8)

Au(k) is a vector of changes in the manipulated
inputs at time k. y(k) is the output vector at time k.
The vector Y(k + 1) represents the dynamic states of
the system. Each state, y(k +/), has a special inter-
pretation: it is the future output vector at time k+/
assuming constant inputs {i.e. Au(k+j)=0 for
j=0]. The new state vector Y(k + 1) is the old vector
Y (k) shifted up #n, elements plus the contribution
made by the latest input change Au(k).

2.1.2. The predictor. The DMC algorithm is illus-
trated in Fig. 1. The objective of the predictor is to
generate a vector, Y(k +1|k), of predicted open-
loop outputs over a horizon of p future time steps,
the prediction horizon. This prediction vector is
then used as an input to the optimizer.

The DMC predictor is described by the following
equations:

Y(k)=MY(k~1)+SAu(k—1), )
y(k)=NY(k), (10)
Y(k+1]k) =M, Y (k) +3[y(k)~y(k)] (11)
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Au(k
“2 o Plant
Vk+1
- s (k+1) -1
Kupc M
R(k + 1]k)
Optimizer Predictor

Fig. 1. DMC controller separated into a predictor and an optimizer.

where M, is the first p X n, rows of M and:
pxny

$=M, I, 1,

\ L] (12)

y

We use ~ to denote that the output is from the
model and not from the true plant. y(k) is a vector
of measured outputs at time k. y(k) and y(k) are
discontinuous at k_ while u(k) is discontinuous at
k., i.e.y is measured slightly before time k and u is
adjusted slightly after time &.

2.1.3. The optimizer. We use the QDMC objec-
tive function from Garcia and Morshedi (1986):

J= min {|T[¥,.(k+1)|k)—R(k+1|)]]

AU (k|k)

+lAAU(k| k)|, (13)
where
AU(klk)=[Au(k|k)"Au(k+1]k)"
L Au(k+m=1)TT,  (14)
Yok + 1) = [ym(k + 1|k Ty, (k+2]k)T
- Yk +p )T, (15)
and
R(k+1{k)=[r(k+1{k)r(k+2]k)" ...
r(k+plk)™". (16)

A%Y(k|k) is the optimal control sequence computed
at time k for m future input moves, where m is the
input horizon. ¥,.(k+1Jk) is a vector of outputs
predicted at time &, over a horizon of p future time
steps, including the effect of the m optimal input
moves:

Y, (k+11k) =Y(k + 1)k) + L7AUk|k), (17)

where

S 0 ... 0
S S ... 0

=8 Sut . S (18)
S Syt oo Spomo

R(k+1|k) is a vector describing the desired output
trajectory (set points) over p future time steps. I’
and A are weighting matrices and are usually chosen
to be diagonal.

The least squares solution to this problem is:

ANU(K|k) = [(F7)TTL? + ATA](F)TT

X [R(k+1]k)—Y(k+1[K)].  (19)

Only the first input move is implemented, and the
resulting optimizer is a constant gain matrix, Kypc:
Au(k)=[I 0...0]A%(k|k)
= Kupc[R(k+ 1K) —Y(k + 1]k)], (20)
KMPC = [1 O P .U][(y;,")TrTry;" + A]-l
X (FMTT (21)

2.1.4. DMC assumptions. The DMC controller
can only be used with stable plants. There are two
reasons for this: (1) The internal model [equations
(9-10)] can only describe a stable plant; (2) y(k)—
y(k) can grow unbounded for unstable systems lead-
ing to internal instability.

The internal model of the DMC predictor [equa-
tions (9-10)] does not yield an estimate of the true
plant output. It computes the open-loop model out-
put, y(k), for previous input moves, but does not
account for the effect of disturbances and model-
plant mismatch. This means that generally y(k) —
¥(k) is not zero when there is no steady-state offset
and y(k)=0. Rather, —-y(k) equals the accumulated
effect of disturbances and model-plant mismatch.
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Equation (11) gives the predicted open-loop out-
put vector, M(k + 1]k). It is the predicted effect of
previous input moves, M,Y(k). plus a simple bias
adjustment given by the mismatch between the mea-
sured output, y(k), and the output form the internal
model, y(k).

To achieve good control performance, ¥(k + 1|k)
should be close to the true open-loop output. This
requires that n, the number of coefficient matrices in
S, is chosen such that S,~S,,,, otherwise M, Y(k)
will be in error. It also requires that y(k)—y(k)
stays approximately constant.

We formulate these requirements as two implicit
assumptions made in the DMC algorithm:

Al. A stable step response model with S,=S,,,
can be used to represent the plant.

A2. The difference between the measured and
the predicted output can be modeled as a
step disturbance acting on the output.

2.2. DMC with general state space model

The DMC algorithm can also be derived for a
general discrete state space model (Prett and
Garcia, 1988) instead of the step response model
[equations (3-4)] used in the previous section. We
will denote this algorithm DMCss. The only differ-
ence between DMC and DMCss is the represen-
tation of the internal model. We include DMCss in
this paper because it allows us to study DMC with-
out the effects of truncation errors caused by S, #
Snt1-

Let the plant model be defined by the following
equations:

x(k+1)=Ax(k)+ Bu(k),
y(k)=Cx(k).

(22)
(23)

Using this model the DMC algorithm can be de-
scribed by the block diagram in Fig. 1 by making the
following substitutions, Y(k)=Ax(k)=Ax(k)—
i(k=1),M=A,5=B,N=[0...0] and
CA
CA +CA*?
M,= ] 24)

2P, CA

2.3. Observer based model predictive control

This algorithm is from Lee er al. (1994), we will
denote it “OBMPC”.

Lee et al. use the following extended version of
the step response model in equations (3-4). The
extension is made in order to include measurement
noise and general disturbances acting on the plant

outputs. It also allows modeling of integrating
systems:

Y(k+1)=MY(k)+SAu(k)+TAw(k), (25)
y(k)=NY(k), (20)
Y(k)y=y(k)+v(k), (27
Aw(k)=w(k)—w(k—1) is a vector of changes in

disturbances and v(k) is a vector of measurement
noise:

0 1, 0 0 0 0 o0
0o 0 I, o 0 0 0
0 0 0 0 4L, 0 0
0 0 o0 o I G G
0 0 0 0 0 A, 0
0 0 0 0 0 Av)

nxn,+dim{x,} +dim{x,}, (28)
S= Sn—Z ; T: 0 , (29)
Snfl 0
S, 0
B, 0
Lo | B,
N=[l, 0 0 0000, (30
Y(k) =y (k) y(k+1)T .. y(k+n=1)T
xo(k)T xu (k)T (31)

Ay, B, and C, constitute a state space description
of the residual plant dynamics after n sampling
intervals. A,, B, and C, describe the dynamics of
the disturbances. x, and x, are state vectors for
residual plant dynamics and disturbance dynamics,
respectively.

This representation allows very general modeling
of plant and disturbances. However, we will approx-
imate the residual dynamics with n, X n, first-order
systems, each describing the slow response from one
input to one output. This approximation gives:

Ay Ay
A, ."A ;o Ay= ,  (32)
un, aujn\.

B,= [B i ]; bun (33)
’ Bun“ Buj= N
Bujn,
n,Xn,
Co=lhn 1, ... L1 (34)

We also restrict measurement noise and distur-
bances to the following special case:
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Au(k)

(k)

Plant

Optimizer

Predictor

Fig. 2. Observer based MPC controller separated into a predictor and an optimizer.

1. The measurement noise at each output is
uncorrelated white noise.

2. The disturbances at the outputs are integrated
white noise filtered through first-order dyna-
mics.

For this special case we get the following diagonal
covariance matrices;

E{Aw(k)Aw(k)“}=W=[W W ] (35)

Elo(k)o(k)T}=V= [V‘--. v ] (36)

and

A B diag[ay, . .. ,a,,y}; B,=1,; C,=I,. (37)

For a,=0, the disturbance at the ith output is
integrated white noise (“type 1" disturbance), while
;=1 yields double-integrated white noise (“type 2”
disturbance) at the ith output.

2.3.1. The OBMPC predictor. The OBMPC pre-
dictor is using an optimal state observer (i.e.
Kalman filter), as seen in Fig. 2. This observer is
described by the following equations:

Y(k|k)=Y (klk—1)+ K{y(k) -y (k|k - 1)}, (38)
Y(k+1lk)=MY(k|k)+ SAu(k), (39)

where

Y(klk— 1) =[p(klk—=1D)V(k+1k=1". ..

Jlk+n—11k— 1), (klk— )% (klk— DT, (40)

y(k+ 1]k) is the estimate of y(k + 1) based on meas-
urements up to and including time k. The predicted

output vector (the input to the optimizer) is:
Y(k+1]k) =M, Y (k|k). (41)

For the special noise and disturbance case defined
in the previous section, the optimal filter gain K in

equation (38) is parametrized as follows (Lee et al.,
1994):

In, (fﬂ)l
‘. o

1.,
I, +4
+ :
par

0
L l?(ln—l _J

(foh
- (42)

]

ai(fu,)lz

I+ a;—a;(f.) (43)

(fh)i =

<is<n,.

The adjustable parameters, (f,);, are determined by
the disturbance-to-noise ratio for the ith output,
WiV,

(f)—0 for

W,/ Vi~0, (44)

(f)i—1 for W/Vi-—>o. (45)
Hence, we may implement the Kalman filter without
solving a Riccati equation, and (f,); and «; may be
used as on-line tuning parameters.

2.3.2. State-observer  state-feedback  interpre-
tation. The unconstrained OBMPC described above
is a state-observer state-feedback controller using a
receding horizon approach. The optimal state-
observer is defined by equations (38-39) and the
linear quadratic state feedback gain is KypcM,,. The
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closed-loop dynamics is determined by the following
state transition matrix:

Y (k) _[M=SKurcM, SKurcM,
[Y(k)—Y(klk)]_[ 0 M—KNM]
Y(k-1)
X [Y(k-—l)— Y(k—llk—l)]'
(46)

The eigenvalues of M —SKypcM, are the regulator
poles and the eigenvalues of M — KNM are the
observer poles.

If the measurements are noise-free and the distur-
bances are random steps acting on the plant outputs,
then an unconstrained DMC controller where §, =
S.+1 1s equivalent to the unconstrained OBMPC
controller. That is, for this special case:

M, Y (kik)=M,Y (k) +$[j(k)—y(k)], (47)

and DMC is an optimal state-observer state-
feedback controller.

3. LIMITATIONS OF DYNAMIC MATRIX CONTROL

3.1. Limitation 1: Good performance may require
an excessive number of step response coefficients

In the previous section we stated that the DMC
step response model requires S,=S$,,,. In this
section we demonstrate the consequence of sacrific-
ing this requirement.

Assume that a high closed-loop bandwidth is
desired for the plant described by the following
model:

100

P(s) = ———
)= To0os31°

(48)
In order to achieve the desired bandwidth a short
sampling interval is required. (A common rule is to
use AT=<2a/10wy, where wg is the closed-loop
bandwidth, e.g. Middleton, 1991.) We select AT=
1min. According to common practice {e.g. Cutler
and Ramaker, 1980), the truncation error should
not be larger than about 5%, which in our case
yields 300 step coefficients. However, there is
always a practical limit on the number of coefficients
(state) that can be used in the internal model, since a
large number of coefficients leads to an excessive
use of computer memory and a high computational
load.

Consider the case of selecting n =30, which is a
typical industrial choice (e.g. Cutler and Ramaker,
1980). The effect of this truncation on feedback
control is demonstrated in Fig. 3 which shows the
response to a unit step disturbance acting on the
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Fig. 3. Effect of truncation. Response for the SISO plant
[equation (48)] with DMC controller A (Table 1). A unit
step disturbance acts on the plant output at t=10.

plant output at time = 10. The simulation is per-
formed with a dead beat DMC controller (controller
A, Table 1). The truncated step response causes an
erroneous prediction (a “jump”) n—1 sampling
intervals after the disturbance occurred. The error
here is so large that it leads to instability.

From this example we conclude that heavily trun-
cated models cannot be used, and thereby the
computer hardware may restrict the choice of sam-
pling interval and the achievable closed-loop band-
width. This is especially important for plants with a
large open-loop time constant.

3.2. Avoiding limitation 1

Limitation 1 may avoided by using a state space
model which has no truncation error. For example,
the DMCss algorithm requires only 2 states to repre-
sent equation (48) for AT =1, one state for the
first-order transfer function and one for the delay.
More states are needed if AT is less than the delay.

The OBMPC controller can also be used to avoid
limitation 1. Instead of truncating the response after

80 —
70+ Exact model
-« Truncated model (DMC) i
60r ------ Integrating approximation .-~
s (OBMPC)
5
< 40t
o
30
20}
10}
% 10 20 30 40 30 60 70 80 90 100

Time [min]

Fig. 4. Open-loop response to unit step in « at t=0 for
different models of 100/(100s+1) e™*. The DMC step
response model is truncated at n =30, AT =1 [equations
(3-4)]. The OBMPC model uses A,=1, B,=s,,,—5
n=30and AT =1 [equations (25-26)].

"
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10°k Tl -~ Truncated model (DMC) |

o [ T e Integrating approximation]

210k ... (OBMPC) ;

= E. - ]
%0101 , h

10° } 3

10-‘ . i 4

or 107 10° 100 100 10
Frequency [rad/min]

Fig. 5. Frequency response for different models of 100/

(100s + 1) e *. The DMC step response model is truncated

at n=30, AT=1 [equations (3-4)]. The OBMPC model

uses A,=1, B,=s,.,~—s,, n=30 and AT=1 [equations
(25-26)].

n time steps (as would be the case with a DMC step
response model) we may use A, and B, in equation
(32-33) to model the slow dynamics. This way we
can reduce the number of states required to repre-
sent the plant and thereby allow a short sampling
interval. A, and B, allow us to use any first-order
model of the slow dynamics. We could obtain an
exact model of the plant in equation (48) by using
A,=e 27 and B,=s,.,—s,. However, in this
example we will approximate the slow dynamics
with an integrator, and select A,=1, B,=s,,,—5,
and n=30.

In Fig. 4 we compare the open-loop model re-
sponse to a unit step in « at time 0 for the exact
model [equation (48)] (solid curve) with the trun-
cated DMC model [equations (3-4)] (dash-dot
curve) and the OBMPC model [equations (25-26)]
with the residual dynamic approximation given
above (dashed curve). The last model gives a large
error as time increases, but does not have the abrupt
change at t=nAT which is characteristic for the
truncated DMC model. In the frequency domain
(Fig. 5), the truncated DMC model is poor both at

:—DMC controller A
------ OBMPC controller D

i

20 25 30 35 40 45 50
Time [min]

R . H
5 ;’L ”

10 15 20 25 30 35 40 45 50
Time [min]

Output
CANRS I s

0 5

Fig. 6. Responses for the SISO plant [equation (48)] with
different controllers (Table 1). A unit step disturbance acts
on the plant output at ¢= 10.

2

——Qutput disturbance
------ Input disturbance

Output
SR

0 S 10 15 20 25 30 35 40 45 50
Time {min]

0 5 10 15 20 25 30 35 40 45 50
Time [min]

Fig. 7. Responses for the SISO plant [equation (48)] with

DMCss controller B (Table 1). Solid curves: unit step

disturbance acting on the plant outpur at t=10. Dashed

curves: unit step disturbance acting on the plant inpur at
t=10.

high and low frequencies. The integrating OBMPC
model on the other hand, yields excellent agreement
with the exact model at high frequencies, but
displays large deviation at low frequencies.

Simulations with DMC and OBMPC (controllers
A and D) are shown in Fig. 6. The disturbance is a
unit step on the plant output. We conclude that the
rough integrating approximation of the residual
dynamics is better than the truncated model. Note
that controller D is tuned for ramp disturbances,
a=1 (to take care of the low-frequency mismatch)
and some measurement noise, f, =0.5 (to achieve
high-frequency robustness).

3.3. Limitation 2: Poor response for ramp-like dis-
turbances

The DMC performance may be very poor for
disturbances which do not act as steps on the output.
Figure 7 shows the responses for the plant in equa-
tion (48) to a unit step acting on the plant output and
input, respectively. A DMCss controller is used in
both simulations in order to avoid truncation effects.

Time [min]

0 —— DMCss controller B
.5k Rk T OBMPC controller D |
= .

15 H - PI controller
E -1} -
-1.5} 1

10 15 20 2‘?30 35 40 45 50
Time [min]

0 5

Fig. 8. Responses for the SISO plant [equation (48)] with
different controllers (Table 1). A unit step disturbance acts
on the plant input at r= 10,
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10'g
——DMCss controller B o
------ OBMPC controller D ;2
---------- PI controller d

Magnitude
— e
o ©o Q@
I8 z =

_.
<

10";

B (T T R T CR TN T Y
Frequency [rad/min]
Fig. 9. Sensitivity function vs frequency for the SISO plant
[equation (48)] with different controllers (Table 1).

The controller is tuned for dead beat control (con-
troller B) and the output disturbance (solid curve) is
rejected in one sampling interval, since the distur-
bance is in accordance with assumption A2. The
response to the input disturbance (dashed curve) is
extremely sluggish. The reason is that a step distur-
bance on the input results in a slow, ramp-like
disturbance on the output. In this case assumption
A2 does not hold and the output prediction used by
the algorithm is incorrect which results in poor
performance. The response cannot be improved by
a different tuning since a dead beat controller gives
the highest feedback gain of any choice of T', A, p
and m for a given AT.

3.4. Avoiding limitation 2

An observer based MPC algorithm makes it poss-
ible to avoid the output step disturbance assumption
A2 which causes limitation 2. To demonstrate this
we compare the dead beat DMCss response (con-
troller B) with the OBMPC response (controller D).
. We also included a PI controller in this comparison
to demonstrate the performance of a very simple
controller. The PI controller is tuned according to
Ziegler-Nichols rules taking into account an extra
delay of half the sampling time (Table 1).

Responses to a unit input disturbance are shown
in Fig. 8. The DMCss response is sluggish, while the

—_

<

o
1
4
4
B

.._
=t

Magnitude

—
[
>

10:L 4 BT 2 S -
10 10 10° 10 10° 10!
Frequency [rad/min]

Fig. 10 Magnitude vs frequency plot of the (1,1)—RGA

element of the distillation column [equation (49)]. The

interactions are large at low frequencies (4, ,~35.1), but
not at high frequencies (4,,~=1.0).
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x10*
10f —— Without uncertainty
‘é_ 5t |y e With uncertainty
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-5t {
0 10 20 30 40 50 60 70 80 90 100
Time [min]
X107 -
0
5 2r
£t
6f iy
-80 10 20 30 40 30 60 70 80 90 100

Time [min]

Fig. 11. Responses for the distillation column [equation

(49)] with DMCss controller C (Table 1). A 0.001 step

disturbance acts on y,, at = 10. Uncertainty as defined in
equation (51).

other controllers perform well. Actually, the PI
controller is almost as good as OBMPC for this
simple plant.

The difference between the controllers is also
illustrated in Fig. 9, showing the sensitivity function
vs frequency. The DMCss controller yields a sensi-
tivity function with slope 1 for frequencies below the
bandwidth. This shape of the sensitivity function is
optimal for step disturbances and is a consequence
of assumption A2. However, for “ramp-like” distur-
bances we need a stronger disturbance suppression
at low frequencies. With a DMC controller this can
only be achieved by increasing the bandwidth of the
closed-loop system, since the shape of the sensitivity
function is fixed (due to A2). The maximum band-
width for a given AT is obtained by using A=0
(dead-beat) and if the resulting suppression of low-
frequency disturbances is not enough, then a smaller
AT has to be used. With an OBMPC controller we
may use a to adjust the disturbance suppression.

Figure 9 also shows that the sensitivity function
for DMCss controller B goes to zero at w =n/AT
rad/min. This is due to the dead-beat tuning and
makes the controller very sensitive to high fre-
quency uncertainty, e.g. dead time uncertainty.

3.5. Limitation 3: Poor response for interactive
MIMO plants

In this section we will show that there are cases
with model-plant mismatch when a DMC controller
does not perform well even when the disturbance
actually is a step acting on the output.

There is always a certain mismatch between a real
process and a model. The mismatch can have vari-
ous sources: uncertainty in the model parameters
and the model structure, inaccuracies of the actua-
tors and measurement devices, etc. Multivariable
systems introduce a special problem here because
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Table 1. Tuning parameters for controllers

AT
Type T A iy m o p o a b, A
A DIC I 0 [ 34
B DMCss ! 0 1 34—
C  DMCss I 0020 1 5w —
D OBMPC | 0 1 o4 0w 1 Sue 1= Sn 1 0.5
E  OBMPC I, 0.125L, 1 S0 30 0995 s a8, 0995 09
F  OBMPC . [ 1 SH0 30 0995 s aa-s,. 0995 022
A
o(2)
Pl Cofz) = 1 K. K.=045, 1,=5.0min, AT=1min

(z=1)

the “gain” of a multivariable process varies not only
with frequency, but also with “direction”. Skogestad
et al. (1988) show that if a plant is ill-conditioned
irrespective of scaling, then the control performance
is strongly affected by input uncertainty, in particu-
lar, when the controller is trying to invert the plant.
The DMC controller is such a controller, especially,
if the penalty weight on the input moves is low.
Since there is always some input uncertainty, it
should be clear that a DMC controller is potentially
bad when used for an ill-conditioned plant.

3.5.1. MIMO example. We use a distillation col-
umn as an example process. The model is from
Skogestad and Morari (1988) and is denoted “col-
umn A” in their paper. The column is described by
the following equations:

k ki +kps k
i " ( 12 " ) o
¢ - [+
[d)‘b] | 1+ l+7.s 1+7s
dxy ko ky+ky  ky o

& (S)C"R‘ _ e ™
l+1,s 1+1s

dL
X ,
v
where g (s) expresses the liquid flow dynamics:

1
(16 /n7)s]™’

1+1s

(49)

gils)= (50)
0, is the overall liquid lag from the top to the bottom
of the column. sy in equation (50) should be equal
to the number of trays in the column, but we use
nr=35 to avoid a model of unnecessary high order.
Reflux L and boilup Vy are manipulated inputs, top
composition, y, and bottom composition xy are
controlled outputs. We use the following parameter
values; k,,=0.878, k,,=—0.864, k, =1.082, ky=
1.096, 7,=194min, 7,=15min, #=1min, 6 =
2.46 min and n;=35. Skogestad and Morari do not
include any specified delays in their model, instead
they use a norm bounded uncertainty description to
cover the effect of delays and other unmodeled high
frequency dynamics. In equation (49) we assume the
delays to be known and equal to 1 min for each

transfer function. We do this only because known
delays fit better into the MPC framework.

Skogestad et al. (1990) demonstrate that a fre-
quency dependent relative gain array (RGA) (Bris-
tol, 1966) is a useful tool to check how sensitive a
plant is to input uncertainty. Figure 10 shows the
(1,1) RGA element, 4,,, of the distillation column,
as a function of frequency. 4, is high (35.1) at low
frequencies but falls to one at higher frequencies.
This shows that a DMC controller may have prob-
lems with low-frequency input uncertainty.

3.5.2. Effect of input uncertainty. We assume that
there is 20% uncertainty in the input moves. From a
singular value analysis, one can determine that the
worst steady state effect is obtained when the uncer-
tainties in AL and AVjy act in opposite directions
(Skogestad ef al., 1988). In the simulations we use:

AL ua=12A Lcompulcd and
A vBacluaI = 08A VBcomputcd‘ (51)

Responses for controller C (Table 1) to a 0.001
step disturbance acting on yp are shown in Fig. 11.
Errors in the input gains lead to very sluggish distur-
bance rejection although the disturbance is in
accordance with the DMC disturbance assumption.
The reason for this slow settling is that the effect of
the errors in the manipulated inputs is similar to the
effect of input step disturbances. Note that this
sluggish behavior cannot be improved by alternative
choices of tuning parameters.

This can also be demonstrated in a plot of the
singular values of the sensitivity function (Fig. 12).
Both the solid curves (no uncertainty) have slope 1
which is a consequence of the disturbance assump-
tion. They also lie close to each other, which shows
that the sensitivity function is well-conditioned.
Since the plant itself is ill-conditioned we can con-
clude that the controller is compensating for the
directionality of the plant. Such a controller is basi-
cally inverting the plant and the system should be
sensitive to input uncertainty. Indeed, this is the:
case as seen both from the simulation in Fig. 11 and
from the large difference between solid and dotted
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Fig. 12. Maximum and minimum singular values of the
sensitivity function for the distillation column [equation
(49)] with DMCss controller C (Table 1). Uncertainty as
defined in equation (51).
curves in Fig. 12. The dash-dot curve in Fig. 12 is
included as a reference. It is an upper bound on
sensitivity functions which achieve about 20 min
closed-loop time constant and a maximum sensi-
tivity peak of 2.

By comparing Figs 10 and 12 we see that there is
an excellent agreement between the predicted effect
of uncertainty, based on the RGA-plot, and the
actual effect seen in the sensitivity plot. [However,
this sensitivity plot is only showing how the control
performance deteriorate for this specific input error
(+20% in L and —20% in V}), and there may be an
even larger effect for other error combinations of
the same magnitude, i.e. the plot is not necessarily
showing the “worst case” of a norm-bounded uncer-
tainty. ]

3.6. Avoiding limitation 3

There are two different ways to deal with the
problem caused by input uncertainty demonstrated
in Fig. 12:

1. Use a controller that does not correct for the
directionality of the plant.

2. Increase the gain at those frequencies where
the disturbance suppression is poor.

The first method is suggested in Skogestad er al.
(1988). It gives a controller with somewhat sacri-
ficed nominal performance, but the performance is
much less sensitive to uncertainty because the con-
troller does not correct for directionality.

The second approach will work if the uncertainty
only causes problem at low frequencies. With this
approach the controller is still sensitive to uncer-
tainty, but this is counteracted by increasing the
controller gain at low frequencies to make the
nominal response much better than what is nomi-
nally needed.

We will now demonstrate the two approaches,
using OBMPC controllers E and F (Table 1). In

x10*
10f —— Without uncertainty
5 N - With uncertainty
9 A
= e
o
0 10 20 30 40 50 60 70 80 90 100
Time [min]
x10?
0
5 2f .
B ¥
-6}
B0 20 30 40 50 60 70 80 90 100
Time [min]

Fig. 13. Responses for the distillation column [equation

(49)] with OBMPC controller E (Table 1). A 0.001 step

disturbance acts on yp at t=10. Uncertainty as defined in
equation (51).

both cases the residual plant dynamics for each
input—output pair is approximated by b,/(z —a;)
where b; =5, ; ,+1— 5., and a;=0.995, i.e. a first-
order response with a time constant approximately
equal to 200 min and a gain determined at the
“truncation” step. The disturbance is assumed to
have the same dynamics as the plant, i.e. ¢;=0.995.

Figures 13 and 14 show responses for OBMPC
controllers E and F, respectively, for the same
output disturbance as used in Fig. 11. The OBMPC
controllers perform well despite the uncertainty
[equation (51)] and suppress the disturbance much
faster than DMCss does (Fig. 11). The response of
controller E is nearly unaffected by the uncertainty.
Controller F yields an almost perfectly decoupled
response when there is no uncertainty (i.e. xy is not
affected by the disturbance in y;), while the re-
sponse with input error clearly demonstrates inter-
action between the two loops.

In the case of an input disturbance the difference
between the OBMPC controllers and the DMCss

x10*

10
5' \
0p—1%

-5 3 ]
0 10 20 30 40 50 60 70 80 90 100
e Time [min]

—— Without uncertainty
With uncertainty

Output

Input

0 10 20 30 40 50 60 70 80 90 100
Time [min]

Fig. 14. Responses for the distillation column [equation

(49)] with OBMPC controller F (Table 1). A 0.001 step

disturbance acts on yp, at r= 10. Uncertainty as defined in
equation (51).
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Fig. 15. Maximum and minimum singular values of the

sensitivity function for the distillation column [equation

(49)] with OBMPC controller E (Table 1). Uncertainty as
defined in equation (51).

controller would be even larger, because of limi-
tation 2.

The sensitivity plot for controller E is shown in
Fig. 15. This controller is using a high input weight
and a large disturbance-to-noise ratio. The plot
shows that this controller does not try to invert the
plant; the solid curves (no uncertacnty) do not lie
close to each other. We can also conclude that it is
insensitive to uncertainty since the dotted curves
[uncertainty defined in equation (51)] lie close to the
solid curves.

Figure 16 shows the sensitivity plot for controller
F. This controller has no weight on the inputs (dead
beat Kypc) but is tuned for substantial measurement
noise (f,=0.22). From the plot we see that this
controller is inverting the plant for frequencies
above w=0.01rad/min. Below this frequency it is
still trying to invert the plant, but it does not suc-
ceed, since the true plant and the model with
approximated residual dynamics are slightly differ-
ent. This controller is sensitive to input uncertainty
in the sense that low frequency controller gain is so

10! —

100k
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3 ,—— Without uncertainty
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Fig. 16. Maximum and minimum singular values of the

sensitivity function for the distillation column [equation

(49)] with OPMPC controller F (Table 1). Uncertainty as
defined in equation (51).

high that even with uncertainty the performance is
satisfactory, except over a short frequency range.

Although controller F yields satisfactory perfor-
mance, we may conclude that the plant is rather
sensitive to input uncertainty also at frequencies
above the bandwidth. Thus, the best tuning
approach for this plant is approach 1 above, used for
tuning controller E.

4. DISCUSSION

We have studied feedback limitations of uncon-
strained DMC with a quadratic objective function
[equation (13)]. There are several variants of DMC:
“original” DMC (Cutler and Ramaker, 1980), DMC
with least squares satisfaction of input constraints
(Prett and Gillette, 1980), DMC with constrained
linear programming optimization (LDMC) (Mor-
shedi ef al., 1985), DMC with constrained quadratic
programming optimization (QDMC) (Garcia and
Morshedi, 1986). These variants use different opti-
mizers but the predictor is the same for all of them.
Both the limiting assumptions (Al and A2), which
we have studied, are implicit in the predictor and
will not be avoided by modifying the optimizer, so
the results in this paper hold for all these algorithms.
The results also carry over to the general case with
constraints, since the issue of constraints only affects
the optimizer.

The requirement S, =S, ,, of assumption 1, can be
avoided within the DMC framework (as defined by
Fig. 1) by using a general state space model instead
of a step response model. However, the plant still
has to be stable to ensure internal stability.
Assumption A2 cannot be avoided unless the con-
stant matrix $ is exchanged with a transfer function
states. This is most clearly seen in the DMCss algor-
ithm where the input to $ is y(k). y(k) cannot be
“filtered” by $ since it has no states, no knowledge
of previous measurements. Using a gain different
from 1 in $ would not filter y(k), but rather intro-
duce a steady state offset.

In this paper we have excluded the feedforward
part of the algorithms, although feedforward control
is a standard feature of MPC. It is simple to include
feedforward in the algorithms by introducing mea-
sured disturbances as inputs to the predictor.
However, this does not affect our results, the feed-
back limitations are still present.

In the following we discuss some of the results and
our choice of example processes and controller tun-
ings.

The SISO example [Equation (48)] has a time
constant much larger than the time delay. This
parameter choice is made on purpose to demon-
strate limitations L1 and L2, since they are
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especially important when the time constant of the
open-loop plant is large, compared to the desired
closed-loop time constant. In the SISO simulations
we use controllers where the optimizer is tuned for
dead-beat control. The reason for this tuning is that
we want to produce clear illustrative simulations
where the controller action is easy to understand. In
real applications one should always use a nonzero
input weight A to achieve some robustness to noise
and high-frequency model-plant mismatch.

All the simulations presented in this paper are
without measurement noise. Again the reason is that
we want to show clear illustrative simulations. (We
have also performed the simulations with noise and
it does not change our results.)

We have demonstrated that a truncated step re-
sponse model may cause severe model-plant mis-
match, both at high and low frequencies.
Low-frequency mismatch is not critical as long as the
“sign” of the process is correct, but high-frequency
mismatch may yield an unstable system (Fig. 3).
With the OBMPC controller truncation is avoided.
In controller D we use a rough approximation of the
residual dynamics (an integrator) to show that even
this approximation is better than truncation.

The sensitivity plots for the distillation column
(Figs 12, 15 and 16) show singular values of the
sensitivity function for no uncertainty and for one
specific case of uncertainty. However, we have used
the structural singular value, u, to check that the
controllers will perform well also for other cases of
uncertainty (see Skogestad er al., 1988, for
instance).

We have not put any effort into finding the best
approximation of the residual dynamics, although
that may have improved the OBMPC responses
further, instead the simplest choices of A, and B,
are used throughout the paper. Hovd ez al. (1991)
discuss how to choose A, and b, in an optimal
fashion.

5. CONCLUSIONS

We have shown that there are situations where
the feedback performance of DMC is poor irrespec-
tive of tuning. This poor prformance is due to the
two assumptions (Al and A2) made in the predictor
part of the algorithm. This explains why the perfor-
mance cannot be improved by different tuning—
different tuning only affects the oprimizer part of the
algorithm.

The OBMPC algorithm by Lee er al. (1994) allows
us to avoid the limitations of DMC and still preserve
all the attractive properties of the DMC algorithm.

Acknowledgement—Partial support {rom the National
Science Foundation is gratefully acknowledged.

NOMENCLATURE

A = State matrix
A = Disturbance state matrix, equation (37)
a=Element in state matrix
B =Input matrix
b = Element input matrix
C = Output matrix
f.=Tuning parameter in filter gain K
f»=Tuning parameter in filter gain K
9 = Equation (12)
K =Kalmal filter gain
K.=Pl-controller gain
Kype=MPC feedback gain
k;=Gain, equation (49)
L = Reflux
M =Matrix in step response model, equation (3)
m = Input horizon
N = Matrix in step response model, equation (4)
n = Model horizon
n, = Number of inputs
n, = Number of outputs
p = Prediction horizon
9 = Set point vector
S = Step response coefficient matrix, equation (3)
s = Step response coefficient
T = Disturbance input matrix, equation (25)
AT=Sampling time
t="Time (min)
U = Optimal contro} sequence
u = manipulated input
V =Noise covariance matrix
Vg = Boilup
v =Measurement noise
W = Disturbance covariance matrix
w = Disturbance
x = State variable
xp = Bottom composition (kmol/kmol)
Y = Output vector
Y = Dynamic states of DMC predictor
Y = Dynamic states of OBMPC predictor
% = Predicted output vector
v = Controlled output
¥ = Measured outut
yp = Top composition (kmol/kmol)
z = Shift operator

Greek symbols

o = Parameter in disturbance model, equation (37)
I'= Output weighting matrix, equation (13)
A=Au(k)=u(k)—u(k—1)
6 =Time delay (min)
A = Input weighting matrix, equation (13)
An=(1,1) RGA element
7; = Pl-controller integral time constant (min)
1), 7o = Time constant (min), equation (49)
w = Frequency (rad/min)
wy = Closed-loop bandwidth (rad/min)

Abbreviations

DMC = Dynamic matrix control
DMCss = Dynamic matrix control with state space
model
MIMOQ = Multi-input~multi-output
MPC = Model predictive control
OBMPC = Observer based model predictive control
QDMC = quadratic programming dynamic matrix
control
RGA = Relative gain array
SISO = Single input-single output
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